Applications of Integration I: Areas Between Curves

Ronda Sanders
Department of Mathematics

Overview

This lab will help to develop your understanding of the definite integral as area for non-negative functions. In this lab you will explore how to use Maple to visualize a given region, determine points of intersection if necessary, and determine its area. You will discover that for some regions it is best to regard x as a function of y.

Maple Essentials

New Maple commands introduced in this lab include:

Command	Description
fsolve	numerically solves one or more equations for their unknowns fsolve ($x^{\wedge} 2-4=0$) ; returns the values -2.0, 2.0 *To find only real solutions in an interval, specify the interval. fsolve ($x^{\wedge} 2-4=0, x=-3 . .-1$); returns only -2.0
int (f(x), x=a..b);	evaluates $\int_{a}^{b} f(x) d x$

The Area of a Region by Slicing maplet is available from the course website:

$$
\text { http://www.math.sc.edu/calclab/142L-F12/labs } \rightarrow \text { Area of a Region by Slicing }
$$

This maplet demonstrates finding the area of a region by slicing. The student may generate a random example or modify or make their own problem.

Preparation

In the case where both $f(x)$ and $g(x)$ are positive, it is very easy to see that if we want to find the area between $f(x) \geq g(x)$ (both continuous on $[a, b]$) we would do the following:

$$
A=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x=\int_{a}^{b}(f(x)-g(x)) d x
$$

In general, for a given region with top curve y_{T} and bottom curve y_{B} we can draw a typical approximating rectangle with height $\left(y_{T}-y_{B}\right)$ and width Δx and calculate the area as follows:

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(y_{T}-y_{B}\right) \Delta x=\int_{a}^{b}\left(y_{T}-y_{B}\right) d x
$$

Sometimes regions are best treated by regarding x as a function of y. If a region is bounded by curves with equations $x=f(y), x=g(y), y=c$, and $y=d$, where f and g are continuous and $f(y) \geq g(y)$ for $c \leq y \leq d$ then its area is

$$
A=\int_{c}^{d}(f(y)-g(y)) d y
$$

In general, for a given region with right boundary x_{R} and left boundary x_{L} we can draw a typical approximating rectangle with height Δy and width $\left(x_{R}-x_{L}\right)$ and calculate the area as follows:

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{R}-x_{L}\right) \Delta y=\int_{c}^{d}\left(x_{R}-x_{L}\right) d y
$$

Related Course Material

Section 6.1 in Stewart. Section 7.1 in CalcLabs.

Activity 1

Find the area of the region enclosed between the curves $y=x^{2}$ and $y=x+6$.

- We will first assign our functions as $f(x)$ and $g(x)$.
$>\mathrm{f}:=\mathrm{x}->\mathrm{x}^{\wedge} 2$;
$>\mathrm{g}:=\mathrm{x}->\mathrm{x}+6$;
- Next, we plot the functions to get an idea of the region we are considering. $>\operatorname{plot}([f(x), g(x)], x=-5 . .5, y=-10 . .10$, color=[red, blue]);
- We find the intersection points using fsolve.
$>$ fsolve(f(x)=g(x));
- We then evaluate the integral to find the area. Notice for this example $g(x)$ is the top curve and $f(x)$ is the bottom curve.
$>$ Area: $=\operatorname{int}(\mathrm{g}(\mathrm{x})-\mathrm{f}(\mathrm{x}), \mathrm{x}=-2 . .3)$;

Activity 2

Find the area of the region enclosed between $y=-0.128 x^{3}+1.728 x^{2}-5.376 x+2.864$ and $y=\ln x$.

- We will first assign our functions as $f(x)$ and $g(x)$.
$>f:=x->-0.128 * x^{\wedge} 3+1.728 * x^{\wedge} 2-5.376 * x+2.864$;
$>\mathrm{g}:=\mathrm{x}->\ln (\mathrm{x})$;
- Next, we plot the functions to get an idea of the region we are considering. Be careful with the window this time. There are two separate areas enclosed by the functions. $>\operatorname{plot}([f(x), g(x)], x=0 . .10, y=-10 . .10$, color=[red, blue]);
- We can see from the graph that there are three points of intersection, but fsolve (without a specified interval) will only give one, so we will write a separate command to find and assign each intersection point.
$>a:=f s o l v e(f(x)=g(x), x=0 . .2) ;$
$>b:=f s o l v e(f(x)=g(x), x=2 . .6) ;$
$>c:=$ fsolve($f(x)=g(x), x=8 . .10)$;
- For our first area, notice that between a and $b, g(x)$ is the top curve and $f(x)$ is the bottom curve. $>A 1:=\operatorname{int}(g(x)-f(x), x=a . b)$;
- For our second area, notice that between b and $c, f(x)$ is the top curve and $g(x)$ is the bottom curve.
$>$ A2: $=\operatorname{int}(\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x}), \mathrm{x}=\mathrm{b} . \mathrm{c})$;
- We find our total area by adding $A 1$ and $A 2$.
$>$ Area: $=\mathrm{A} 1+\mathrm{A} 2$;

Activity 3

Find the area of the region enclosed between $x=y^{2}$ and $x=y+2$.

- We will first assign our expressions as $f(y)$ and $g(y)$.

```
> f:=y-> y^2;
```

$>\mathrm{g}:=\mathrm{y}->\mathrm{y}+2$;

- We can use the fsolve command to find the points of intersection. $>f(y)=g(y)$;
- Once you have the points of intersection, you can use the Area of a Region by Slicing maplet to get a clear picture of the region.
- We then evaluate the integral to find the area. Notice for this example $g(y)$ is the right boundary and $f(y)$ is the left boundary. Also, we are integrating with respect to y.
$>$ Area: $=\operatorname{int}(g(y)-f(y), y=-1 . .2)$;

Assignment

With the help of Maple, work out the problems assigned by your lab instructor. Clearly identify your answers on your Maple worksheet. Make sure you answer each question completely.

