## Long Division

Main Topic \# 1: [Long Division with polynomials] The basic concept of worksheet is write rational expressions as as a polynomial plus a simpler rational expression. This idea was seen with numbers when you were younger. More specifically we can find a $q$ called the quotient and $r$ the remainder so that

$$
\frac{a}{b}=q+\frac{r}{b}
$$

so that $r<b$. This is not as tricky as it might seem to the mathematical adverse student. It is only a tricky way of writing that there is a number $q$ such that

$$
a=q \cdot b+r
$$

that is $q$ is the most amount of times $b$ divides into $a$ an $r$ is the left over, that is why it is less than $b$ if it was greater we could get another factor of $b$. Now we want to do the same process with polynomials specifically lets look at

$$
\underbrace{\left(x^{2}+2 x-1\right)}_{\text {dividend }} \div \underbrace{(x-1)}_{\text {divisor }}
$$

We begin very much the same as long division of numbers but this time we only look at the highest term in each. The highest term in $x-1$ is just $x^{1}$ and the highest term in $x^{2}+2 x-1$ is $x^{2}$. We even write the set up the same!

$$
x - 1 \longdiv { x ^ { 2 } + 2 x - 1 }
$$

So we first ask the question what can we multiply $x$ (i.e. our highest term in our divisor) to get $x^{2}$ (i.e. our highest term in our dividend) well that is of course $x$ or to put it in an equation

$$
x \cdot x=x^{2}
$$

We collect this data just as before by writing it above the line

$$
x-1) \frac{x}{x^{2}+2 x-1}
$$

We then proceed like with numbers and multiply our new factor $x$ by $(x-1)$ and get

$$
x \cdot(x-1)=x^{2}-x
$$

and again we must subtract (don't forget to distribute the subtraction sign i.e. $-\left(x^{2}-x\right)=-x^{2}+x$

$$
\begin{gathered}
x-1) \frac{x}{x^{2}+2 x-1} \\
-x^{2}+x \\
\hline
\end{gathered}
$$

and then performing the subtraction by subtracting like terms we get

$$
\begin{array}{r}
x-1) \begin{array}{r}
\frac{x}{x^{2}+2 x-1} \\
-x^{2}+x \\
3 x-1
\end{array}
\end{array}
$$

Now we repeat the process with the left over polynomial in this example it is $3 x-1$. Notice the highest term of $3 x-1$ is $3 x$ and we ask what do we need to multiply $x$ (the highest term of $x-1$ ) by to get $3 x$ ? We see here it is more simple we need only multiply by 3 ! That is

$$
3 \cdot x=3 x
$$

Now to collect this information we add the new term 3 above the line

$$
\begin{aligned}
&x-1) x+3 \\
& \begin{array}{c}
x^{2}+2 x-1 \\
-x^{2}+x \\
3 x
\end{array} \\
& \hline
\end{aligned}
$$

And again multiply 3 by $(x-1)$ we get $3 x-3$ and when we subtract we get $-(3 x-3)=-3 x+3$ and we collect this data as follows

$$
x-1) \begin{array}{r}
x+3 \\
\begin{array}{r}
x^{2}+2 x-1 \\
-x^{2}+x \\
3 x-1 \\
-3 x+3 \\
\hline
\end{array}
\end{array}
$$

again combining like terms we get

$$
\begin{aligned}
& x-1) \frac{x+3}{x^{2}+2 x-1} \\
& \frac{-x^{2}+x}{3 x-1} \\
& -3 x+3
\end{aligned}
$$

and now we see that we are at a degree lower than that of the divisor so we are done! this is our remainder 2 ! So we have the following:

$$
\frac{x^{2}+2 x-1}{x-1}=(x+3)+\frac{2}{x-1}
$$

Before you move on make sure you can follow these next examples!

## Examples:

$$
\begin{aligned}
& \qquad \begin{array}{r}
\left.x^{2}-x+1\right) \\
\frac{x^{3}+x^{2}+2 x-1}{} \\
\frac{-x^{3}+x^{2}-x}{2 x^{2}+x}-1 \\
\frac{-2 x^{2}+2 x-2}{3 x-3}
\end{array} \\
& \text { i.e. } \frac{x^{3}+x^{2}+2 x-1}{x^{2}-x+1}=(x+2)+\frac{3 x-3}{x^{2}-x+1} \\
& \frac{-3 x^{3}+\frac{3}{4} x^{2}-\frac{3}{4} x}{\frac{3}{4} x^{2}+\frac{5}{4} x-1} \\
& \left.4 x^{2}-x+1\right) \frac{-\frac{3}{4} x^{2}+\frac{3}{16} x-\frac{3}{16}}{\frac{23}{16} x-\frac{19}{16}}
\end{aligned}
$$

Problem 1. Write the following as quotient plus remainder and fraction.

1. $\left(3 x^{4}-5 x^{2}+3\right) \div(x+2)$
2. $\left(x^{3}+x^{2}+x+1\right) \div(x+9)$
3. $\left(x^{3}+2 x^{2}-3 x+4\right) \div(x-7)$
4. $\left(7 x^{3}-1\right) \div(x+2)$
5. $\left(2 x^{5}+x^{4}-6 x+9\right) \div\left(x^{2}-3 x+1\right)$
6. $\left(5 x^{4}+x^{2}-8 x+2\right) \div(x-4)$
