The Limits that come up in the ratio test

Main Topic # 1: [‘Basic’ Limits] These are some of the most used limits of sequences used Calc II.

Commonly Occurring Limits
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Basic Properties

If {a,} and {b,} are both convergent sequences then,
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Squeeze for Sequences

If a, <¢, <b, for all n > N for some N and lim a, =
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Absolutely Zero

If lim |a,| =0 then lim a, =0.
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Ratio Test for Series

Suppose we have the series ) a,. Define,
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Instead of recalling all of the ratio test lets only recall the set up!




Problem 1. For each of the following find L defined in the above box!
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