ADDENDUM TO "AND STILL ONE MORE PROOF OF THE RADON–NIKODYM THEOREM."

ANTON R. SCHEP

In [1] a new proof was given of the Radon–Nikodym Theorem. First for the special case that $0 \leq \nu \leq \mu$ and than the general case was derived via von Neumann's approach, except that the use of Hilbert spaces or the Hahn decomposition theorem was avoided. Based on inquiries I received, it seems that not all readers understand what I mean by the phrase "By an exhaustion argument ...". We will therefore present here a slightly different proof, whereby we will isolate that exhaustion part of the proof as a separate lemma. In fact we shall present two proofs of that argument: one shorter one using the Axiom of Choice, and another constructive one. Moreover we prove now the Radon-Nikodym theorem immediately for the absolutely continuous case and no longer use von Neumann's approach.

Lemma 1. Let ν and μ be finite measures on (X, \mathcal{B}) such that $\nu \ll \mu$ and $\mu(X) = 1$. Then there exists a measurable set A with $0 < \mu(A)$ such that $\nu(X)\mu(B) \le \nu(B)$ for all $B \subset A$ and $B \in \mathcal{B}$.

Proof. First (constructive) proof: If A = X fails the conclusion of the lemma, then there exists a smallest integer $n_1 \ge 1$ and a measurable set A_1 such that $\nu(X)\mu(A_1) - \nu(A_1) > \frac{1}{n_1}$. By induction, if $X \setminus \bigcup_{j=1}^{k-1} A_j$ fails the conclusion of the lemma, then there exists a smallest integer $n_k \ge 1$ and a measurable set $A_k \subset$ $X \setminus \bigcup_{j=1}^{k-1} A_j$ such that $\nu(X)\mu(A_k) - \nu(A_k) > \frac{1}{n_k}$. If the process does not stop for any finite k, then we claim that $A = X \setminus \bigcup_{j=1}^{\infty} A_j$ satisfies the conclusion of the lemma. First observe that $X = A \cup (\bigcup_j A_j)$ is a disjoint union.Hence

$$0 = \nu(X)\mu(X) - \nu(X) = \nu(X)\mu(A) - \nu(A) + \sum_{j} (\nu(X)\mu(A_j) - \nu(A_j)).$$

This implies $\mu(A) > 0$ and that the series converges and thus $\sum_j \frac{1}{n_j} < \infty$. Hence $n_j \to \infty$. Now let $B \subset A$ be measurable. Then $B \subset X \setminus \bigcup_{j=1}^{k-1} A_j$ for all k implies that $\nu(X)\mu(B) - \nu(B) \leq \frac{1}{n_k-1}$ for all k with $n_k > 1$. Hence $\nu(X)\mu(B) - \nu(B) \leq 0$, which concludes the proof of the lemma.

Second proof: Assume that the lemma fails. Then for all $A \in \mathcal{B}$ with $\mu(A) > 0$ there exists $B \in \mathcal{B}$ such that $\nu(X)\mu(B) > \nu(B)$ (*). By Zorn's Lemma there exists a disjoint collection $\{B_n\}$ such that each B_n satisfies (*) and $\mu(X \setminus \bigcup_n B_n) = 0$. This implies that also $\nu(X \setminus \bigcup_n B_n) = 0$. Hence

$$\nu(X) = \sum_{n} \nu(B_n) < \sum_{n} \nu(X)\mu(B_n) = \nu(X).$$

This is a contradiction and the lemma follows.

Date: February 8, 2006.

Theorem 2. (Radon-Nikodym) Let ν and μ be finite measures on (X, \mathcal{B}) with $\nu \ll \mu$. Then there exists a measurable function f_0 with $0 \leq f_0$ such that $\nu(E) = \int_E f_0 d\mu$ for all E in \mathcal{B} .

Proof. Without loss of generality we can assume that $\mu(X) = 1$. Let $H = \{f : f \text{ measurable}, 0 \leq f, \int_E f d\mu \leq \nu(E) \text{ for all } E \in \mathcal{B}\}$. Note that $H \neq \emptyset$, since 0 belongs to H. Moreover, when $f_1, f_2 \in H$, then $\max\{f_1, f_2\} \in H$. Indeed, if $A = \{x : f_1(x) \geq f_2(x)\}$ and $B = A^c$, then

$$\int_{E} \max\{f_{1}, f_{2}\} d\mu = \int_{E \cap A} \max\{f_{1}, f_{2}\} d\mu + \int_{E \cap B} \max\{f_{1}, f_{2}\} d\mu$$
$$= \int_{E \cap A} f_{1} d\mu + \int_{E \cap B} f_{2} d\mu \le \nu(E \cap A) + \nu(E \cap B) = \nu(E).$$

Let $M = \sup\{\int f \, d\mu : f \in H\}$. Then $0 \leq M \leq \nu(X) < \infty$, so there exist functions f_n in H with $f_1 \leq f_2 \leq \ldots$ such that $\int f_n \, d\mu > M - \frac{1}{n}$. Let $f_0 = \lim f_n$. Then f_0 is measurable. By the Monotone Convergence Theorem, $f_0 \in H$ and $\int f_0 \, d\mu \geq M$. Hence $\int f_0 \, d\mu = M$. To complete the proof we show that $\nu(E) = \int_E f_0 \, d\mu$. Suppose $\nu(E) > \int_E f_0 \, d\mu$ for some E in \mathcal{B} . Then ν_1 defined by $\nu_1(E) = \nu(E) - \int_E f_0 \, d\mu$ is a finite measure with $\nu_1(X) > 0$, which satisfies the hypothesis of the previous lemma. Let A be as in the conclusion of the lemma. Then $f_0 + \nu_1(X)\chi_A \in H$ as can be seen as follows

$$\int_{E} f_{0} + \nu_{1}(X)\chi_{A} d\mu = \int_{E} f_{0} d\mu + \nu_{1}(X)\mu(A \cap E)$$

$$\leq \int_{E} f_{0} d\mu + \nu(A \cap E) - \int_{A \cap E} f_{0} d\mu$$

$$= \int_{E \cap A^{c}} f_{0} d\mu + \nu(A \cap E) \leq \nu(E \cap A^{c}) + \nu(E \cap A) = \nu(E).$$

Moreover $\int f_0 + \nu_1(X)\chi(A) d\mu = M + \nu_1(X)\mu(A) > M$, which contradicts the definition of M.

Remark. The extension to the σ -finite case is routine.

References

 Anton R. Schep, And still one more proof of the Radon–Nikodym theorem, Amer. Math. Monthly 110(2003) 526–538.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208, USA *E-mail address*: schep@math.sc.edu