Zeros To Quadratics

Quadratic Formula

To solve a quadratic equation (that is a polynomial where the highest power on x is 2) we can use the quadratic formula. To remember what this means say we want to solve

$$
A x^{2}+B x+c=0
$$

then the answers (not perhaps more than one) are

$$
x=\frac{-B \pm \sqrt{B^{2}-4 \cdot A \cdot C}}{2 \cdot A}
$$

notice that the symbol \pm means plus $\underline{\text { OR minus, that is we get one answer when we add }}$ and another when we subtract.

The term

$$
\sqrt{B^{2}-4 \cdot A \cdot C}
$$

is known as the discriminant and is very important, since when we take the square root of a negative number we get an imaginary number we ONLY get REAL solutions when

$$
B^{2}-4 \cdot A \cdot C>0
$$

that is when the discriminant is positive!

Completing the Square

Some times its easiest to just complete the square that we have

$$
x^{2}+b x=\left(\frac{b}{2}\right)^{2}=\left(x+\frac{b}{2}\right)^{2}
$$

So if we want to solve

$$
x^{2}+b x=c
$$

we can add and $\left(\frac{b}{2}\right)^{2}$ to both sides of the equation

$$
x^{2}+b x+\left(\frac{b}{2}\right)^{2}=\left(\frac{b}{2}\right)^{2}+c
$$

using the equation above we thus get

$$
\left(x+\frac{b}{2}\right)^{2}=\left(\frac{b}{2}\right)^{2}+c
$$

and hence we can take the square root of both sides and solve as usual!

Problem 1. Find all the REAL solutions of the following.

1. $t^{2}-10 t+34=0$
2. $x^{2}-6 x+4=0$
3. $v^{2}+8 v-9=0$
4. $9 w^{2}-6 w=101$
5. $x^{2}+9 x+16=0$
6. $8 u^{2}+5 u+70=5-7 u$
7. $4 u^{2}-8 u+5=0$
8. $169-20 t+4 t^{2}=0$
9. $2 x^{2}+5 x+3=0$
10. $2 z^{2}+z-72=z^{2}-2 z+58$
