
Schur Functors
(a project for class)

R. Vandermolen

1 Introduction

In this presentation we will be discussing the Schur functor. For a complex vector space
V , the Schur functor gives many irreducible representations of GL(V ), and other important
subgroups of GL(V ), it will not be the purpose of this presentation to give this deep of an
explanation. We will be concerning ourselves with the basic concepts needed to understand
the Schur functor, and finish off by showing that the Schur functor does indeed help us
decompose the nth tensor products V ⊗n.

We will, for the most part, follow the presentation given in [1], and in turn we will use
German gothic font for the symmetric group, and use diagrams in many occasions. With
this said, we will not reprove major theorems from [1], instead we will focus our efforts on
“filling in” the details of the presentation. We create new lemmas and deliver proofs of these
new lemmas in efforts to deliver a fuller exposition on these Schur functors.

Before we can begin a discussion of the Schur functor (or Weyl’s module), we will need
a familiarity with multilinear algebra.

1.1 Preliminaries

Now we will deliver the definitions that will be of most interest to us in this presentation.
We begin with the definition of the n-th tensor product.

Definition 1. For a finite dimensional complex vector space V , and an natural number n,
we define the complex n-th tensor product as follows

V ⊗n := F (V n)/ ∼

where F (V n) is the free abelian group on V n, considered as a set, and ∼ is the equivalence
relation defined for v1, ..., vn, v̂1, ..., v̂n, w1, ..., wn ∈ V , as

(v1, ..., vn) ∼ (w1, ..., wn)

whenever there exists a k ∈ C such that k(v1, .., vn) = (w1, ..., wn), and

(v1, .., vi, ...vn) + (v1, ..., v̂i, ..., vn) ∼ (v1, .., vi + v̂i, .., vn)

One can easily verify that this is indeed an equivalence relation.
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Next we will use the following definitions of some interesting subvector spaces of the n-th
tensor product, which will be of the most interest in this paper.

Definition 2. For a complex finite dimensional vector space V , and a natural number n, we
define the complex n-th symmetric space denoted Symn(V ), as the subspace of V ⊗n,
spanned by the following set,{∑

σ∈Sn

vσ(1) ⊗ ...⊗ vσ(n)

∣∣∣∣∣ vi ∈ V
}

and denote a generator
∑

σ∈Sn vσ(1) ⊗ ...⊗ vσ(n) = v1 · · · vn.

Definition 3. For a finite dimensional complex vector space V , and an natural number n,
we define the complex n-th alternating space denoted

∧n V , as the subspace of V ⊗n,
spanned by the following set{∑

σ∈Sn

sgn(σ)vσ(1) ⊗ ...⊗ vσ(n)

∣∣∣∣∣ vi ∈ V
}
,

and denote a generator
∑

σ∈Sn sgn(σ)vσ(1) ⊗ ...⊗ vσ(n) = v1 ∧ · · · ∧ vn.

The experienced and curious reader may be asking themselves why we chose these defini-
tions, rather than more accepted ones, while these definitions, over C, are equivalent it takes
some work to show this non-trivial fact, so to avoid the discussion we chose these definitions.
Finally, we will define the strongest tool we will use in this presentation.

Definition 4. For a group G, we define the complex group algebra of G denoted as CG
as, the |G|-dimensional complex vector space with the canonical basis indexed by elements
of G, that is for g ∈ G we have a basis element eg ∈ CG, where we define the multiplication
in CG on basis elments, for g1, g2 ∈ G as

eg1 · eg2 = eg1·g2

and expand the definiton linearly for the remaining elements. One easily sees that if G is
non-abelian then so is CG and if |G| =∞ then CG has inifinte dimension.

Next, we will discuss partitions of finite sets.

2 Young Tableau

In this section we will discuss the Young tableau as a method of identifying special subgroups
of the symmetric group Sn. We recall, for a partition λ = (λ1, ..., λd) (we will always follow
the convention that λ1 ≥ λ2 ≥ ... ≥ λd ≥ 1), where

∑d
i=1 λi = n, we may represent this

partition as a Young diagram,

2



λ1 . . .

λ2 . . .

...
...

with λi boxes on the ith row aligned to the left. The conjugate partition is the partition
λ′ = (λ′1, ...) defined by swapping the rows and the columns in the Young diagram. For a
specific example consider the partition (3, 3, 2, 1) of a 9 element set is drawn as follows:

then the conjugate partition is (4,3,2), that is the following Young diagram.

A Young Tableau is a labeling a Young diagram with the numbers {1, ..., n}, for our
example the canonical labeling will be,

1 2 3

4 5 6

7 8

9

in general the canoical labeling is labiling the diagram from left to right with the top row
1-λ1 etc. we will only consider the canonical labeling, since for our use any labeling creates
isomorphic representations, which we will note when it becomes relevant. Now while Young
diagrams and tableaus are a rich area of research, we have all that we will need to proceed.

3 Young’s Symmetrizer

Given a Young tableau (that is a partition λ) we can construct the following two subgroups
of the group of permutations, Sn

P = Pλ = {g ∈ Sn : g preserves each row}
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and
Q = Qλ = {g ∈ Sn : g preserves each column}.

Let us now take a moment to, describe what we mean by “preserving a column”, (respecitvely
“preserving a row”) by this we mean that each column (resp. row) when considered as a
subset of {1, ..., n}, (with its labeling) remains stable under the action by Q (resp. P ).

We now take a moment to prove the following necessary Lemma.

Lemma 3.1. With the definition above P and Q are both subgroups of Sn, in particular,
P ∼=

⊕k
i=1Sλi , and Q ∼=

⊕k′

i=1Sλ′i
, where k′ denotes the number of columns in the Young’s

diagram.

Proof. First let λ = (λ1, .., λk) be a partition of n ∈ N, and consider the canonical Young
tableau. Now recall all that needs to be done to prove that they are subgroups it suffices
verify for a, b ∈ P then ab−1 ∈ P (this is a standard result in group theory). Yet, this is
evident since when x ∈ {1, .., n}, and say x is in row i then b−1(x) remains in row i since
b has this property and thus ab−1(x) remains in row i, since a has this property, and hence
ab−1 ∈ P (and similarly for Q).

To see that last conclusion of the lemma just note that the stabilizer of row i is subgroup of
Sn, and that P is generated by all of these stabilizers (similar for column i and Q).

With these two subgroups we can now define the operators that we are most interested in.
Consider the group algebra CSn, and consider the elements

aλ =
∑
g∈P

eg and bλ =
∑
g∈Q

sgn(g)eg.

We define for a vector space V the canonical action of Sn on the nth tensor product, V ⊗n,
for v1⊗ ...⊗ vn and g ∈ Sn as g(v1⊗ ...⊗ vn) = vg(1)⊗ ...⊗ vg(n), that is permute the indices,
and then expand the definition linearly. The informed reader may be concerned that we did
not use the inverse when we permute, yet there is an equivalent definition using the inverse
on the coefficients, yet not on the basis elements themselves. We now can interpret aλ and bλ
as operators on V ⊗n. Now, we can look at their respective images, described in the following
lemma.

Lemma 3.2. Let V be a finite dimensional complex vector space, λ be a partition of n ∈ N,
and consider the canonical Young tableau. Then

aλ(V
⊗n) ∼= Symλ1 V ⊗ Symλ2(V )⊗ ...⊗ Symλd V

and

bλ(V
⊗n) ∼=

∧λ′1
V ⊗

∧λ′2
V ⊗ ...⊗

∧λ′
d′ V

where λ′ is the conjugate partition to λ.

Proof. This follows from Lemma 3.1 and the definition of the symmetric and alternating
tensor.
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Now, we can define the Young symmetrizer as,

cλ = aλbλ ∈ CSn.

The astute reader may be asking themselves, “does the choice of Young’s Tableau make
a difference on how these operators work?” The answer turns out to be no! If one finds
themselves bewildered by this answer, do not fret just recall the basic result from linear
algebra, V1⊗V2 ∼= V2⊗V1, and if this is still not settling the troubling stomach of the reader
we provide a helpful example at this point.

Example 3.3.

For an explicit example, consider when n = 3, consider the partition (2,1), and consider the
canonical Young tableau, on this partition,

1 2

3

we can then explicitly describe both P and Q, as

P = {(), (12)} ∼= S2

and
Q = {(13), ()} ∼= S2

where () denotes the identity element in S3 (and we point out the above isomorphisms to
observe Lemma (3.1) in action). Thus we see that

aλ = e() + e(12)

and
bλ = e() − e(13).

We will begin by an exploration of the action of aλ, which is very natural with the canonical
labeling of the Young’s tableau, we will see an example of the “extra work” that needs to
be done to gain isomorphic copies when we do not work in the canonical labeling when we
examine bλ below.

Now let V = C and consider the nth tensor V ⊗3, let v = v1 ⊗ v2 ⊗ v3 ∈ V ⊗3, and let us
see the action of aλ on v.

aλ(v) = v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3

So the image, aλ(V
⊗3) is generated by elements of the above form. Now by Lemma (3.2) we

are suppose to have,
aλ(V

⊗n) ∼= Sym2(V )⊗ V.

To see this explicitly we define the natural isomorphism ϕ : V ⊗3 → V ⊗2 ⊗ V , defined for a
pure tensor v1 ⊗ v2 ⊗ v3 ∈ V ⊗3 as ϕ(v1 ⊗ v2 ⊗ v3) = (v1 ⊗ v2) ⊗ v3. Next, we consider the
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canonical imbedding ι : Sym2(V )⊗ V → V ⊗2 ⊗ V . By composing on a generator we see the
following,

ϕ−1(ι(v1 · v2 ⊗ v3)) = ϕ−1((v1 ⊗ v2 + v2 ⊗ v1)⊗ v3)
= v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3
= aλ(v1 ⊗ v2 ⊗ v3).

Thus, we can define the homomorphism ϑ : aλ(V
⊗3)→ Sym2(V )⊗ V , as

ϑ(aλ(v1 ⊗ v2 ⊗ v3)) = v1v2 ⊗ v3, and hence from the preceding calculation we have that the
following diagram commutes,

Sym2(V )⊗ V V ⊗2 ⊗ V

aλ(V
⊗3) V ⊗3

ι

ϕ−1
ϑ

aλ

and hence we have our desired isomorphism.

Next, the examination of bλ is a bit trickier, and this consideration shows us an example
why choosing another tableau other than the canonical one gives us isomorphic results, since
bλ relies on the conjugate table, and hence is in itself not the canonical labeling. So we begin
by examining bλ, acting on v,

bλ(v) = v1 ⊗ v2 ⊗ v3 − v3 ⊗ v2 ⊗ v1

so the image of bλ(V
⊗3) is generated by elements of the above form. Now by Lemma (3.2)

we are suppose to have,

bλ(V
⊗n) ∼=

∧2
(V )⊗ V.

This time to see this explicitly, we will need to use the “less natural” isomorphism
ψ : V ⊗3 → V ⊗2⊗ V defined as ψ(v1⊗ v2⊗ v3) = (v1⊗ v3)⊗ v2. This time we again consider
the canonical imbedding i :

∧2(V ) ⊗ V → V ⊗2 ⊗ V , hence by composing we arrive at the
following calculation,

ψ−1(i((v1 ∧ v2)⊗ v3)) = ψ−1((v1 ⊗ v2 − v2 ⊗ v1)⊗ v3)
= v1 ⊗ v3 ⊗ v2 − v2 ⊗ v3 ⊗ v1
= bλ(v1 ⊗ v3 ⊗ v2)

Thus, we can define the homomorphism γ : bλ(V
⊗3)→

∧2(V )⊗ V , as
γ(bλ(v1 ⊗ v2 ⊗ v3) = (v1 ∧ v3) ⊗ v2, and hence from the preceding calculation we have that
the following diagram commutes,∧2(V )⊗ V V ⊗2 ⊗ V

bλ(V
⊗3) V ⊗3

i

ψ−1γ

bλ
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and hence we have our desired isomorphism. Here the author would like to note that we see
that no matter the labeling, we obtain our isomorphic images with the use of an isomorphic
twisting of V ⊗n, in this example, specifically it was the map ψ.

Finally we explore the action of Young Symmetrizer,

cλ = aλbλ = e() + e(12) − e(13) − e(132)

on v, that is

cλ(v) = v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3 − v3 ⊗ v2 ⊗ v1 − v3 ⊗ v1 ⊗ v2

we will wait till the next section to describe this image.

4 Schur Functor

We will denote the image of the Young symmetrizer on V ⊗n as SλV , that is

SλV = cλ(V
⊗n).

We may consider Sλ : VectC → VectC, as a functor from the category of complex vector
spaces to itself. We call this functor the Schur functor corresponding to λ. To see that this
is a well defined functor recall that the functors

∧n : VectC → VectC, Symn : VectC → VectC,
and

⊗n : VectC → VectC, are all well defined functors. Thus for any vector spaces U, V,W
and C-linear maps, ϕ : V → W , ψ : W → U we have, that the following diagram commutes.

V ⊗n W⊗n U⊗n

bλ(V
⊗n) bλ(W

⊗n) bλ(U
⊗n)

aλ(aλV
⊗n) aλ(aλW

⊗n) aλ(aλU
⊗n)

Sλ(V ) Sλ(W ) S(U)

bλ

ϕ⊗n ψ⊗n

bλ bλ

aλ aλ aλ

= = =

Sλ(ϕ) Sλ(ψ)

Thus Sλ : VectC → VectC is well defined.

To get a better grip of these we will first look at the two easiest examples and then return
to example 3.3 from the last section to see a more involved example of Sλ.

Example 4.1.
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Let n = 4 and consider the two partitions let λ1 = (1, 1, 1, 1) and λ2 = (4), that is when we
consider the canonical Young tableau of λ1, and λ2 we have

λ1 =
1

2

3

4

λ2 =
1 2 3 4

and thus
Pλ1 = {()}, Qλ1 = S4

and
Pλ2 = S4, Qλ2 = {()}

one quickly calculates

cλ1 = bλ1 =
∑
σ∈Sn

sgn(σ)eσ, cλ2 = aλ2 =
∑
σ∈Sn

eσ

thus if we consider any vector space V over C, by Lemma 3.2 we have that

Sλ1(V ) =
∧4

(V ), Sλ2(V ) = Sym4(V )

Example 4.2.

We recall that in example 3.3 we had for v = v1 ⊗ v2 ⊗ v3 ∈ V ⊗3

cλ(v) = v1 ⊗ v2 ⊗ v3 + v2 ⊗ v1 ⊗ v3 − v3 ⊗ v2 ⊗ v1 − v3 ⊗ v1 ⊗ v2.

Now, as promised we will describe Sλ = cλ(V
⊗3). We claim that Sλ is the subspace of∧2(V )⊗ V spanned by the elements

(v1 ∧ v3)⊗ v2 + (v3 ∧ v2)⊗ v1.

So to see this once again consider the canonical imbedding of i :
∧2(V ) ⊗ V → V ⊗2 ⊗ V ,

and recall ϕ : V ⊗3 → V ⊗2 ⊗ V , as the canonical isomorphism, and hence we calculate,

ϕ−1 ◦ i((v1 ∧ v3)⊗ v2 + (v3 ∧ v2)⊗ v1) = ϕ−1((v1 ⊗ v3 − v3 ⊗ v1)⊗ v2 + (v3 ⊗ v2 − v2 ⊗ v3)⊗ v1)
= v1 ⊗ v3 ⊗ v2 − v3 ⊗ v1 ⊗ v2 + v3 ⊗ v2 ⊗ v1 − v2 ⊗ v3 ⊗ v1
= cλ(v1 ⊗ v3 ⊗ v2).

We are now ready for our final section.
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5 Decompositions of V ⊗n

In this final section we will show how to use the Schur functor to decompose V ⊗n. To
motivate first we make a some observations. First notice that, using the notation of example
4.1 we have,

V ⊗ V ∼= Sym2(V )⊕
∧2

(V ) = Sλ2(V )⊕ Sλ1(V ).

This turns out to not just be a happy accident, our final conclusion will show that every
tensor power can be decomposed into summands of Shur functors. We will need the following
fact to be able to state our final conclusion, which is Theorem 4.3 in [1], where we refer the
reader for a proof.

Theorem 5.1. Given a partition of n the image of cλ (by left multiplication on CSn) is
an irreducible representation of, denote it Vλ, of Sn, and every irreducible representation is
obtained in this way.

This following theorem is part (2) of Theorem 6.3 in [1], and again the reader is referred
to [1] for the proof.

Theorem 5.2. Let λ be a partition of n, and let mλ be the dimension of the irreducible
representation Vλ of Sn corresponding to λ, then

V ⊗n ∼=
⊕

λ a partition of n

Sλ(V ⊗mλ).

With these theorems and looking at example 4.1 we can see where the first calculation
of this section comes from, since there is only two partitions of the number 2. Our final
example will use Theorem 5.1 and 5.2 to show a decomposition of V ⊗3.

Example 5.3.

First, notice that the three partitions of the number 3 are the following, (where the corre-
sponding irreducible representation is written next to them)

alternating:(λ1)
1

2

3

trivial:(λ2)
1 2 3

standard:(λ3)
1 2

3

Let us now take a moment to prove that these are indeed the corresponding representations.
First recall,

S3 = {(), (12), (13), (23), (123), (132)}
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Now, as seen in example 3.3 and 4.1 we have that

cλ1 =
∑
σ∈S3

sgn(σ)eσ

cλ2 =
∑
σ∈S3

eσ

cλ3 = e() + e(12) − e(13) − e(132).

It is easy to see that the images of cλ1 and cλ2 acting on the left of CS3 indeed gives
us the expected irreducible representations. What may be unexpected is that cλ3(CSn)
is the irreducible representation corresponding to the standard representation. To unpack
what this says, in [1] the standard representation of a permutation is the two-dimensional
space spanned by “diagonal” elements and the “trace zero” elements (for more on this
representation the reader is referred to [1] page 9). We will use the fact that this is the last
of the irreducible representations, to prove our result here. So clearly by inspection cλ3(CS3)
is neither the trivial nor the alternating representation, so we have our result by Theorem
5.1.

There is another result from [1], which we omitted, yet can be observed easily in this
example. Notice that we have the following calculation,

(cλ3)
2 = 3cλ3 .

To conclude this example, as promised, by Theorem 5.2, and example 4.2 we should have,

V ⊗3 ∼= Sym3(V )⊕
∧3

(V )⊕ span{(v1 ∧ v3)⊗ v2 + (v3 ∧ v2)⊗ v1}.

Yet with the work we have done in this example this is now clear. That is we have

CS3 = Ccλ1(CS3)⊕ Ccλ2(CS3)⊕ Ccλ3(CS3),

so in particular we get that e() = ax+ by + cz where x ∈ cλ1(CS3), y ∈ cλ2(CS3),
z ∈ cλ3(CSn), and a, b, c ∈ C, and hence

v1 ⊗ v2 ⊗ v3 = ax(v1 ⊗ v2 ⊗ v3) + by(v1 ⊗ v2 ⊗ v3) + cz(v1 ⊗ v2 ⊗ v3).
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