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PRODUCTS OF CESÀRO CONVERGENT SEQUENCES
WITH APPLICATIONS TO CONVEX SOLID SETS

AND INTEGRAL OPERATORS
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(Communicated by Nigel J. Kalton)

Abstract. Let 0 ≤ an, bn, cn such that an = bncn. If a = limn→∞ an,
and {bn} and {cn} Cesàro converge to b, respectively c, then a ≤ bc. This

implies that if in addition {bn} and {cn} are similarly ordered, then a = bc.

As applications we prove that the pointwise product of two convex solid sets
closed in measure is again closed in measure and a factorization result for

kernels of regular integral operators on Lp–spaces.

1. Introduction.

Recall that a sequence {an} of real numbers is called Cesàro convergent to a
if limn→∞

a1+···+an

n = a. It is known that in general there is no product the-
orem for Cesàro convergence of sequences. In fact the product of two Cesàro
convergent sequences does not have to be Cesàro convergent; e.g., if {an} =
{1, 1, 2, 0, · · · , 2, 0, 1, 1, · · · , 1, 1, 2, 0, 2, 0, · · · }, then {an} Cesàro converges to 1, but
the averages for a2

n can be made to oscillate between 1 and 2, by taking the con-
secutive blocks of 1’s and 2, 0’s increasingly larger. In that case {a2

n} does not
Cesàro converge. Even if we assume that the product of two Cesàro convergent
sequences is again Cesàro convergent, this does not imply that there is an order
relation between the Cesàro limit of the product and the product of the Cesàro
limits. This is obvious when we change the sign of one of the two sequences. The
main result we prove about Cesàro convergence is that if 0 ≤ an, bn, cn are such
that an = bncn, a = limn→∞ an, and {bn} and {cn} Cesàro converge to b, respec-
tively c, then a ≤ bc. Recall that two sequences {bn} and {cn} are said to be
similarly ordered if (bn − bm)(cn − cm) ≥ 0 for all n,m ≥ 1. If we have in the
main result that {bn} and {cn} are also similarly ordered, then a = bc. To apply
these results we use a theorem of Komlós for L1(X,µ) ([4]), extended to Banach
function spaces. Our first application is to the pointwise product of convex solid
subsets of L0(X,µ). Let A,B be convex solid subsets of L0(X,µ) and assume both
A and B are closed in measure. Then we will show that the pointwise product
A · B = {f : f = gh, g ∈ A, h ∈ B} is again closed in measure. This result is of
interest in the case that A and B are unit balls of Banach function spaces with the
Fatou property. Our second application involves regular integral operators on Lp.
By Kr(Lp) we shall denote the collection of all regular integral operators on Lp. If
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we equip Kr(Lp) with the regular norm ‖·‖r, i.e., the operator norm of the modulus
operator |T |, then it is well-known that Kr(Lp) becomes a Banach function space
on X × X with the Fatou property. Our main result is here that if T ∈ Kr(Lp)
with kernel T (x, y), then the kernel can be written as T (x, y) = T1(x, y)T2(x, y),
where T1 ∈ L∞,p′ and T2 ∈ Lt

∞,p. Moreover T1 and T2 can be chosen such that
‖T‖r = ||T1‖∞,p′‖T t

2‖∞,p.

2. A product theorem for Cesàro convergence

We start with two lemmas.

Lemma 2.1. Let 0 < ak ∈ R for 1 ≤ k ≤ n. Then

1 ≤

(
1
n

n∑
k=1

ak

)(
1
n

n∑
k=1

1
ak

)
.

Proof. From the Arithmetic-Geometric Mean inequality we have

1
n

n∑
k=1

ak ≥ (a1 · · · an)
1
n

and
1
n

n∑
k=1

1
ak
≥
(

1
a1
· · · 1

an

) 1
n

.

Taking products on the left and right now yields the desired inequality. �

Lemma 2.2. Let 0 < an, bn ∈ R for n ∈ N such that limn→∞ an = a > 0 and
limn→∞

1
n (b1 + · · ·+ bn) = b. Then

lim
n→∞

an

n

(
b1
a1

+ · · ·+ bn
an

)
= b.

Proof. Let ε > 0 and let δ > 0 such that an > δ for all n ≥ 1. Then there exists
N > 1 such that |an − am| < δε for all n,m ≥ N . This implies that∣∣∣∣ an

am
− 1
∣∣∣∣ < δε

am
< ε

for all n,m ≥ N . Hence it follows that∣∣∣∣an

n

(
b1
a1

+ · · ·+ bn
an

)
− 1
n

(b1 + · · ·+ bn)
∣∣∣∣ =

1
n

∣∣∣∣(an

a1
− 1
)
b1 + · · ·+

(
an

an
− 1
)
bn

∣∣∣∣
≤ 1
n

N−1∑
k=1

∣∣∣∣an

ak
− 1
∣∣∣∣ |bk|+ ε

n

n−1∑
k=N

bk

for all n ≥ N . This implies that

lim sup
n

∣∣∣∣an

n

(
b1
a1

+ · · ·+ bn
an

)
− 1
n

(b1 + · · ·+ bn)
∣∣∣∣ ≤ εb

for all ε > 0, from which the result follows. �

Theorem 2.3. Let 0 < an, bn, cn ∈ R for n ∈ N with an = bncn such that
limn→∞ an = a, limn→∞

1
n (b1 + · · · + bn) = b and limn→∞

1
n (c1 + · · · + cn) = c.

Then a ≤ bc. In particular b 6= 0 and c 6= 0, whenever a > 0.
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Proof. If a = 0, then there is nothing to prove. Assume therefore that a > 0.
Let b̃n = 1

n (b1 + · · · + bn) and put c̃n = an

b̃n
. Then limn→∞ c̃n = a

b if b 6= 0 and
limn→∞ c̃n =∞ if b = 0. From Lemmas 2.1 and 2.2 we have

c̃n ≤
an

n

(
1
b1

+ · · ·+ 1
bn

)
=
an

n

(
c1
a1

+ · · ·+ cn
an

)
→ c.

This shows that limn→∞ c̃n ≤ c <∞, so b 6= 0 and a
b = limn→∞ c̃n ≤ c. �

Remark 2.4. The above theorem is no longer true if we replace the condition that
{an} is convergent by the condition that {an} is Cesàro convergent. To see this
take {an} = {4, 1, 4, 1, · · · } and {bn} = {cn} = {2, 1, 2, 1, · · · }. Then {an} is
Cesàro convergent to 5

2 , and {bn} and {cn} are Cesàro convergent to 3
2 . However

( 3
2 )2 = 9

4 <
5
2 .

To get equality in the above theorem, we recall first the following terminology.
Two sequences {bn} and {cn} are said to be similarly ordered if

(bn − bm)(cn − cm) ≥ 0

for all n,m ≥ 1. The following inequality is called Tchebychef’s inequality in
[2](Item 43).

Lemma 2.5. If {bn} and {cn} are similarly ordered, then for all n ≥ 1 we have(
1
n

n∑
k=1

bk

)(
1
n

n∑
k=1

ck

)
≤

(
1
n

n∑
k=1

bkck

)
.

Combining this lemma with Theorem 2.3 we get immediately the following the-
orem.

Theorem 2.6. Let 0 < an, bn, cn ∈ R for n ∈ N with an = bncn such that
limn→∞ an = a, limn→∞

1
n (b1 + · · · + bn) = b and limn→∞

1
n (c1 + · · · cn) = c.

Assume {bn} and {cn} are similarly ordered. Then a = bc.

3. An application to the pointwise product of convex solid sets

Let (X,Σ, µ) be a complete finite measure space. By L0(X,µ) we will denote
the set of all measurable functions which are finite a.e. As usual we will identify
functions equal almost everywhere. An ideal E of L0(X,µ) equipped with a lattice
norm is called a Köthe function space; i.e., if f ∈ E and |g| ≤ |f | a.e., then g ∈ E
and ‖g‖ ≤ ‖f‖. A norm complete Köthe function space is called a Banach function
space. For a detailed treatment of Banach function spaces we refer to [9]. The
detailed study of Banach function spaces led to the study of Riesz spaces and
Banach lattices, which incorporated, clarified and extended the earlier theory; see
e.g. [10].

To apply the above results we will use the following theorem, which is a direct
consequence of a fundamental theorem of Komlós for L1(X,µ) [4].

Theorem 3.1. Let E be a normed Köthe space and {fn} a norm bounded sequence
in E. Then there exist a subsequence {fnk

} of {fn} and f ∈ E′′ such that {fnk
}

and any subsequence of {fnk
} Cesàro converges to f a.e. on X.
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Proof. Let 0 < g ∈ E′ be strictly positive so that µ and gdµ are equivalent measures.
Then {fn} is a norm bounded sequence in L1(X, gdµ) and the existence of 0 ≤ f ∈
L1(X, gdµ) and a subsequence with the stated a.e. convergence properties follows
then from Komlós’ theorem [4]. To see that f ∈ E′′, note that ‖fn‖E ≤ C for all
n implies that also ‖fn‖E′′ ≤ C. Now ‖ 1

k (fn1 + · · · + fnk
)‖E′′ ≤ C implies by the

Fatou property of ‖ · ‖E′′ that also ‖f‖E′′ ≤ C. �

Theorem 3.2. Let A and B be convex solid subsets of L0(X,µ), which are closed
in measure. Then A ·B is closed in measure.

Proof. Assume first that at least one of A and B is not bounded in measure; say A
is not bounded in measure. Then by Theorem 11 of [6] there exists a measurable set
X0 such that A|X0 = L0(X0, µ) and A|Xc

0
is bounded in measure. This implies then

that A|X0 ·B = L0(X1, µ) for some measurable subset of X0. In particular A|X0 ·B
is closed in measure. Assume therefore that both A and B are bounded in measure.
By the same theorem of [6] we get that A and B are unit balls of Banach function
spaces E, respectively F , with the Fatou property. Let 0 ≤ fn ∈ A ·B be such that
fn(x) → f(x) a.e., where f ∈ L0(X,µ). Then fn = gnhn, where ‖gn‖E ≤ 1 and
‖hn‖F ≤ 1 for all n ≥ 1. By Komlós’ theorem there exist subsequences {gnk

} and
{hnk

} such that {gnk
} Cesàro converges a.e. to g ∈ E with ‖g‖E ≤ 1 and {hnk

}
Cesàro converges a.e. to h ∈ F with ‖h‖F ≤ 1. By the above theorem on Cesàro
convergence we get that f ≤ gh a.e. Thus f ∈ A ·B and the proof is complete. �

4. An application to integral operators on Lp–spaces

We recall the definition of regular integral or kernel operators on Lp-spaces. Let
T (x, y) be a µ×µ-measurable function on X ×X. Then T (x, y) is the kernel of an
integral operator T from Lp into Lp if∫

X

|T (x, y)f(y)|dµ(y) <∞ a.e.

for all f ∈ Lp and

Tf(x) =
∫

X

T (x, y)f(y)dµ(y) ∈ Lp

for all f ∈ Lp. If in addition |T (x, y)| is the kernel of an integral operator (denoted
by |T |) from Lp into Lp, then T is called a regular (or order bounded) integral
operator. By Kr(Lp) we shall denote the collection of all such regular integral
operators on Lp. If we equip Kr(Lp) with the regular norm ‖ · ‖r, i.e., the operator
norm of the modulus operator |T |, then it is well-known that Kr(Lp) becomes a
Banach function space on X × X with the Fatou property. Many order-theoretic
properties of Kr(Lp) are known (see e.g. [10]), but there does not exists an explicit
formula for ‖T‖r in terms of its kernel T (x, y) in case 1 < p <∞, even not for the
matrix case. Therefore it might be of some interest to prove that every T ∈ Kr(Lp)
is in fact a product of two kernels in explicitly defined Banach function spaces. For
a measurable function F on X ×X we define for 1 ≤ p < ∞ the norm ‖F‖∞,p as
follows:

‖F‖∞,p =

∥∥∥∥∥
(∫
|F (x, y)|p dµ(y)

) 1
p

∥∥∥∥∥
∞

.

We write
L∞,p = {F ∈ L0(X ×X) : ‖F‖∞,p <∞}.
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One can show that L∞,p is a Banach function space with the Fatou property,
isometric to the collection of all bounded operators from Lp′ into L∞ provided
with the operator norm. Given F on X × X we define the transpose of F by
F t(x, y) = F (y, x). Then Lt

∞,p will denote the collection of all F such that F t ∈
L∞,p and the norm on Lt

∞,p will be defined by ‖F t||∞,p. The Banach function
space Lt

∞,p is for 1 < p ≤ ∞ isometric with the collection of all bounded operators
from L1 into Lp with the operator norm.

Theorem 4.1. Let 1 < p < ∞ and 0 ≤ T (x, y) ∈ L0(X ×X). Then T ∈ Kr(Lp)
if and only if the kernel T (x, y) can be written as T (x, y) = T1(x, y)T2(x, y), where
T1 ∈ L∞,p′ and T2 ∈ Lt

∞,p. Moreover if T ∈ Kr(Lp), then T1 and T2 can be chosen
such that ‖T‖r = ||T1‖∞,p′‖T t

2‖∞,p.

Proof. Assume first that T1 ∈ L∞,p′ and T t
2 ∈ L∞,p and let T (x, y) =

T1(x, y)T2(x, y). Denote by T the integral operator with kernel T (x, y). Then,
for f ∈ Lp, we have

|Tf(x)| ≤
∫
|T1(x, y)||T2(x, y)||f(y)| dµ(y)

≤
(∫
|T1(x, y)|p

′
dµ(y)

) 1
p′
(∫
|T2(x, y)|p|f(y)|p dµ(y)

) 1
p

≤ ‖T1‖∞,p′

(∫
|T2(x, y)|p|f(y)|p dµ(y)

) 1
p

.

Hence ∫
|Tf(x)|p dµ(x) ≤ ‖T1‖p∞,p′

∫ (∫
|T2(x, y)|p|f(y)|p dµ(y)

)
dµ(x)

= ‖T1‖p∞,p′

∫ (∫
|T2(x, y)|p dµ(x)

)
|f(y)|p dµ(y)

≤ ‖T1‖p∞,p′‖T
t
2‖p∞,p‖f‖pp.

It follows that T ∈ Kr(Lp) and ‖T‖r ≤ ‖T1‖∞,p′‖T t
2‖∞,p. Now let T ∈ Kr(Lp).

Then we can assume that 0 ≤ T and ‖T‖ = 1. Let ε > 0. Then by Gagliardo’s
converse of the Schur test for positive linear operators (see e.g. [3]) there exists 0 <
f0 ∈ Lp with ‖f0‖p = 1 such that T ∗(Tf0)p−1 ≤ (1+ε)fp−1

0 . Now define T1(x, y) =
T (x, y)

1
p′ f0(y)

1
p′ (Tf0(x))−

1
p′ and T2(x, y) = T (x, y)

1
p f0(y)−

1
p′ (Tf0(x))

1
p′ . Then

clearly T (x, y) = T1(x, y)T2(x, y). Moreover∫
T1(x, y)p′ dµ(y) = Tf0(x)(Tf0(x))−1 = 1 a.e.

and ∫
T2(x, y)p dµ(x) = T ∗(Tf0)p−1(y) · f0(y)1−p ≤ 1 + ε a.e.

This shows that T1 ∈ L∞,p′ and T t
2 ∈ L∞,p and ‖T1‖∞,p′‖T t

2‖∞,p ≤ 1 + ε. Hence
‖T‖r = inf{||T1‖∞,p′‖T t

2‖∞,p : |T (x, y)| = |T1(x, y)T2(x, y)|, T1 ∈ L∞,p′ , T
t
2 ∈

L∞,p}. We will now show that the infimum is actually a minimum. Again let
T ∈ Kr(Lp) with ‖T‖r = 1. Then we can find 0 ≤ T1,n ∈ L∞,p′ and 0 ≤
T t

2,n ∈ L∞,p such that |T (x, y)| = T1,n(x, y)T2,n(x, y) and ‖T1,n‖∞,p′ = 1 and
‖T t

2,n‖∞,p ≤ 1+ 1
2n . From Komlós’ theorem it follows that there exist subsequences
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{T1,nk
} and {T2,nk

}, T1 ∈ L∞,p′ and T2 ∈ Lt
∞,p such that {T1,nk

} Cesàro converges
a.e. to T1 and {T2,nk

} Cesàro converges a.e. to T2. From Theorem 2.3 it follows
that |T | ≤ T1T2 a.e. By replacing T2 by the smaller function |T |/T1, on the set
where T2 6= 0, we can assume that |T | = T1T2. Clearly ‖T1‖∞,p ≤ 1 and

‖1
k

(T2,n1 + · · ·+ T2,nk
)‖Lt

∞,p
≤ 1
k

(1 +
1

2n1
+ · · ·+ 1 +

1
2nk

) ≤ 1 +
1
k

implies that ‖T t
2‖∞,p ≤ 1. This implies that both ‖T1‖∞,p = 1 and ‖T t

2‖∞,p = 1.
Now replacing T1 by sgn(T )T1, we get that T = T1T2, where T1, T2 satisfy the same
norm conditions as before. �

Remark 4.2. One can rewrite the above factorization asKr(Lp) = (L∞,1)
1
p′ (Lt

∞,1)
1
p .

In this form the above theorem is a specialization of Pisier’s result [5] that Lr(Lp) =
L(L∞)

1
p′ L(L1)

1
p . Pisier’s result was already anticipated for positive operators by

Akcoglu, Baxter and Lee in [1]. We also note that for p = 2 the implication
T = T1T2, where T1 ∈ L∞,2 and T2 ∈ Lt

∞,2, implies that T is bounded on L2 with
norm less than or equal to ‖T1‖∞,2‖T t

2‖∞,2 (see Theorem 6.34 of [8]). The above
theorem shows that an exact converse is true, i.e., that ‖T‖r = ||T1‖∞,p′‖T t

2‖∞,p

in all of these results. This is somewhat unexpected, as the theorem and its proof
are very closely related to the Schur criterion and its converse. For the converse of
the Schur criterion as used in the above proof it is known that we cannot put ε = 0
(see [7] for a discussion of this and a related open problem).
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