The Limits that come up in Improper Integrals

Main Topic # 1: [‘Basic’ Limits] These are the first type of limits you probably did in Calc I and/or Pre-Calc

Commonly Occurring Limits
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Problem 1. Determine the following limits. DO NOT simply write undefined/DNE, please indicate whether it
‘diverges to =00’ or ‘oscillates’ etc. That is please indicate the behavior of all the following limits.
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Main Topic # 2: [L’hopitals] This is L’hopitals rule basics

Many times when working limits we want to write indeterminate forms like:
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L’Hopital’s

Basics: Suppose that we have one of the following cases,
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where a can be any real number, infinity or negative infinity. In these cases we have
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L’Hopital’s for 0 - (£00)

Suppose that we have,
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and next try to use L’Hopitals

L’Hopital’s for other indeterminate forms

Suppose that we have,
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Then we can write
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AND SO
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Now notice that
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is now in one of the previous indeterminate forms!




Problem 2. Find the following limits using L’hopitals rule.
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