Implicit Differentiation

Douglas Meade, Ronda Sanders, and Xian Wu
Department of Mathematics

Overview

This lab provides experience working with functions defined implicitly.

Maple Essentials

- The new Maple commands introduced in this lab are:

Command	Description	Example
display	combine one or more plots in a single plot; part of the plots package	display ([P1,P2], title="My Graph");
implicitdiff	compute derivatives for implicitly-defined functions	```Finding }\frac{dy}{dx}\mathrm{ : implicitdiff(eq, y, x); Finding }\frac{\mp@subsup{d}{}{n}y}{d\mp@subsup{x}{}{n}}\mathrm{ : implicitdiff(eq, y, x$n);```
implicitplot	create graph of function defined implicitly; part of the plots package	implicitplot(eq, x=a..b, y=c..d);
pointplot	plots a single point; part of the plots package	pointplot([a,b], symbolsize=15);
fsolve	compute a solution of equations numerically	fsolve(\{eq1, eq2\}, $\{\mathrm{x}, \mathrm{y}\}$);
with	loads the contents of a Maple package	with(plots):
eval	evaluates a given expression at a given point	eval (eq, $\{\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{b}\}$);

- The ImplicitDifferentiation maplet is available from the course website:

$$
\text { http://www.math.sc.edu/calclab/141L-S10/labs/ } \rightarrow \text { ImplicitDifferentiation }
$$

Preparation

Review $\S 3.5$ Implicit Differentiation in Stewart and $\S 4.4$ in Calclabs with Maple.

Activities

1. The curve with equation $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$ is called a lemniscate.

- Find the equation of the tangent line to this curve at the point $(3,1)$. Then graph the curve, the point, and the tangent line together on one plot with a viewing window of $[-5,5] \times[-4,4]$. (Ex. 29 on page 213)
- Find all points on the lemniscate where the tangent line is horizontal or vertical. (Ex. 39 on page 214)

2. Find $\frac{d^{2} y}{d x^{2}}$ and $\frac{d^{3} y}{d x^{3}}$ if y is defined implicitly by $y+\sin y=x$.

Example Problem

We will solve Example 2 on page 209 of Stewart together using Maple:

- Use implicit differentiation to find $\frac{d y}{d x}$ for the Folium of Descartes $x^{3}+y^{3}=6 x y$.
- Find an equation of the tangent line to the Folium of Descartes at the point $(3,3)$.
(Then graph the curve, the point, and the tangent line with a viewing window of $[-5,5] \times[-5,5]$ as shown in Figure 4 on page 210.)
- At what point(s) in the first quadrant is the tangent line to the Folium of Descartes horizontal? (At what points is the tangent line vertical?)

Steps:

1. First, load the Maple plots package. Without the contents of this package, much of what we do today will not work.
$>$ with(plots):
2. Assign our equation using ' $:=$ '. $>$ eq: $=x^{\wedge} 3+y^{\wedge} 3=6 * x * y ;$
3. Find (and assign) the derivative using implicit differentiation. Since we want $\frac{d y}{d x}$, we input y and then x.
$>$ dydx:= implicitdiff(eq, y, x);
4. Find (and assign) the slope of the tangent line at the point $(3,3)$.
$>m:=\operatorname{eval}(d y d x, \quad\{x=3, y=3\})$;
5. Find (and assign) the equation of the tangent line. Remember: $y=m\left(x-x_{1}\right)+y_{1}$.
$>L:=m *(x-3)+3$;
6. Next, write (and assign) commands to plot the curve, the point, and the tangent line. Write the commands separately using ' $:$ ' so Maple does not display the output yet. (In the first plot command, the option numpoints $=10000$ will insure a smooth curve.)
$>$ P1:= implicitplot(eq, $x=-5 . .5, \mathrm{y}=-5.5$, numpoints=10000):
> P2:= pointplot([3,3], color=green, symbolsize=15):
$>$ P3:= plot(L, x=-5..5, y=-5..5, color=blue, linestyle=dash):
7. Use the display command to display the curve, point, and tangent line on a single plot. $>$ display ([P1, P2, P3], title=''Figure 1'');
8. From the graph, we can see that the tangent line would be horizontal at a point located approximately at $(2.5,3.1)$. To find the point exactly, we need to find a point on the curve where $\frac{d y}{d x}=0$. We can find this point using fsolve.
$>$ fsolve(\{eq, dydx=0\}, $\{x=2 . .3, y=3 . .4\}$);
9. From the graph, we can see that the tangent line would be vertical at a point located approximately at $(3.1,2.5)$. To find the point exactly, we need to find a point on the curve where $\frac{d y}{d x}$ is undefined. That is, a point where the denominator of $\frac{d y}{d x}$ is 0 We can find this point using fsolve. $>$ fsolve(\{eq, denom(dydx) $=0\},\{x=3 . .4, y=2 . .3\})$;

Additional Notes

The ImplicitDifferentiation maplet provides additional practice finding the slope of a curve at a point.

Assignment

Exercises 31 and 38 on pages 213-214 of Stewart. For problem 38, you will need to zoom to get a good look at the horizontal tangents. For example, y=1.6..1.7 is a good view to distinguish the necessary ranges for the top of the wagon. Exercise 12 on page 66 of CalcLabs.

