2.2 Projective Resolutions

Def. An object P in an abelian category A is projective if it satisfies the following: for each surjection $g: B \to C \to 0$, $x: P \to C$, we have

\[
\begin{array}{c}
P \\ \downarrow \rho \\
\downarrow \left\downarrow \rightdownarrow \end{array}
\]

\[
B \to C \to 0
\]

Rem.
1. P may not be unique.
2. P is projective $\iff \text{Hom}(P, -)$ is right exact.

Prop. An R-module is projective \iff it's a direct summand of a free R-module.

(2.2.1) R-module \Rightarrow

Proof:

\[
\begin{array}{c}
P \\ \downarrow \text{id} \\
F \xrightarrow{\pi} P \to 0
\end{array}
\]

so P is a summand of F

\[
F \xrightarrow{\pi} P \to 0
\]

Suppose $F = P \oplus Q$.

\[
P \oplus Q
\]

\[
\begin{array}{c}
P \oplus Q \\ \downarrow \iota \\
F \\ \downarrow \rho \\
P \\ \downarrow \pi \\
B \to C \to 0
\end{array}
\]

Easy to check: $f = \rho \pi$.
E.g.: Over some rings (like \(\mathbb{Z} \), \(\mathbb{R} \), division rings), projective \(\Rightarrow \) free.

(2.2)

However, it's not always true.

1. If \(R = R_1 \oplus R_2 \), then \(P = R_1 \oplus R_2 \) (summands) are projective,
 but they are not free, since \((0,1)P = 0 \).

2. Let \(R = M_n(k) \), \(V = \mathbb{R}^n \), then \(\text{dim}_R R = n^2 \), \(\text{dim}_R V = n \).
 Moreover, \(V \) is an \(R \)-module, where \(R = V \oplus R^n \).
 Thus \(V \) is \(R \)-projective.

Claim: \(V \) is not \(R \)-free. If not, \(aV \cong \mathbb{R}^d \) (also \(aV \cong \mathbb{R}^d \))

So \(\text{dim}_R V = d \cdot n^2 \), but \(\text{dim}_R V = n \), a contradiction.

Remark: The category \(A \) of finite abelian groups is an example of an

abelian category with no \(\mathbb{Z} \)-projective objects. (No free objects)

We say an abelian category \(A \) has enough projectives if for
every object \(A \) of \(A \), there is a surjection \(P \twoheadrightarrow A \) with \(P \) projective.

Def: A chain complex \(P \) with each \(P_n \) projective is called a

chain complex of projectives. Note: \(P \) may not be a projective
object of \(Ch(A) \).

E.g.: A chain complex \(P \) is a projective object in \(Ch \) \(\iff \) it's a

split exact complex of projectives.

(2.2.1)

\[P^2: \]

\[\Rightarrow: \text{claim 1: every } P_n \text{ is projective.} \]

\[Pt: \text{ consider } 0 \to B_0 \to C_0 \to \cdots \]

\[\to 0 \to C_n \to 0 \to \cdots \]

\[\to 0 \to 0 \to 0 \to \cdots \]

So \(P_n \) is projective.

Claim 2: \(P \) is split exact.

\[Pt: \text{ consider the surjection } \text{cone} (P) \to P[-1] \to 0 \]

\[P \text{ is projective so is } P[-1]. \]

\[P[-1]: \]

\[0 \to P \to \text{cone}(P) \to P[-1] \to 0 \]

So \(\text{cone}(P) \cong P \oplus P[-1] \).

\[\Leftrightarrow: P \text{ is split exact, so } P_n \cong B_n \oplus B_{n-1}, \text{ and } B_n \text{ are projective} \]

Let \(P(n) \) be the chain complex: \(\cdots \to 0 \to B_{n-1} \to B_n \to 0 \to \cdots \)

\[\Rightarrow: P \cong P[n]. \]

Consider the maps

\[X \twoheadrightarrow Y \to 0, \]

Where \(X = \bigoplus \mathbb{T}_n \)

For each \(n \), \(P(n) \) is a split exact chain complex of projectives.

So projective, thus we get \(\bar{f}_n : P(n) \to X \).

Define \(f = \bigoplus \bar{f}_n \), we get \(\overline{\overrightarrow{f}} = f \).
E.x If \(A \) has enough projectives, then so does \(\text{Ch}(A) \).

(2.2.2) \(\text{Pr} : \)

\[
\begin{align*}
P_n & \xrightarrow{d_n} P_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_2} P_1 \xrightarrow{d_1} P_0 \\
& \xrightarrow{\partial_n} B_n \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} B_1 \xrightarrow{\partial_1} B_0
\end{align*}
\]

First, we get \(d_0 : P_n \rightarrow P_{n-1} \).

Second, we want to get a split exact complex from \(-\bullet\rightarrow P_0 \rightarrow \cdots \rightarrow P_n \rightarrow P_{n+1} \rightarrow \cdots \).

Indeed, cone \((P, 0)\) works.

\[
\begin{align*}
P_n \oplus P_0 & \xrightarrow{(x, 0)} P_{n+1} \oplus P_{n+1} \\
& \xrightarrow{(d_{n+1}, 0)} P_{n+2} \oplus P_{n+2} \\
& \xrightarrow{\partial_{n+1}} B_{n+1} \oplus B_{n+1} \\
& \xrightarrow{\partial_{n+1}} B_{n+2} \oplus B_{n+2}
\end{align*}
\]

Def: Let \(M \) be an object of \(A \). A left resolution of \(M \) is an exact complex \(-\bullet \rightarrow P_0 \rightarrow \cdots \rightarrow P_n \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow \text{O} \). It's a projective resolution if each \(P_i \) is projective.

(2.2.4)

Lemma: If an Abelian category \(A \) has enough projectives, then every object \(M \) in \(A \) has a projective resolution.

(2.2.5)

Pt:

\[
\begin{align*}
P_1 & \xrightarrow{d_1} P_0 \\
& \xrightarrow{\partial_1} B_0
\end{align*}
\]

E.x If \(P_i \) is a chain complex of projectives with \(\partial_i = 0 \) for \(i < 0 \), then a map \(E : P_i \rightarrow M \) giving a resolution for \(M \) is the same thing as a quasi-isomorphism \(E : P_\bullet \rightarrow M_\bullet \) where \(M_\bullet \) is the complex concentrated in degree 0.

(2.2.3) \(\text{Pr} : \)

\[
\begin{align*}
P_n & \rightarrow \cdots \rightarrow P_0 \\
& \rightarrow \text{cons. map} \rightarrow M \rightarrow \text{O}
\end{align*}
\]

is equivalent to say \(b_i = 0 \) for \(i \geq 0 \), and \(P_i / \text{Im} \partial_i \cong M_i \), which is equivalent to say the following chain map

\[
\begin{align*}
P_n & \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_0 \\
& \rightarrow \text{cons. map} \rightarrow M \rightarrow \text{O}
\end{align*}
\]

is a quasi-isomorphism.

Thm: (Comparison Theorem) Let \(P_\bullet \rightarrow M \) be a projective resolution of \(M \) and \(f : M \rightarrow N \) a map in \(A \). Then for every resolution \(Q_\bullet \rightarrow N \), there is a chain map \(f : P_\bullet \rightarrow Q_\bullet \) such that \(g \circ f = f' \). The chain map is unique up to chain homotopy equivalence.

(2.2.6)

Pt:

\[
\begin{align*}
P_1 & \xrightarrow{d_1} P_0 \\
& \xrightarrow{\partial_1} B_0
\end{align*}
\]

1. Suppose we have \(+ \) and \(g \) satisfying the above conditions.

\[
\begin{align*}
g f_0 &= f' \\
h_0 &= h'
\end{align*}
\]

So we have \(P_0 \rightarrow B_0 \rightarrow M \rightarrow O \).

Similarly, get \(S_2 \) and \(S_1 \).
Lemma: (Horseshoe Lemma) Suppose we have the following projective resolutions:

\[\cdots \rightarrow P_i \rightarrow P_{i-1} \rightarrow P_0 \rightarrow A \rightarrow 0 \]

\[\cdots \rightarrow Q_i \rightarrow Q_{i-1} \rightarrow Q_0 \rightarrow A' \rightarrow 0 \]

Then \(P \oplus Q \) is a projective resolution of \(A \).

\[P : \]

\[P_i \rightarrow A \rightarrow 0 \quad P_i \oplus Q_i \text{ is projective} \]

\[\text{since it's a summand} \]

\[\text{of a free module} \]

First, let's define \(d_0 : P_0 \oplus Q_0 \rightarrow A \)

\[\pi : A \rightarrow A' \text{ is surjective, } Q_0 \text{ is projective} \Rightarrow \exists \gamma : Q_0 \rightarrow A. \]

Define \(d_0 : P_0 \oplus Q_0 \rightarrow A \) as \(d_0 = I \circ \gamma \).

Easy to check \(d_0 \) is surjective, and the commutativity.

Next, we can get the following diagram:

\[\cdots \rightarrow P_i \rightarrow P_{i-1} \rightarrow P_0 \rightarrow A \rightarrow 0 \]

\[P_i \oplus Q_i \rightarrow A \rightarrow 0 \]

\[P \oplus Q \rightarrow A \rightarrow 0 \]

Similarly, we get \(d_1 \) and \(d_1 \) is surjective, i.e., \(P \oplus Q \) is exact at \(P_0 \oplus Q_0 \). Repeat this, we get a projective resolution \(P \oplus Q \) of \(A \).

2.3 Injective Resolutions

Def: An object \(I \) in an abelian category \(A \) is injective if it satisfies the following universal lifting property: Given an injection \(f : A \rightarrow B \) and a map \(i : A \rightarrow I \), we have \(B \rightarrow A \rightarrow I \).

We say \(A \) has enough injectives if for every object \(A \) in \(A \), there is an injection \(A \rightarrow I \) with \(I \) injective.

Prop: If \(\{ I_\alpha \} \) is a family of injectives, then \(\bigoplus I_\alpha \) is also injective.

\[P : \]

\[0 \rightarrow A \rightarrow B \]

\[\pi_I \alpha \]

\[I_\alpha \]

(2.3.1) Baer's Criterion: A right \(R \)-module \(E \) is injective if for every right ideal \(J \) of \(R \), every map \(J \rightarrow E \) extends to a map \(R \rightarrow E \).
Cor: An \(\mathbb{Z} \)-module \(M \) (more generally, a PID-module \(M \)) is injective if and only if \(M \) is divisible.

(2.3.1) \Rightarrow \(M \) is divisible.

Proof: Consider \(0 \rightarrow (n) \rightarrow \mathbb{Z} \).

Lemma: Every abelian group \(G \) can be embedded into a divisible group.

Proof: If \(G \) is free, then \(G = \bigoplus \mathbb{Z} \), let \(D = \bigoplus \mathbb{Q} \), then \(D \) is divisible and \(0 \rightarrow G \rightarrow D \).

If \(G \) is not free, then we have \(0 \rightarrow k \rightarrow F \rightarrow G \rightarrow 0 \) so \(G = \overline{F/k} \leftrightarrow \overline{D/k} \), where \(D \) is divisible.

\(D \) is divisible \(\Rightarrow \overline{D/k} \) is divisible.

Lemma: Let \(D \) be an \(\mathbb{Z} \)-injective module, \(R \) a ring, then \(\text{Hom}_R(R, D) \) is an \(R \)-injective module.

Proof: \(0 \rightarrow I \rightarrow R \)

\[\begin{array}{c}
\text{Let } x, y \in M, \text{ then } x = ny.
\end{array} \]
Thm: R-mod has enough injectives, i.e., every R-module can be embedded into an injective R-module.

Pt: \[
M \hookrightarrow \text{Hom}_R(R,M) \hookrightarrow \text{Hom}_R(R,M) \hookrightarrow \text{Hom}_R(R,0)
\]

Rmk: The above theorem is the only one that we can not get from dualizing the projective result.

Def: A pair of functors \(L: A \to B \) and \(R: B \to A \) are adjoint if there is a natural bijection for all \(A \) in \(A \) and \(B \) in \(B \):\[
\text{Nat} : \text{Hom}_A(A, R(B)) \rightleftharpoons \text{Hom}_B(L(A), B)
\]
Here, "natural" means for \(f: A \to A' \) and \(g: B \to B' \):
\[
\text{Hom}_A(A', R(B)) \to \text{Hom}_A(A, R(B)) \to \text{Hom}_A(A, R(B')) \\
\downarrow \quad \downarrow \quad \downarrow \\
\text{Hom}(L(A), B) \to \text{Hom}(L(A), B) \to \text{Hom}(L(A), B')
\]
We call \(L \) the left adjoint and \(R \) the right adjoint.

Eg:
- Forgetful functor: \(R\text{-mod} \to \text{Ab} \) is left adjoint
- \(\text{Hom}(R, -) : \text{Ab} \to R\text{-mod} \) is right adjoint

Prop: Suppose \(A, B \) are abelian categories, \((L, R) \) is an adjoint pair, \(L: A \to B \) is exact, and \(I \) is an injective object in \(B \).
Then \(R(I) \) is an injective object in \(A \).
Pt: It suffices to prove \(\text{Hom}_A(-, R(I)) \) is right exact.
\[
\begin{align*}
0 & \to A \to A' \\
\Rightarrow & \ 0 \to L(A) \to L(A') \\
\Rightarrow & \ \text{Hom}(L(A'), I) \to \text{Hom}(L(A), I) \to 0 \\
\Rightarrow & \ \text{Hom}(A', R(I)) \to \text{Hom}(A, R(I)) \to 0
\end{align*}
\]