

Commonly Occurring Limits	
• $\lim_{n \to \infty} \frac{\ln(n)}{n} = 0$	• $\lim_{n \to \infty} \left(1 + \frac{c}{n} \right) = e^c (\text{any } c)$
• $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$ $(c > 0)$	• $\lim_{n \to \infty} \sqrt[n]{n} = 1$
• $\lim_{n \to \infty} c^n = 0$ ($ c < 1$)	• $\lim_{n \to \infty} \frac{c^n}{n!} = 0$ (any c)

Basic Properties

If $\{a_n\}$ and $\{b_n\}$ are both convergent sequences then,

• $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$

•
$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

• $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$ provided $\lim_{n \to \infty} b_n \neq 0$

•
$$\lim_{n \to \infty} ca_n = c \lim_{n \to \infty} a_n$$

•
$$\lim_{n \to \infty} (a_n b_n) = \left(\lim_{n \to \infty} a_n\right) \left(\lim_{n \to \infty} b_n\right)$$

• $\lim_{n \to \infty} a_n^p = \left[\lim_{n \to \infty} a_n\right]^p$ provided $a_n \ge 0$

Squeeze for Sequences

If $a_n \leq c_n \leq b_n$ for all n > N for some N and $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = L$ then $\lim_{n \to \infty} c_n = L$.

Absolutely Zero

If
$$\lim_{n \to \infty} |a_n| = 0$$
 then $\lim_{n \to \infty} a_n = 0$.

Ratio Test for Series

Instead of recalling all of the ratio test lets only recall the set up!

Suppose we have the series $\sum a_n$. Define,

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

Problem 1. For each of the following find L defined in the above box!

i.
$$\sum_{n=0}^{\infty} \frac{n^3 + n^2}{(n+1)!}$$
 vii.
$$\sum_{n=3}^{\infty} \frac{6^{-2n} (n-4)}{4^{3-2n} (2-n^2)}$$

ii.
$$\sum_{n=1}^{\infty} \frac{n+2}{5^{1-n} (n+1)}$$
 viii.
$$\sum_{n=2}^{\infty} \frac{(-1)^n (n+1)}{n^2 + 1}$$

iii.
$$\sum_{n=0}^{\infty} \frac{(2n-1)!}{(3n)!}$$
 ix.
$$\sum_{n=1}^{\infty} \frac{3^{1-2n}}{n^2+1}$$

iv.
$$\sum_{n=0}^{\infty} \frac{(-2)^{4+n}}{3n^2 + 1}$$
 x.
$$\sum_{n=2}^{\infty} \frac{(-2)^{1+3n} (n+1)}{n^2 5^{1+n}}$$

v.
$$\sum_{n=2}^{\infty} \frac{4^{1+\frac{1}{2}n} n^2}{3^{2+n} (n+3)}$$
 xi.
$$\sum_{n=3}^{\infty} \frac{\mathbf{e}^{4n}}{(n-2)!}$$

vi.
$$\sum_{n=1}^{\infty} \frac{4}{(-1)^{n+2} (n^2 + n + 1)}$$
 xii. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{6n+7}$