True/False

For each of the following determine if they are True or False. If they are false find a 'simply' example showing it is false, if they are true briefly describe why they are true.

Problem 1. The vertical line test tests whether a curve in the plane is the graph of a function.

Problem 2. Integration and differentiation are inverse processes linked by the Fundamental Theorem of Calculus.

Problem 3. Every one-to-one function has an inverse.

Problem 4. Every exponential function has a doubling time.

Problem 5. We can always plug in x = c to find the limit $\lim_{x\to c} f(x)$ except when the function is not continuous at x = c.

Problem 6. Horizontal asymptotes can NEVER have any points in common with the graph of a function.

Problem 7. Vertical asymptotes CAN have common points with the graph of a function.

Problem 8. While a limit $\lim_{x\to c} f(x)$ does not care what happens exactly at x = c because the limit is concerned only with the behavior of f(x) nearby x = c, continuity does care about both and wants them to coincide.

Problem 9. A composition of two continuous functions, as long as it is well-defined, is always continuous.

Problem 10. The tangent slope of a function is the limit of infinitely many secant slopes.

Problem 11. When calculating the derivative of a function by the derivative definition, we can never first plug in h = 0 because we will inevitably get $\frac{0}{0}$; instead, we must first simplify until we cancel h from top and bottom of the fraction.

Problem 12. If a function is not differentiable at x = c, then it cannot be continuous there either.

Problem 13. The second derivative test for concavity is NOT a bullet-proof test because in none of the possible 4 cases can we make any definitive conclusions about the function.

Problem 14. If the first derivative changes its sign, we are absolutely sure that the original function has a local extremum at x_0 too

Problem 15. Using the graph of f'(x), we can sketch many graphs of the possible original functions f(x).

Problem 16. When x0 is not in the domain of f(x), we cannot automatically assume that f(x) has a vertical asymptote there; instead, we need to find out what $\lim_{x\to x_0^+} f(x)$ and $\lim_{x\to x_0^-} f(x)$ are and those could be different or non-existent.