Trig Review 1

Main Topic \# 1: [Converting Radians to Degrees and Degrees to Radians]
To convert between radians and degrees we see from above that:

$$
180^{\circ}=\pi \text { Radians }
$$

Radians and Degrees Conversion

To convert θ Radians to x° we use the following formula:

$$
\frac{180 \cdot \theta}{\pi}=x^{\circ}
$$

To convert x° to θ Radians we use the following formula:

$$
\frac{\pi \cdot x}{180}=\theta \text { Radians }
$$

Learning Outcome \# 1: [Convert Radians and Degrees]
Problem 1. Convert from degrees to radians:

1. 30°
2. 135°
3. -330°

Problem 2. Convert from radians to degrees:

1. $5 \pi / 6$ radians
2. $\pi / 4$ radians
3. $-4 \pi / 3$ radians

Basic Trig

Basics

$$
\begin{gathered}
\cos (\theta)=\frac{\text { adj }}{\text { hyp }} \quad \sin (\theta)=\frac{\text { opp }}{\text { hyp }} \quad \tan (\theta)=\frac{\text { opp }}{\text { adj }} \\
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)} \quad \sec (\theta)=\frac{1}{\cos (\theta)} \\
\csc (\theta)=\frac{1}{\sin (\theta)} \quad \cot (\theta)=\frac{\cos (\theta)}{\sin (\theta)}
\end{gathered}
$$

Trig Identities useful in Integration

Pythagorean Identity:

$$
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1
$$

Half-Angle Formulas:

$$
\cos ^{2} x=\frac{1+\cos (2 x)}{2} \quad \sin ^{2} x=\frac{1-\cos (2 x)}{2}
$$

Double-Angle Formulas:

$$
\cos (2 x)=\cos ^{2} x-\sin ^{2} x \quad \sin (2 x)=2 \sin x \cos x
$$

Add./Subst. Formulas: $\quad \cos (s+t)=\cos s \cos t-\sin s \sin t$
$\sin (s+t)=\sin s \cos t+\cos s \sin t$
$\cos (s-t)=\cos s \cos t+\sin s \sin t$
$\sin (s-t)=\sin s \cos t-\cos s \sin t$

Inverse Trig

Basics

$$
\begin{aligned}
& y=\sin (\theta) \quad \Longrightarrow \quad \theta=\sin ^{-1}(y) \quad \text { where } \quad-1 \leq y \leq 1 \quad \text { and } \quad \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
& y=\cos (\theta) \quad \Longrightarrow \quad \theta=\cos ^{-1}(y) \quad \text { where } \quad-1 \leq y \leq 1 \quad \text { and } \quad 0 \leq \theta \leq \pi \\
& y=\tan (\theta) \quad \Longrightarrow \quad \theta=\tan ^{-1}(y) \quad \text { where } \quad y \in \mathbb{R} \quad \text { and } \quad \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2} \\
& y=\cot (\theta) \quad \Longrightarrow \quad \theta=\cot ^{-1}(y) \quad \text { where } \quad y \in \mathbb{R} \quad \text { and } \quad 0 \leq \theta \leq \pi \\
& y=\sec (\theta) \quad \Longrightarrow \quad \theta=\sec ^{-1}(y) \quad \text { where } \quad|y| \geq 1 \quad \text { and } \quad 0 \leq \theta \leq \pi, \theta \neq \frac{\pi}{2} \\
& y=\csc (\theta) \quad \Longrightarrow \quad \theta=\csc ^{-1}(y) \quad \text { where } \quad|y| \geq 1 \quad \text { and } \quad \frac{-\pi}{2} \leq \theta \leq \frac{\pi}{2}, \theta \neq 0
\end{aligned}
$$

Problem 3. Solve for the missing sides and angles of the following triangles

1. Find the length of sides A, B and the missing angle

2. Find the length of sides A, B and the missing angle

Problem 4. Use sum or difference formula to evaluate the following exactly. There may be more than one way to evaluate each.
(a) $\cos (7 \pi / 12)$
(c) $\sin (\pi / 12)$
(d) $\sin (5 \pi / 12)$
(b) $\sin (13 \pi / 12)$

Problem 5. Using the fact that $2 \theta=\theta+\theta$, and the sum formulas for \sin and \cos on the previous page verify (i.e. show algebraically) identities for $\sin (2 \theta)$ and $\cos (2 \theta)$.

Problem 6. Using the double angle formulas (for example you found them in problem 5) for $\cos (2 \theta)$ and define a new variable $u=2 \theta$. Use this new variable to find (i.e. show algebraically) a formula for $\sin (u / 2)$.

Problem 7. Use the half-angle formulas to evaluate the following exactly.
(a) $\sin (\pi / 12)$
(b) $\cos (11 \pi / 8)$

Problem 8. Suppose angles A and B are in the first quadrant, and $\sin (A)=\frac{1}{4}$ and $\sin (B)=\frac{12}{13}$.
(a) Find $\cos (A)$ and $\cos (B)$ exactly.
(b) Find $\sin (A+B)$ and $\sin (A-B)$ exactly.

Problem 9. Verify the following identity using formulas you already know.

$$
\sin (3 \theta)=3 \sin (\theta)-4 \sin ^{3}(\theta)
$$

Problem 10. Solve $\cos (x)=-\frac{1}{2}$.

Problem 11. Solve $\sin (x)=0$.

Problem 12. Solve $\cos (x)=\frac{\sqrt{3}}{2}$.

Problem 13. Solve $\sin (2 x)=\frac{\sqrt{2}}{2}$ subject to the restriction that $0 \leq x \leq \pi$.

Problem 14. Solve $\cos \left(\frac{1}{4} x\right)=1$.

Problem 15. Solve $\sin ^{2}(x)-1=0$.

Problem 16. Solve $2 \cos ^{2}(x)-5 \cos (x)-3=0$.

