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First we fix some notation. For x ∈ Rn we denote by ‖x‖ =
√∑n

i=1 |xi|2 the Euclidean
norm of x. Let G ⊂ Rn be an open set and let f : G → Rm be differentiable at x0 ∈ G,
i.e., there exists a unique linear map Df(x0) : Rn → Rm such that

f(x0 + h)− f(x0)−Df(x0)(h) = ε(h)‖h‖,
where ε(h) → 0 in Rm as h → 0 in Rn. If we write f(x) = (f1(x), · · · , fm(x)), then Df(x0)
has with respect to the standard basis the matrix

(
∂fj

∂xi
(x0)

)
.

Lemma 1. Let G ⊂ Rn be an open and convex set and let f : G → Rm be differentiable
on G. Let M = sup

{∣∣∣∂fj

∂xi
(x)

∣∣∣ : x ∈ G, 1 ≤ i ≤ n, 1 ≤ j ≤ m
}
. Then

‖f(x)− f(y)‖ ≤ mnM‖x− y‖
for all x, y ∈ G.

Proof. Let x, y ∈ G. For j = 1, · · · ,m define gj(t) = fj(x + t(x− y)). Then by the Mean
Value Theorem there exists cj ∈ (0, 1) such that

fj(y)− fj(x) = gj(1)− gj(0) = g′j(cj).

Now by the chain rule we have g′j(cj) = ∇fj(x + cj(y − x)) · (y − x), so

|gj(cj)| =

∣∣∣∣∣
n∑

i=1

∂fj

∂xi
(x + cj(y − x))(yi − xi)

∣∣∣∣∣
≤ M

n∑
i=1

|yi − xi| ≤ nM‖y − x‖.

Hence ‖f(x)− f(y)‖ ≤
∑m

j=1 |fj(x)− fj(y)| ≤ mnM‖x− y‖. �

Now recall that if A : Rn → Rn is linear, then there exists a C such that ‖Ax‖ ≤
C‖x‖ for all x. If A is non-singular, then this implies that there exists also a C1 such
that C1‖x‖ ≤ ‖Ax‖ for all x (take y = Ax in the inequality ‖A−1(y)‖ ≤ C ′‖y‖). This
observation can be used to show that linear maps satisfy the following theorem.

Theorem 2 (Inverse Function Theorem). Let G ⊂ Rn be an open set and let f : G → Rm

be continuously differentiable on G (i.e., all the partials of f are continuous on G). Let
a ∈ G be such that det Df(a) 6= 0. Then there exist open sets U ⊂ G, V ⊂ Rm with
a ∈ U such that f(U) = V and f−1 : V → U exists and is differentiable and Df−1(y) =
(Df(f−1(y)))−1 for all y ∈ V .
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Proof. Using the remark from above, that linear maps satisfy the theorem, we can replace
f by (Df(a))−1f and assume that Df(a) = I. Then put g(x) = f(x)−x. Then Dg(a) = 0,
so there exists r > 0 such that B(a; r) ⊂ G and sup

x∈B(a;r)

∣∣∣∂gj

∂xi
(x)

∣∣∣ < 1
2n2 for all 1 ≤ i ≤ n

and all 1 ≤ j ≤ m. Now apply the above lemma to g to get

‖f(x)− x− (f(y)− y)‖ ≤ Mn2‖x− y‖ <
1
2
‖x− y‖

for all x 6= y ∈ B(a; r). This implies that ‖f(x)− f(y)‖ ≥ 1
2‖x− y‖ for all x, y ∈ B(a; r).

This implies that f is one-to-one on B(a; r) and has a continuous inverse on the range of
this closed ball. By making r smaller if necessary, we can assume that detDf(x) 6= 0 on
B(a; r). We shall now show that f(B(a; r)) ⊃ V , where V is open with f(a) ∈ V . Let
S be the boundary of B(a; r). Then S is compact, so f(S) is compact and f(a) /∈ f(S)
implies that d = dist (f(S), f(a)) > 0. Let V = {y : ‖y − f(a)‖ < d

2}. Then V is open
and we claim that V ⊂ f(B(a; r)). To see this, let y ∈ V and put h(x) = ‖f(x)− y‖2 for
x ∈ B(a; r). Then h has a minimum on B(a; r), but this can’t be on the boundary S of
B(a; r) by the definition of d and V . Hence h has a minimum at x0 ∈ B(a; r). This implies
that the derivative Dh(x0) = 0, so

n∑
i=1

−2(fi(x0)− yi)
∂fi

∂xj
(x0) = 0

for j = 1, · · · , n. As det Df(x0) 6= 0 this implies that fi(x0)−yi = 0 for i = 1, · · · , n. Hence
f(x0) = y. This shows V ⊂ f(B(a; r)). Let U = f−1(V ). Then U open and f : U → V is
one-to-one and onto. Remains to show that f−1 is differentiable on V . Let u, v ∈ V and
put x = f−1(u), y = f−1(v). For v close enough to u we can write

f(y)− f(x)−Df(x)(y − x) = ε(y − x)‖x− y‖,

where ε(h) → 0 as h → 0. Put A = Df(x) = Df(f−1(u)). Then we have

v − u−A(f−1(v)− f−1(u)) = ε(f−1(v)− f−1(u))‖f−1(v)− f−1(u)‖ = ε′(v − u)‖v − u‖,

where we used that ‖f−1(u)−f−1(v)‖ ≤ 2‖u−v‖. Multiplying the above equation by A−1

we get
f−1(v)− f−1(u)−A−1(v − u) = −A−1(ε′(v − u))‖v − u‖.

Now A−1(ε′(v − u)) → 0 as v → u implies that f−1 is differentiable at u with derivative
A−1. �

Corollary 3. Let G ⊂ C be open and f ∈ H(G) such that f ′(z0) 6= 0. Then there exists
open sets U ⊂ G and V ⊂ C such that z0 ∈ U and f : U → V is one-to-one and onto and
f−1 : V → C is holomorphic.

Proof. Consider G as an open subset of R2 and define F : G → R2 by F (x, y) = (u(x, y), v(x, y))
where f = u + iv. Then detDF (x0, y0) = |f ′(z0)|2 6= 0 (where z0 = x0 + iy0). The matrix
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of DF (x0, y0) is given by the skew symmetric matrix[
∂u
∂x(x0, y0) − ∂v

∂x(x0, y0)
∂v
∂x(x0, y0) ∂u

∂x(x0, y0)

]
.

By the inverse function theorem there exist open sets U ⊂ G, V ⊂ R2 with (x0, y0) ∈ U
such that F (U) = V and F−1 : V → U exists and is differentiable and DF−1((x, y)) =
(DF (F−1((x, y))))−1 for all (x, y) ∈ V . Define g(z) = F−1(x, y) for z = x + iy with
(x, y) ∈ V . Then g is the inverse of f and the real part and imaginary part of g are con-
tinuous and satisfy the Cauchy-Riemann equations on V , since the matrix DF−1((x, y)) =
(DF (F−1((x, y))))−1 is again skew symmetric for all (x, y) ∈ V . Hence g is holomor-
phic. �

We conclude with the implicit function theorem. Assume we are given a system of m
equations

f1(x1, · · · , xn, y1, · · · , ym) = 0

f2(x1, · · · , xn, y1, · · · , ym) = 0
...

...

fm(x1, · · · , xn, y1, · · · , ym) = 0

in n + m variables x1, · · · , xn, y1, · · · , ym. Then the implicit function theorem will give
sufficient conditions for solving y1, · · · , ym in terms of x1, · · · , xn .

Theorem 4 (Implicit Function Theorem). Let E ⊂ Rn+m be open and f : E → Rm a
continuously differentiable map. Let (x0, y0) ∈ E such that f(x0, y0) = 0 and det

(
∂fj

∂yi

)
6= 0.

Then there exists an open set U ⊂ Rn with x0 ∈ U , and a continuously differentiable map
g : U → Rm such that f(x, g(x)) = 0 for all x ∈ U .

Proof. Define F : E → Rn+m by F (x, y) = (x, f(x, y)). Then F is continuously differ-
entiable in a neighborhood of (x0, y0) and det DF (x0, y0) = det

(
∂fj

∂yi

)
6= 0. Hence by

the Inverse Function Theorem there exists open U0 ⊂ E containing (x0, y0) and open
V0 ⊂ Rm+n containing (x0, 0) such that F : U0 → V0 is one-to-one and onto and such
that F−1 : V0 → U0 is differentiable. Let F−1(x, y) = (G1(x, y), G2(x, y)). Then for all
(x, 0) ∈ V0 we have (x, 0) = F (G1(x, 0), G2(x, 0)) = (G1(x, 0), f(G1(x, 0), G2(x, 0))). Hence
G1(x, 0) = x and thus f(x,G2(x, 0)) = 0 for all (x, 0) ∈ V0. Let U = {x ∈ Rm : (0, x) ∈ V0}
and define g(x) = G2(x, 0) for x ∈ U . It is clear then that U and g satisfy the conclusion
of the theorem. �


