Log Review

Main Topic # 1: [Log is "like" square root]

The main concept for Logs is the concept of the **opposite** in the sense of the inverse of a function. Recall how one calculates the positive branch of the square root:

That is because

In slight more generality:

 $\sqrt{4} = \underline{\qquad}$ $(\underline{\qquad})^2 = \underline{\qquad}$ $\sqrt{b} = c$

 $c^2 = b$

means

It is the same idea for the Log and an exponential. First the technical definition:

The Log
For $a > 0$ we call the inverse of the function $f(x) = a^x \operatorname{Log} \operatorname{base} a$ and write it as
$\log_a(x) = f^{-1}(x)$

Now the definition which mimics the idea of square root above.

The	Opposite of an Exponential
For a	a > 0 $\log_a(b) = c$
mear	$a^c = b$
or	$\log(h)$
	is the power of that is

That is the Log is the function that says "Gimme that exponent"

Finally, there is a special Log that we call **The Natural Log**:

$$\log_e(x) = \ln(x)$$

Learning Outcome # 1: [Using the meaning of Log to calculate]

Problem 1. Complete the following statements.

- (a) If $y = \log_{10}(100)$, then _____y = 100.
- (b) $\log_{10}(5.5)$ is the power of _____ that gives _____.
- (c) $\log_2(\underline{})$ is the power of $\underline{}$ that gives 500.
- (d) If $4^m = n$ then $\log_4(n) =$ ____.
- (e) $\log_e(556)$ is the power of _____ that gives _____.

Problem 2. Rewrite the following using exponents instead of logs.

(a)
$$\log_e(5) \approx 1.609$$
 (b) $\log_2(1) = 0$ (c) $\log_{100}(A) = B$

Problem 3. Rewrite the following using logs instead of exponents.

(a) $e^{15} \approx 3269017.373$ (b) $10^{-2} = \frac{1}{100}$ (c) $7^t = H$

Problem 4. Evaluate the following without using a calculator:

(a) $3^{\log_3(7)}$ (b) $\log_{11}(11^4)$ (c) $\log_b(\sqrt{b^3})$

Problem 5. Evaluate the following without using a calculator.

(a)
$$e^{\ln(17)}$$
 (b) $\ln(e^3)$ (c) $\ln\left(\frac{1}{\sqrt{e}}\right)$

Main Topic # 2: [Solving Equations with Log]

In the last section we talked about exponential functions. Today we want to talk about how to solve equations like:

 $3^{x} = 7$

So we need a way to:

"un-do" raising to the x

Just like we did in equations before...

<u>Addition and Subtraction</u>: To solve the equation x + 7 = 8 we need to "un-do adding 7" by subtracting 7 from both sides and get:

x + 7 = 8

x = 1

Multiplication and Division: To solve the equation 3x = 9 we need to "un-do the multiplication by 3" by dividing by 3 on both sides of the equation to get :

(3)x = 9

$$x = 3$$

This is exactly what **the inverse** is for functions. To be more specific when considering the function $f(x) = 3^x$ the inverse has the following property:

$$f^{-1}(f(x)) = x$$

To use this property in the first equation we see:

$$3^x = 9$$

$$x = \log_3(9) = _$$

The Take-Away		
For $a > 0$ we have:	$a^{\log_a(x)} = x$	
and	$\log_a(a^x) = x$	

BECAUSE THEY ARE "OPPOSITES"!!!!

Finally, let's look at the graph of the Log, using what we learned about inverses in the previous section:

Main Topic # 3: [The Laws of Logs]

Recall the Laws of Exponents

The Laws of Exponents $a^{n} \cdot a^{m} = a^{m+n}$ $(a^{n})^{m} = a^{m \cdot n}$ $\frac{a^{n}}{a^{m}} = a^{n-m}$ $a^{0} = 1$ To understand the Laws of Logs we will first investigate what happens to all of the exponential laws when we apply $\log_a(_)$ to both sides:

$$\log_a (a^n \cdot a^m) = \log_a (a^{m+n}) = m + n = \underline{\qquad} + \underline{\qquad}$$
$$\log_a ((a^n)^m) = \log_a (a^{m\cdot n}) = m \cdot n = \underline{\qquad} \cdot \underline{\qquad}$$
$$\log_a \left(\frac{a^n}{a^m}\right) = \log_a (a^{m+n}) = n - m = \underline{\qquad} - \underline{\qquad}$$
$$\underline{\qquad} = \log_a (a^0) = \log_a (1)$$

The awesome thing is the far right hand side has nothing to do with the base, which gives us our Laws of Logs, or as I like to call it:

Rob's Log Laws

The Laws of Logs		
	$\log_a(A \cdot B) = \log_a(A) + \log_a(B)$	
	$\log_a\left(A^n\right) = n \cdot \log_a(A)$	
	$\log_a\left(\frac{A}{B}\right) = \log_a(A) - \log_a(B)$	
	$\log_a(1) = 0$	

Learning Outcome # 3: [Identifying and Applying the Laws of Logs]

_

Problem 7. Match each expression of the left with its equivalent expression on the right for A, B > 0.

$\ln(AB)$	$\log_a(A^{3t})$
$\log_a\left(\frac{A}{B}\right)$	$\ln(A) + \ln(B)$
$\log_a(\overline{A^2}) - \log_a(B)$	1
$t \log_a(A^3)$	$\frac{\ln(A)}{2}$
$\log_a(1)$	$2\log_a\left(\frac{A}{\sqrt{B}}\right)$
$\ln(e)$	0
$\ln(\sqrt{A})$	$\log_a(A) - \log_a(B)$

Problem 8. Rewrite each of the following as the sum/difference of simple logarithms.

(a)
$$\ln\left(\frac{3x^2}{yz}\right)$$
 (b) $\log_{10}\left(\frac{a^2b}{(cd)^3}\right)$ (c) $\log_3\left(\frac{(z-1)^3}{z^{3/2}}\right)$

Problem 9. Rewrite each of the following as a single logarithm.

(a) $\ln(x) + \ln(3) - 2\ln(y)$

(b)
$$\log_{10}(a) - 2\log_{10}(b) + 3\log_{10}(c) - 4\log_{10}(d)$$

(c) $\frac{1}{2}\log_c(x) - \log_c(y) - \log_c(z-1) - \log_c(a)$

Learning Outcome # 4: [Solving Equations using the Laws of Logs]

Problem 10. Solve the following equations:

(a) $3^{x+1} = 9^{2x}$

- (b) $6^x = 7^{x-1}$
- (c) $3^{2x-1} = 5^x$

Problem 11. Solve the following equations:

- (a) $\log_{10}(x-3) = 4$
- (b) $\log_2(x) + \log_2(x+2) = \log_2(6x+1)$
- (c) $\log_3(x) \log_3(x-1) = 2$

(d)
$$2\ln(x) = \ln(x+3) + \ln(x-1)$$