
A NEWER ADDENDUM TO “AND STILL ONE MORE PROOF

OF THE RADON–NIKODYM THEOREM.”

ANTON R. SCHEP

In [1] a new proof was given of the Radon–Nikodym Theorem. First for the spe-
cial case that 0 ≤ ν ≤ µ and than the general case was derived via von Neumann’s
approach, except that the use of Hilbert spaces or the Hahn decomposition theorem
was avoided. Based on inquiries I received, it seems that not all readers understand
what I mean by the phrase “By an exhaustion argument . . . ”. We will therefore
present here a detailed proof of this statement, as a separate lemma. In fact we shall
present two proofs of that argument: one shorter one using the Axiom of Choice,
and another constructive one. Moreover we prove now the Radon-Nikodym theorem
immediately for the absolutely continuous case and no longer use von Neumann’s
approach.

Lemma 1. Let (X,B, µ) be a σ-finite measure space and let (P ) be some property
which any measurable sets does or does not possess. Assume that for all A ∈ B
with µ(A) > 0 there exists B ⊂ A in B with property (P ) and µ(B) > 0. Then
there exists a disjoint collection (Bn) in B such that µ(X \ ∪nBn) = 0 and such
that each Bn has property (P ). In particular, if the property is preserved under
countable disjoint unions and under change by sets of measure zero, then X has
property (P ).

Proof. It is clear that it suffices to prove the lemma for the case that µ(X) <∞.
First (non-constructive) proof: Let A be the set of all disjoint sets (Bi) with Bi ∈ B,
µ(Bi) > 0 and such that each Bi has property (P ). We can partial order the set A
by set theoretical inclusion, i.e., (Bi) ≤ (Cj) if (Bi) ⊂ (Cj). Then every chain in A
has a (least) upper bound, namely the union of all the elements of the chain. Hence
by Zorn’s lemma A has a maximal element (Bi)i∈I . Since µ(Bi) > 0 and µ(X) <∞
the index set I is countable. The maximality ensures now that µ(X \∪iBi) = 0, as
otherwise we can find B ⊂ X \ ∪iBi with µ(B) > 0 and such that B has property
(P ).
Second (constructive) proof: To avoid having to divide by µ(X) we make the further
assumption that µ(X) = 1. This can be accomplished by replacing the measure µ
by the measure 1

µ(X)µ. Let α1 = sup{µ(B) : B has property (P )}. Let n1 be the

smallest natural number n such that 1
n < α1. Then there exists B1 with property

(P ) such that 1
n1

< µ(B1). By induction, if X \ ∪k−1j=1Bj has positive measure for

all k ≥ 2 we let αk = sup{µ(B) : B ⊂ X \ ∪k−1j=1Bj , B has property (P )}. Then

αk > 0. Let nk be the smallest natural number n such that 1
n < αk. Then there

exists Bk ⊂ X \ ∪k−1j=1Bj with property (P ) such that 1
nk

< µ(Bk). Note that if

nk−1 < nk, then nk−1 <
1
αk
≤ nk, which implies that in that case µ(B) ≤ 1

nk−1
for
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all B ⊂ X \ ∪k−1j=1Bj . Now we have

∞∑
k=1

1

nk
≤
∞∑
k=1

µ(Bk) ≤ µ(X) = 1.

Hence nk → ∞ as k → ∞. We claim that µ(X \ ∪∞k=1Bk) = 0. If not, then
there exists B ⊂ X \ ∪∞j=1Bj with µ(B) > 0 such that B has property (P ). Then

B ⊂ X \ ∪k−1j=1Bj for all k and nk−1 < nk for infinitely k together imply that

µ(B) ≤ a
nk−1

for infinitely many k. As nk →∞ as k →∞ it follows that µ(B) = 0.

This is a contradiction and the lemma follows. �

Theorem 2. (Radon-Nikodym) Let ν and µ be measures on (X,B) with ν � µ.
Assume µ is σ-finite and that ν is a finite measure.Then there exists an integrable
function f0 ≥ 0 such that ν(E) =

∫
E
f0 dµ for all E in B.

Proof. Let H = {f : f measurable, 0 ≤ f,
∫
E
f dµ ≤ ν(E) for all E ∈ B}. Note

that H 6= ∅, since 0 belongs to H. Moreover, when f1, f2 ∈ H, then max {f1, f2} ∈
H. Indeed, if A = {x : f1(x) ≥ f2(x)} and B = Ac, then∫

E

max {f1, f2} dµ =

∫
E∩A

max {f1, f2} dµ+

∫
E∩B

max {f1, f2} dµ

=

∫
E∩A

f1 dµ+

∫
E∩B

f2 dµ ≤ ν(E ∩A) + ν(E ∩B) = ν(E).

Let M = sup{
∫
f dµ : f ∈ H}. Then 0 ≤M ≤ ν(X) <∞, so there exist functions

fn in H with f1 ≤ f2 ≤ . . . such that
∫
fn dµ > M − 1

n . Let f0 = lim fn. Then f0
is measurable. By the Monotone Convergence Theorem, f0 ∈ H and

∫
f0 dµ ≥M .

Hence
∫
f0 dµ = M . To complete the proof we show that ν(E) =

∫
E
f0 dµ. Suppose

ν(E0) >
∫
E0
f0 dµ for some E0 in B. Then µ(E0) > 0, since ν(E0) > 0. Let ε > 0

such that
∫
E0
f0 + ε dµ < ν(E0). Let (P ) be the property

∫
E
f0 + εχE0

dµ > ν(E).

Then E0 does not have property (P ) and property (P ) is preserved under countable
disjoint unions. Moreover by absolute continuity of ν w.r.t. µ it follows that (P )
is preserved under change by sets of µ-measure zero. We claim there exists a
measurable F ⊂ E0 with µ(F ) > 0 such that f0 + εχF ∈ H. If not, then for all
measurable F ⊂ E0 of positive µ-measure there exists a measurable G ⊂ F with∫
G
f0 + εχG dµ > ν(G). Hence for each measurable F ⊂ E0 of positive µ-measure

there exists a measurable G ⊂ F with
∫
G
f0+εχE0

dµ > ν(G), i.e., each measurable
F ⊂ E0 of positive µ-measure contains a measurable G ⊂ F with property (P ).
By the previous Lemma E0 has property (P ), which is a contradiction. Hence
there exists a measurable F ⊂ E0 with µ(F ) > 0 such that f0 + εχF ∈ H. Now∫
f0 + εχF dµ = M + εµ(F ) > M , which contradicts the definition of M and the

proof is complete. �

Remark. The extension to the σ-finite case is routine.
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