Log Review

Main Topic \# 1: [Log is "like" square root]
The main concept for Logs is the concept of the opposite in the sense of the inverse of a function. Recall how one calculates the positive branch of the square root:

$$
\sqrt{4}=
$$

That is because

$$
(\ldots)^{2}=
$$

In slight more generality:

$$
\sqrt{b}=c
$$

means

$$
c^{2}=b
$$

It is the same idea for the Log and an exponential. First the technical definition:

The Log

For $a>0$ we call the inverse of the function $f(x)=a^{x} \log$ base a and write it as

$$
\log _{a}(x)=f^{-1}(x)
$$

Now the definition which mimics the idea of square root above.

The Opposite of an Exponential

For $a>0$

$$
\log _{a}(b)=c
$$

means

$$
a^{c}=b
$$

or

$$
\log _{a}(b)
$$

is the power of \qquad that is \qquad

That is the Log is the function that says "Gimme that exponent"
Finally, there is a special Log that we call The Natural Log:

$$
\log _{e}(x)=\ln (x)
$$

Learning Outcome \# 1: [Using the meaning of Log to calculate]
Problem 1. Complete the following statements.
(a) If $y=\log _{10}(100)$, then \qquad $y^{y}=100$.
(b) $\log _{10}(5.5)$ is the power of \qquad that gives \qquad .
(c) $\log _{2}\left(_\right.$__ $)$is the power of \qquad that gives 500 .
(d) If $4^{m}=n$ then $\log _{4}(n)=$ \qquad .
(e) $\log _{e}(556)$ is the power of \qquad that gives \qquad .

Problem 2. Rewrite the following using exponents instead of logs.
(a) $\log _{e}(5) \approx 1.609$
(b) $\log _{2}(1)=0$
(c) $\log _{100}(A)=B$

Problem 3. Rewrite the following using logs instead of exponents.
(a) $e^{15} \approx 3269017.373$
(b) $10^{-2}=\frac{1}{100}$
(c) $7^{t}=H$

Problem 4. Evaluate the following without using a calculator:
(a) $3^{\log _{3}(7)}$
(b) $\log _{11}\left(11^{4}\right)$
(c) $\log _{b}\left(\sqrt{b^{3}}\right)$

Problem 5. Evaluate the following without using a calculator.
(a) $e^{\ln (17)}$
(b) $\ln \left(e^{3}\right)$
(c) $\ln \left(\frac{1}{\sqrt{e}}\right)$

Main Topic \# 2: [Solving Equations with Log]
In the last section we talked about exponential functions. Today we want to talk about how to solve equations like:

$$
3^{x}=7
$$

So we need a way to:

$$
\text { "un-do" raising to the } x
$$

Just like we did in equations before...

Addition and Subtraction: To solve the equation $x+7=8$ we need to "un-do adding 7 " by subtracting 7 from both sides and get:

$$
\begin{array}{r}
x+7=8 \\
x=1
\end{array}
$$

Multiplication and Division: To solve the equation $3 x=9$ we need to "un-do the multiplcation by 3 " by dividing by 3 on both sides of the equation to get :

$$
\begin{aligned}
(3) x & =9 \\
x & =3
\end{aligned}
$$

This is exactly what the inverse is for functions. To be more specific when considering the function $f(x)=3^{x}$ the inverse has the following property:

$$
f^{-1}(f(x))=x
$$

To use this property in the first equation we see:

$$
\begin{aligned}
& 3^{x}=9 \\
& x=\log _{3}(9)=
\end{aligned}
$$

The Take-Away

For $a>0$ we have:

$$
a^{\log _{a}(x)}=x
$$

and

$$
\log _{a}\left(a^{x}\right)=x
$$

Finally, let's look at the graph of the Log, using what we learned about inverses in the previous section:

Sketching Logs

Exponential functions look like:
$0<a<1$
$1<a$

So we see that the Domain of $\log _{a}(x)$ is \qquad
and the Range of $\log _{a}(x)$ is \qquad

Learning Outcome \# 2: [Solving Basic Equations with Log]
Problem 6. Solve for x in the equations below.
(a) $3^{x}=29$
(d) $3^{x}-7=12$
(g) $6 \cdot 3^{-2 x}=3^{4 x}$
(b) $6=2(1.03)^{x}$
(e) $3 e^{5 x}+2=8$
(h) $\left(e^{x}\right)^{4}+3=7$
(c) $e^{-x}=\frac{1}{2}$
(f) $4^{-7 x}-2=10$
(i) $2\left(7^{x}\right)^{2}+3=15$

Main Topic \# 3: [The Laws of Logs]
Recall the Laws of Exponents

The Laws of Exponents

$$
\begin{aligned}
a^{n} \cdot a^{m} & =a^{m+n} \\
\left(a^{n}\right)^{m} & =a^{m \cdot n} \\
\frac{a^{n}}{a^{m}} & =a^{n-m} \\
a^{0} & =1
\end{aligned}
$$

To understand the Laws of Logs we will first investigate what happens to all of the exponential laws when we apply $\log _{a}($ \qquad) to both sides:

$$
\begin{aligned}
& \log _{a}\left(a^{n} \cdot a^{m}\right)=\log _{a}\left(a^{m+n}\right)=m+n=\ldots+ \\
& \log _{a}\left(\left(a^{n}\right)^{m}\right)=\log _{a}\left(a^{m \cdot n}\right)=m \cdot n= \\
& \log _{a}\left(\frac{a^{n}}{a^{m}}\right)=\log _{a}\left(a^{m+n}\right)=n-m= \\
& =\log _{a}\left(a^{0}\right)=\log _{a}(1)
\end{aligned}
$$

The awesome thing is the far right hand side has nothing to do with the base, which gives us our Laws of Logs, or as I like to call it:

Rob's Log Laws

The Laws of Logs

$$
\begin{aligned}
\log _{a}(A \cdot B) & =\log _{a}(A)+\log _{a}(B) \\
\log _{a}\left(A^{n}\right) & =n \cdot \log _{a}(A) \\
\log _{a}\left(\frac{A}{B}\right) & =\log _{a}(A)-\log _{a}(B) \\
\log _{a}(1) & =0
\end{aligned}
$$

Learning Outcome \# 3: [Identifying and Applying the Laws of Logs]
Problem 7. Match each expression of the left with its equivalent expression on the right for $A, B>0$.

$$
\begin{aligned}
& \ln (A B) \\
& \log _{a}\left(\frac{A}{B}\right) \\
& \log _{a}\left(A^{2}\right)-\log _{a}(B) \\
& t \log _{a}\left(A^{3}\right) \\
& \log _{a}(1) \\
& \ln (e) \\
& \ln (\sqrt{A})
\end{aligned}
$$

$$
\begin{aligned}
& \log _{a}\left(A^{3 t}\right) \\
& \ln (A)+\ln (B) \\
& 1 \\
& \frac{\ln (A)}{2} \\
& 2 \log _{a}\left(\frac{A}{\sqrt{B}}\right) \\
& 0 \\
& \log _{a}(A)-\log _{a}(B)
\end{aligned}
$$

Problem 8. Rewrite each of the following as the sum/difference of simple logarithms.
(a) $\ln \left(\frac{3 x^{2}}{y z}\right)$
(b) $\log _{10}\left(\frac{a^{2} b}{(c d)^{3}}\right)$
(c) $\log _{3}\left(\frac{(z-1)^{3}}{z^{3 / 2}}\right)$

Problem 9. Rewrite each of the following as a single logarithm.
(a) $\ln (x)+\ln (3)-2 \ln (y)$
(b) $\log _{10}(a)-2 \log _{10}(b)+3 \log _{10}(c)-4 \log _{10}(d)$
(c) $\frac{1}{2} \log _{c}(x)-\log _{c}(y)-\log _{c}(z-1)-\log _{c}(a)$

Learning Outcome \# 4: [Solving Equations using the Laws of Logs]
Problem 10. Solve the following equations:
(a) $3^{x+1}=9^{2 x}$
(b) $6^{x}=7^{x-1}$
(c) $3^{2 x-1}=5^{x}$

Problem 11. Solve the following equations:
(a) $\log _{10}(x-3)=4$
(b) $\log _{2}(x)+\log _{2}(x+2)=\log _{2}(6 x+1)$
(c) $\log _{3}(x)-\log _{3}(x-1)=2$
(d) $2 \ln (x)=\ln (x+3)+\ln (x-1)$

