A set G with a binary operation $\cdot : G \times G \to G$ s.t. \cdot is associative, $\exists e \in G \text{ with } e \cdot g = g \cdot e = g$ for all $g \in G$ • for each $g \in G$, there exists $g^{-1} \in G$ with $\underline{g \cdot g^{-1}} = \underline{g^{-1}} \cdot \underline{g} = e.$