The Limits that come up in the ratio test

Main Topic \# 1: ['Basic' Limits] These are some of the most used limits of sequences used Calc II.

Commonly Occurring Limits

- $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0$
- $\lim _{n \rightarrow \infty}\left(1+\frac{c}{n}\right)=e^{c} \quad($ any $c)$
- $\lim _{n \rightarrow \infty} c^{\frac{1}{n}}=1 \quad(c>0)$
- $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
- $\lim _{n \rightarrow \infty} c^{n}=0 \quad(|c|<1)$
- $\lim _{n \rightarrow \infty} \frac{c^{n}}{n!}=0 \quad($ any $c)$

Basic Properties

If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are both convergent sequences then,

- $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$
- $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$
- $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$
- $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ provided $\lim _{n \rightarrow \infty} b_{n} \neq 0$
- $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)\left(\lim _{n \rightarrow \infty} b_{n}\right)$
- $\lim _{n \rightarrow \infty} a_{n}^{p}=\left[\lim _{n \rightarrow \infty} a_{n}\right]^{p}$ provided $a_{n} \geq 0$

Squeeze for Sequences

If $a_{n} \leq c_{n} \leq b_{n}$ for all $n>N$ for some N and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}=L$ then $\lim _{n \rightarrow \infty} c_{n}=L$.

Absolutely Zero

If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.

Ratio Test for Series

Instead of recalling all of the ratio test lets only recall the set up!
Suppose we have the series $\sum a_{n}$. Define,

$$
L=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|
$$

Problem 1. For each of the following find L defined in the above box!
i. $\sum_{n=0}^{\infty} \frac{n^{3}+n^{2}}{(n+1)!}$
vii. $\sum_{n=3}^{\infty} \frac{6^{-2 n}(n-4)}{4^{3-2 n}\left(2-n^{2}\right)}$
ii. $\sum_{n=1}^{\infty} \frac{n+2}{5^{1-n}(n+1)}$
viii. $\sum_{n=2}^{\infty} \frac{(-1)^{n}(n+1)}{n^{2}+1}$
iii. $\sum_{n=0}^{\infty} \frac{(2 n-1)!}{(3 n)!}$
ix. $\sum_{n=1}^{\infty} \frac{3^{1-2 n}}{n^{2}+1}$
iv. $\sum_{n=0}^{\infty} \frac{(-2)^{4+n}}{3 n^{2}+1}$
x. $\sum_{n=2}^{\infty} \frac{(-2)^{1+3 n}(n+1)}{n^{2} 5^{1+n}}$
v. $\sum_{n=2}^{\infty} \frac{4^{1+\frac{1}{2} n} n^{2}}{3^{2+n}(n+3)}$
xi. $\sum_{n=3}^{\infty} \frac{\mathbf{e}^{4 n}}{(n-2)!}$
vi. $\sum_{n=1}^{\infty} \frac{4}{(-1)^{n+2}\left(n^{2}+n+1\right)}$
xii. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{6 n+7}$

