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1. The Darboux definition of the Riemann Integral

Let f : [a, b] → R be a it bounded function.

Definition 1.1. A partition P of [a, b] is collection of points {x0, · · · , xn} which
satisfiy a = x0 < x1 < · · · < xn = b.

Denote by ∆xk the length of the interval [xk−1, xk], i.e., ∆xk = xk−xk−1. Then
the mesh |P| is by definition equal to max1≤k≤n ∆xk. Given a bounded function f
and a partition P of [a, b] we define the Riemann upper sum by

U(P, f) =
n∑

k=1

Mk∆xk,

where Mk = lub {f(x) : xk−1 ≤ x ≤ xk}. Similarly we define the Riemann lower
sum by

L(P, f) =
n∑

k=1

mk∆xk,

where mk = glb {f(x) : xk−1 ≤ x ≤ xk}. Since mk ≤ Mk we clearly have
L(P, f) ≤ U(P, f).

Definition 1.2. Let P1,P2 be two partitions of [a, b]. The P2 refines P1 if as sets
P1 ⊂ P2.

We will write P1 � P2 whenever P2 refines P1. Note given any two partitions
P1,P2 of [a, b] we can find the common refinement P of P1 and P2 by taking the
partition corresponding to the union of the two point sets which form the partions
P1,P2.

Lemma 1.3. If P1 � P2, then L(P1, f) ≤ L(P2, f) and U(P2, f) ≤ U(P1, f).

Proof. Let P1 = {a = x0 < x1 < · · · < xn = b}. We will first assume that P2 is a
partition obtained from P1 by adding a point x between xi−1 and xI . The general
case will follow by induction by adding one point at the time. Thus we assume that
P2 = {a = x0 < x1 < · · · < xi−1 < x < xi < · · · < xn = b}. Then we write as
above

U(P1, f) =
n∑

k=1

Mk∆xk
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and now

U(P2, f) =
i−1∑
k=1

Mk∆xk + M ′(x− xi−1) + M ′′(xi − x) +
n∑

k=i+1

Mk∆xk,

where M ′ = lub {f(y) : xi−1 ≤ y ≤ x} and M ′′ = lub {f(y) : x ≤ y ≤ xi}. It is
clear that M ′,M ′′ ≤ Mi, so we have that

M ′(x− xi−1) + M ′′(xi − x) ≤ M(x− xi−1) + M(xi − x) = M∆xi.

Hence U(P2, f) ≤ U(P1, f). Similarly L(P1, f) ≤ L(P2, f). �

Corollary 1.4. Let P1,P2 be two partitions of [a, b]. Then L(P1, f) ≤ U(P2, f).

Proof. Let P be the common refinement of P1 and P2. Then we have by the above
lemma that

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f).
�

Definition 1.5. The upper Riemann integral of f over [a, b] is∫ b

a

f(x) dx = glb {U(P, f) : P a partion of [a, b]}

and the lower Riemann integral of f over [a, b] is∫ b

a

f(x) dx = lub {L(P, f) : P a partion of [a, b]}.

From the above corollary we conclude that∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx.

The following definition is Darboux’s version of the Riemann integral.

Definition 1.6. A bounded function f ; [a, b] → R is Riemann integrable if∫ b

a

f(x) dx =
∫ b

a

f(x) dx.

The common value is then called the Riemann integral of f and denoted by
∫ b

a
f(x) dx.

Example 1.7. Let f : [0, 1] → R be defined as follows:

f(x) =

{
0 if x ∈ [0, 1] \Q
1 if x ∈ [0, 1] ∩Q.

Then for any partition P of [0, 1] we have U(P, f) = 1 and L(P, f) = 0. Hence the
upper Riemann integral of f is one, while the lower Riemann integral is equal to
zero. Hence f is not Riemann integrable.

Theorem 1.8. A bounded function f ; [a, b] → R is Riemann integrable if and only
if for all ε > 0 there exists a partition P of [a, b] such that

(*) U(P, f)− L(P, f) < ε.
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Proof. Assume first that (*) holds. Let ε > 0 and let P be a partition of [a, b]
satisfying (*). Then∫ b

a

f(x) dx−
∫ b

a

f(x) dx ≤ U(P, f)− L(P, f) < ε

for all ε > 0, which implies that f is Riemann integrable. Assume now that f is
Riemann integrable and let ε > 0. Then by the definition of the upper Riemann
integral there exists a partition P1 of [a.b] such that∫ b

a

f(x) dx ≤ U(P1, f) <

∫ b

a

f(x) dx +
ε

2
.

Similarly ny the definition of the lower Riemann integral there exists a partition P2

of [a.b] such that ∫ b

a

f(x) dx− ε

2
< L(P2, f) ≤

∫ b

a

f(x) dx.

Let P be the common refinement of P1 and P2. Then∫ b

a

f(x) dx− ε

2
< L(P, f) ≤

∫ b

a

f(x) dx ≤ U(P, f) <

∫ b

a

f(x) dx +
ε

2
,

which implies
U(P, f)− L(P, f) < ε.

�

Proposition 1.9. Let f and g be Riemann integrable functions on [a, b]. Then cf
and f + g are Riemann integrable, i.e., the set of Riemann integrable functions on
[a, b] form a real vector space. Moreover

∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx and

∫ b

a
f(x) +

g(x) dx =
∫ b

a
f(x) dx +

∫ b

a
g(x) dx.

Proof. For c > 0 it is clear that U(P, cf) = cU(P, f) and L(P, cf) = cL(P, f)
for any partition P. This implies immediately, via an ε

c argument, that cf is
Riemann integrable and

∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx for c > 0. The case c = 0

is obvious and the case c < 0 follows from the fact that U(P,−f) = −L(P, f)
and L(P,−f) = −U(P, f) for any partition P. To prove that f + g is Riemann
integrable let ε > 0. Then there exists a partition P1 such that

U(P1, f)− L(P1, f) <
ε

2
.

Similarly there exists a partition P2 such that

U(P2, g)− L(P2, g) <
ε

2
.

Let P be the common refinement of P1 and P2 given by a = x0 < x1 < · · · < xn = b.
Then lub {f(x) + g(x) : xi−1 ≤ x ≤ xi} ≤ lub {f(x) : xi−1 ≤ x ≤ xi}+ lub {g(x) :
xi−1 ≤ x ≤ xi} implies that

U(P, f + g) ≤ U(P, f) + U(P, g).

Similarly we have that

L(P, f) + L(P, g) ≤ L(P, f + g).
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Combining these inequalities with the previous inequalities we have that

U(P, f + g)− L(P, f + g) < U(P, f)− L(P, f) + U(P, g)− L(P, g) < ε.

This implies that f + g is Riemann integrable and by including
∫ b

a
f(x) dx and∫ b

a
g(x) dx in our inequalities above we find also that

∫ b

a
f(x)+g(x) dx =

∫ b

a
f(x) dx+∫ b

a
g(x) dx. �

Corollary 1.10. Let f, g : [a, b] → R be Riemann integrable functions and assume
g(x) ≤ f(x) on [a, b]. Then

∫ b

a
g(x) dx ≤

∫ b

a
f(x), dx. In particular if |f(x)| ≤ M

on [a, b], then
∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ M(b− a).

Proof. Let h = f − g. Then h Riemann integrable on [a, b] and h(x) ≥ 0 on
[a, b]. Since every lower Riemann sum is greater or equal than 0, it follows that∫ b

a
h(x) dx ≥ 0, which implies that

∫ b

a
g(x) dx ≤

∫ b

a
f(x) dx. If |f(x)| ≤ M , then

−M ≤ f(x) ≤ M on [a, b] implies that −M(b − a) =
∫ b

a
−M dx ≤

∫ b

a
f(x) dx ≤∫ b

a
M dx = M(b− a), i.e.,

∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ M(b− a). �

2. Riemann integrability of continuous or monotone functions

We start with the Riemann integrability of continuous functions.

Theorem 2.1. Let f : [a, b] → R be continuous. Then f is Riemann integrable on
[a, b].

Proof. Let ε > 0. Then the compactness of [a, b] implies that f is uniformly continu-
ous and bounded on [a, b]. Hence there exists M > 0 and δ > 0 such that |f(x)| ≤ M
and such that |x− y| < δ, x, y ∈ [a, b], implies that |f(x)− f(y)| < ε

b−a . Let now P
be any partition of [a, b] with mesh |P| < δ given by a = x0 < x1 < · · · < xn = b.
Then |f(x)−f(y)| < ε

b−a for all x, y ∈ [xi−1, xi] implies that Mi−mi < ε
b−a . From

this it follows that

U(P, f)− L(P, f) =
n∑

i=1

(Mi −mi)∆xi <
n∑

i=1

ε

b− a
∆xi = ε.

Hence f is Riemann integrable on [a, b]. �

Recall now that a function f : [a, b] → R is called monotone, if f is either non-
decreasing on [a, b], i.e. , f(x) ≤ f(y) for all a ≤ x < y ≤ b, or non-increasing on
[a, b], i.e., f(x) ≥ f(y) for all a ≤ x < y ≤ b.

Theorem 2.2. Let f : [a, b] → R be monotone. Then f is Riemann integrable on
[a, b].

Proof. We can assume without loss of generality that f is non-constant and non-
decreasing on [a, b]. Then f(b) > f(a). Let ε > 0 and put δ = ε

f(b)−f(a) . Let P
be a partition given by a = x0 < x1 < · · · < xn = b with mesh |P| < δ. Then
Mi = f(xi) and mi = f(xi−1) for i = 1, · · · , n. Therefore we have

U(P, f)− L(P, f) =
n∑

i=1

(f(xi)− f(xi−1))∆xi < δ
n∑

i=1

(f(xi)− f(xi−1)) = ε.

Hence f is Riemann integrable on [a, b]. �
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To extend the above theorems to piecewise continuous or monotone functions we
prove the following theorem.

Theorem 2.3. Let f : [a, b] → R be a bounded function and let a < c < b. Then f
is Riemann integrable on [a, b] if and only if f is Riemann integrable on [a, c] and
[c, b]. Moreover we have in that case that

∫ b

a
f(x) dx =

∫ c

a
f(x) dx +

∫ b

c
f(x) dx.

Proof. Assume first that f is Riemann integrable on [a, b]. Let ε > 0. Then there
exists a partition P of [a, b] such that U(P, f)−L(P, f) < ε. If necessary we can add
c to the partition P. Then we can write P = P1∪P2, where P1 is a partition of [a, c]
and P2 is a partition of [c, b]. Now it is clear that U(P1, f) + U(P2, f) = U(P, f)
and L(P1, f) + L(P2, f) = L(P, f). Now U(P, f) − L(P, f) < ε implies that also
U(P1, f)−L(P1, f) < ε and U(P2, f)−L(P2, f) < ε. Hence f is Riemann integrable
over [a, c] and [c, d]. Moreover the inequalities

L(P1, f) ≤
∫ c

a

f(x) dx ≤ U(P1, f),

L(P2, f) ≤
∫ b

c

f(x) dx ≤ U(P2, f),

and

L(P, f) ≤
∫ b

a

f(x) dx ≤ U(P, f)

imply that ∣∣∣∣∣
∫ b

a

f(x) dx−
∫ c

a

f(x) dx−
∫ b

c

f(x) dx

∣∣∣∣∣ < ε

for all ε > 0. Therefore
∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx. Now assume that f is

Riemann integrable on [a, c] and [c, b]. Let ε > 0. Then there exist partitions P1 of
[a, c] and P2 of [c, b] such that U(P1, f)−L(P1, f) < ε

2 and U(P2, f)−L(P2, f) < ε
2 .

Let P = P1 ∪ P2. Then P is a partition of [a, b]. As above we have U(P1, f) +
U(P2, f) = U(P, f) and L(P1, f) + L(P2, f) = L(P, f) which implies immediately
that U(P, f)− L(P, f) < ε, so f is Riemann integrable on [a, b]. �

Before we can apply the above theorem to piecewise continuous or montone func-
tions we need to prove that for bounded functions the behaviour at the endpoints
does not matter for integrability.

Lemma 2.4. Let f : [a, b] → R be a bounded function and assume either that f is
Riemann integrable on [c, b] for all a < c ≤ b or that f is Riemann integrable on
[a, c] for all a ≤ c < b. Then f is Riemann integrable over [a, b].

Proof. Let M be such that |f(x)| ≤ M on [a, b] and assume that f is Riemann
integrable on [c, b] for all a < c ≤ b. Let ε > 0. Then let a < c ≤ b such that c−a <

ε
2M . Then we can find a partition P1 of [c, b] such that U(P1, f) − L(P1, f) < ε

2 .
Asume P1 is given by the points c = x1 < · · · < xn = b. Then define the partition
P of [a, b] by the points a = x0 < c = x1 < · · · < xn = b. Then M1 − m1 ≤ 2M
implies that (M1 −m1)∆x1 ≤ 2M(c− a) < ε

2 . Hence

U(P, f)− L(P, f) = (M1 −m1)∆x1 + U(P1, f)− L(P1, f) < ε.

Hence f is Riemann integrable. The result for the case that f is Riemann integrable
on [a, c] for all a ≤ c < b follows similarly.

�
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Example 2.5. Let f : [0, 1] → R be defined by

f(x) =

{
0 if x = 0
sin 1

x if x 6= 0.

Then f is Riemann integrable on [0, 1], since f is continuous on [c, 1] for all c > 0
and f is bounded by one in absolute value on [0, 1].

We will now call a bounded function f : [a, b] → R piecewise continuous or
monotone, if there exist a partition a = x0 < x1 < · · · < xn = b of [a, b] such
that the restriction of f to the open interval (xk−1, xk) is continuous or monotone
for k = 1, · · · , n. Combining all the results of this section we have the following
corollary.

Corollary 2.6. Let f : [a, b] → R be a bounded piecewise continuous or monotone
function. Then f is Riemann integrable. Moreover, if a = x0 < · · · < xn = b
are such that the restriction of f to the open interval (xk−1, xk) is continuous or
monotone for k = 1, · · · , n, then∫ b

a

f(x) dx =
n∑

k=1

∫ xk

xk−1

f(x) dx.

We conclude this section with a theorem about compositions of Riemann inte-
grable functions.

Theorem 2.7. Let f : [a, b] → R be a Riemann integrable function with range con-
tained in [c, d] and let g : [c, d] → R be a continuous function. Then the composition
g ◦ f : [a, b] → R is Riemann integrable.

Proof. As [c, d] is compact, g is bounded and uniformly continuous on [c, d]. Let
K = max{|g(y)| : c ≤ y ≤ d} and let ε > 0. Then there exists 0 < δ < ε

b−a+2K

such that

(1) |g(y)− g(z)| < ε

b− a + 2K
,

for all y, z ∈ [c, d] with |y − z| < δ. Now let P be a partition of [a, b] such that

U(P, f)− L(P, f) < δ2.

Assume that P is given by a = x0 < · · · < xn = b and denote as before by
Mk the least upper bound of f on [xk−1, xk] and mk the corresponding greatest
lower bound of f . We denote by M∗

k and m∗
k the corresponding quantities for

g ◦ f . Now we partition {1, · · · , n} = A ∪ B, where A = {k : Mk − mk < δ} and
B = {k : Mk − mk ≥ δ}. If k ∈ A, then |f(t) − f(s)| ≤ Mk − mk < δ for all
t, s ∈ [xk−1, xk]. Hence by (1) we have for all t, s ∈ [xk−1, xk] that

|g(f(t))− g(f(s))| < ε

b− a + 2K
,

which implies that M∗
k −m∗

k ≤ ε
b−a+2K for all k ∈ A. This implies that

(2)
∑
k∈A

(M∗
k −m∗

k)∆xk ≤
ε

b− a + 2K

∑
k∈A

∆xk ≤
ε(b− a)

b− a + 2K
.
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If k ∈ B we will use the trivial estimate M∗
k −m∗

k ≤ 2K, so that we will need to
estimate

∑
k∈B ∆xk. If k ∈ B, then δk ≤ Mk −mk, so we have∑
k∈B

∆xk ≤
1
δ

∑
k∈B

(Mk −mk)∆xk

≤ 1
δ
U(P, f)− L(P, f) <

1
δ
δ2 = δ <

ε

b− a + 2K
.

This implies that

(3)
∑
k∈B

(M∗
k −m∗

k)∆xk ≤
2εK

b− a + 2K
.

Combining now the inequalities (2) and (3) we have that

U(P, g ◦ f)− L(P, g ◦ f) <
ε(b− a)

b− a + 2K
+

2εK

b− a + 2K
= ε.

Hence g ◦ f is Riemann integrable on [a, b]. �

Corollary 2.8. Let f, g : [a, b] → R be Riemann integrable functions. Then |f |,
f2, fg, max{f, g} and min{f, g} are Riemann integrable. Moreover

∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤∫ b

a
|f(x)| dx.

Proof. By taking g(x) = |x| or g(x) = x2 in the above theorem we see that |f |
and f2 are Riemann integrable. The remaining integrability statements follow now
from the identities: fg = 1

2

(
(f + g)2 − f2 − g2

)
, max{f, g} = 1

2 (f + g + |f − g|)
and min{f, g} = 1

2 (f + g − |f − g|). To prove the integral inequality observe that
±f(x) ≤ |f(x)| for all x ∈ [a, b] implies by Corollary 1.10 that ±

∫ b

a
f(x) dx ≤∫ b

a
|f(x)| dx, i.e.,

∣∣∣∫ b

a
f(x) dx

∣∣∣ ≤ ∫ b

a
|f(x)| dx.

�

3. The Fundamental Theorems of Calculus

The two Fundamental Theorems of Calculus deal with the integral of a derivative
and the derivative of an integral.

Definition 3.1. Let f : [a, b] → R. Then F : [a, b] → R is called an antiderivative
of f if F is continuous on [a, b] and differentiable on (a, b) with F ′(x) = f(x) for all
x ∈ (a, b).

Remark 3.2. We note first that if f has an antiderivative F on [a, b], then F is
unique up to a constant. To see this assume f has antiderivatives F and G on
[a, b]. Then (F − G)′(x) = f(x) − f(x) = 0 for all x ∈ (a, b), which implies that
F (x)−G(x) is constant on [a, b].

Theorem 3.3 (First Fundamental Theorem of Calculus). Let f : [a, b] → R be a
Riemann integrable function and assume F is an antiderivative of f on [a, b]. Then∫ b

a

f(x) dx = F (b)− F (a)
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Proof. Let P be a partition of [a, b] given by the points a = x0 < · · · < xn = b.
Then by the mean value theorem applied to F on the interval [xk−1, xk] we can
find tk ∈ [xk−1, xk] such that F (xk) − F (xk−1) = f(tk)∆xk. This implies that∑n

k=1 f(tk)∆xk =
∑n

k=1 F (xk)− F (xk−1) = F (b)− F (a). Hence

L(P, f) ≤
n∑

k=1

f(tk)∆xk = F (b)− F (a)

and

U(P, f) ≥
n∑

k=1

f(tk)∆xk = F (b)− F (a)

for all partitions P. This implies that
∫ b

a
f(x) dx = F (b)− F (a). �

The First Fundamental Theorem of Calculus is used to compute Riemann inte-
grals. In order to do so, we need to be able to find antiderivatives of our function
f . If f has an antiderivative F on [a, b], then we can apply the First Fundamental
Theorem to the interval [a, x] to find that F satisfies

F (x)− F (a) =
∫ x

a

f(t) dt,

or

(4) F (x) = F (a) +
∫ x

a

f(t) dt.

This suggests that for every Riemann integrable function f we can find an anti-
derivative F by means of formula (4). In general F is however not differentiable
everywhere on (a, b) as we will see by means of an example. The Second Funda-
mental Theorem gives a sufficient condition for f so that F is an antiderivative of
f .

Theorem 3.4 (Second Fundamental Theorem of Calculus). Let f : [a, b] → R be
a Riemann integrable function and let F (x) =

∫ x

a
f(t) dt for a ≤ x ≤ b. Then F is

continuous on [a, b]. Moreover, if f is continuous at c ∈ (a, b), then F ′(x) exists at
x = c and F ′(c) = f(c). In particular, if f is continuous on (a, b), then F is an
antiderivative of f .

Proof. Let |f(t)| ≤ M on [a, b]. Then for a ≤ x < y ≤ b we have

|F (y)− F (x)| =
∣∣∣∣∫ y

a

f(t) dt−
∫ x

a

f(t) dt

∣∣∣∣ =
∣∣∣∣∫ y

x

f(t) dt

∣∣∣∣ ≤ M |y − x|

by Corollary 1.10. This inequality shows that F is continuous on [a, b]. Now assume
that f is continuous at c ∈ (a, b). Let ε > 0. Then there exists δ > 0 such that
|f(x)− f(c)| < ε for all x ∈ [a, b] such that |x− c| < δ. It follows that for c < x ≤ b
with |x− c| < δ we have∣∣∣∣F (x)− F (c)

x− c
− f(c)

∣∣∣∣ =
∣∣∣∣ 1
x− c

∫ x

c

f(t) dt− f(c)
∣∣∣∣

=
1

x− c

∣∣∣∣∫ x

c

f(t)− f(c) dt

∣∣∣∣ <
1

x− c
ε(x− c) = ε.

This shows that the right derivative F ′+(c) exists and equals f(c), Similarly the left
derivative F ′−(c) exists and equals f(c). Hence F ′(c) exists and equals f(c). �
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Remark 3.5. Note that the above proof actually shows that if f is Riemann inte-
grable on [a, b] and f(c+) exists for c ∈ (a, b), then F ′+(c) exists and is equal to
f(c+). Similarly if f(c−) exists, then F ′−(c) exists and is equal to f(c−).

Example 3.6. Let f : [0, 2] → R be defined by

f(x) =

{
1 if 0 ≤ x < 1
x− 1 if 1 ≤ x ≤ 2.

Then f is Riemann integrable on [0, 2], since f is piecewise continuous. Now F (x) =∫ x

0
f(t) dt can be computed as follows. For 0 ≤ x < 1 we have F (x) = x by the

First Fundamental theorem of Calculus and for 1 ≤ x ≤ 2 by that same theorem
we have F (x) =

∫ 1

0
t dt +

∫ x

1
t− 1 dt = 1

2x2 − x + 3
2 . Note F is continuous at x = 1,

but F ′+(1) = 0, while F ′−(1) = 1 by the above remark. Hence F is not differentiable
at x = 1.

In the above example F is an antiderivative of f on the closed subintervals [0, 1]
and [1, 2]. In the following example we will provide a Riemann integrable function
f on [0, 1], which has no antiderivative on any closed subinterval [a, b] of [0, 1] with
a < b.

Example 3.7. Let {rn} be an enumeration of (0, 1) ∩Q. Then define f : [0, 1] → R
by

f(x) =
∑

rn≤x

1
2n

,

where
∑

rn≤x is a shorthand for the sum over those n for which rn ≤ x. Then f

is Riemann integrable on [0, 1], since f is strictly increasing on [0, 1]. Let F (x) =∫ x

0
f(t) dt. Then F has a derivative F ′(x) = f(x) at every irrational number x ∈

(0, 1), since f is continuous at each irrational x. On the other hand we have that
f(rn) = f(rn+) and f(rn−) = f(rn) − 1

2n for all n. From the above remark it
follows that F ′+(rn) = f(rn) and F ′−(rn) = f(rn) − 1

2n , so that F ′ fails to exist at
every rational number x ∈ (0, 1).

In the above examples F ′ failed to exists at some points. In the next example
we see that even if F ′ exists at all points of (a, b), that it might fail to be an
antiderivative of f at the discontinuities of f .

Example 3.8. Let {rn} be an enumeration of [0, 1] ∩Q. Then define f : [0, 1] → R
by

f(x) =

{
0 if x 6= rn for all n
1
n if x = rn.

Then f is continuous at every irrational x ∈ [0, 1] and discontinuous at every
rational x ∈ [0, 1]. For rational x this follows from the fact that there exist a
sequence {xn} of irrational numbers with limit x, so that limn→∞ f(xn) = 0 6= f(x).
The continuity at irrational x follows from the fact that if a sequence {xk} of rational
numbers converges to x, then xk = rnk

where nk → ∞. Hence limk→∞ f(xk) =
0 = f(x). Next we will show that f is Riemann integrable and that

∫ 1

0
f(x) dx = 0.

Since every interval contains irrational numbers, it is clear that every lower Riemann
sum L(P, f) = 0. Hence it suffices to show that for every ε > 0 there exist a
partition P such that U(P, f) < ε. Let therefore ε > 0 be given. Then we can find
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N such that 1
n < ε

2 for all n ≥ N . Now let P = {0 = x0 < · · · < xm = 1} be a
partition of [0, 1] with mesh |P| < ε

2N such that each rn with 1 ≤ n < N is in exactly
one subinterval [xk−1, xk]. Let now A = {k : rn ∈ [xk−1, xk] for some n with 1 ≤
n < N} and put B = {1, · · · ,m} \A. Then A contains at most N − 1 elements so
that ∑

k∈A

Mk∆xk ≤
∑
k∈A

∆xk ≤ (N − 1)
ε

2N
<

ε

2
.

For k ∈ B we have that Mk < ε
2 so that∑

k∈B

Mk∆xk <
ε

2

∑
k∈B

∆xk ≤
ε

2
.

Combining the above inequalities we get that U(P, f) < ε. Hence f is Riemann
integrable and

∫ 1

0
f(x) dx = 0. Since f(x) ≥ 0, this implies that F (x) =

∫ x

0
f(t) dt =

0 for all 0 ≤ x ≤ 1. In particular F ′(x) = 0 for all 0 < x < 1.

The Second Fundamental Theorem and the above examples raise the question
whether a Riemann integrable function f on [a, b] must have points in [a, b] where
f is continuous. Lebesgue characterized Riemann integrable functions in a way,
which shows that f must actually continuous at “most” points of [a.b]. To make
“most” more precise we need a definition.

Definition 3.9. A set E ⊂ R has (Lebesgue) measure zero if for all ε > 0 there
exists a countable collection {In} of open intervals with E ⊂ ∪∞n=1In such that∑∞

n=1 m(In) < ε, where m(In) denotes the length of the interval In

We say that a property P holds almost everywhere (abbreviated by a.e.) on [a, b],
if the set {x ∈ [a, b] : P fails for x} has measure zero. Now Lebesgue’s Theorem is
as follows.

Theorem 3.10 (Lebesgue). A bounded function f : [a, b] → R is Riemann inte-
grable if and only if it is continuous a.e. on [a, b].

One can derive from Lebesgue’s Theorem that any Riemann integrable function
on [a, b] must be continuous at uncountably many points.
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4. Limits of Riemann integrable functions

We begin with an example which shows that pointwise limits of Riemann inte-
grable functions do not have to be Riemann integrable.

Example 4.1. Define fn : [0, 1] → R by

fn(x) =

{
1 if x = k

2n for k = 0, · · · , 2n

0 elsewhere.

Then fn is Riemann integrable for each n, and it converges pointwise to the non-
Riemann integrable function f given by

f(x) =

{
1 if x = k

2n for 0 ≤ k ≤ 2n, n = 1, · · ·
0 elsewhere.

Theorem 4.2. Let fn : [a, b] → R be Riemann integrable functions and assume
that {fn} converges uniformly to f on [a, b]. Then f is Riemann integrable and

lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx.

Proof. First proof. From the inequalities |f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ ‖f −
fn‖ + ‖fn‖ we get that f is also bounded on [a, b]. Let ε > 0. Then there exists
N such that ‖fN − f‖ < ε

4 . Now fN is Riemann integrable, so there exists a
partition P of [a, b] such that U(P, fN ) − L(P, fN ) < ε

2 . Now ‖fN − f‖ < ε
4

implies that lub{f(x) : xk−1 ≤ x ≤ xk} < lub{fN (x) : xk−1 ≤ x ≤ xk} + ε
4 and

glb{fN (x) : xk−1 ≤ x ≤ xk} − ε
4 < glb{f(x) : xk−1 ≤ x ≤ xk} for each interval

[xk−1, xk] of P. This implies that

U(P, f)− L(P, f) < U(P, fN )− L(P, fN ) +
ε

2
< ε.

Hence f is Riemann integrable. This implies that f −fn is Riemann integrable and∣∣∣∣∣
∫ b

a

fn(x) dx−
∫ b

a

f(x) dx

∣∣∣∣∣ ≤
∫ b

a

|fn(x)− f(x)| dx ≤ (b− a)‖fn − f‖ → 0.

Second proof. The proof that f is bounded is as in the first proof. Let εn =
‖f − fn‖. Then εn → 0 as n → ∞ and |f(x) − fn(x)| ≤ εn on [a, b] implies that
fn(x)− εn ≤ f(x) ≤ fn(x) + εn on [a, b]. This implies that

(5)
∫ b

a

fn(x) dx− εn(b−a) ≤
∫ b

a

f(x) dx ≤
∫ b

a

f(x) dx ≤
∫ b

a

fn(x) dx+ εn(b−a),

which implies that ∣∣∣∣∣
∫ b

a

f(x) dx−
∫ b

a

f(x) dx

∣∣∣∣∣ ≤ 2εn(b− a).

This implies that f is Riemann integrable on [a, b] as εn → 0 as n →∞. The proof
that the integrals of fn converge to the integral of f can now be given as in the
first proof, or by derived from the inequalities (5). �
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If we replace uniform convergence by pointwise convergence, then the above
example shows that the limit function f does not have to be Riemann integrable.
Therefore the above theorem is not true if we replace uniform convergence by point-
wise convergence. There is however a version of the above theorem for pointwise
convergence if we add the hypothesis that the limit function is Riemann integrable.
This theorem is called Arzela’s Theorem for the Riemann integral, which is a special
case of the Bounded Convergence Theorem of Lebesgue for the Lebesgue integral.

Theorem 4.3 (Arzela’s Theorem). Let fn, f : [a, b] → R be Riemann integrable
functions and assume that {fn} converges pointwise to f on [a, b]. If there exists
M such that |fn(x)| ≤ M for all n ≥ 1. then

lim
n→∞

∫ b

a

fn(x) dx =
∫ b

a

f(x) dx.


