A Fly's Path (A discovery based activity for parametric equations)

Directions: For the following write two functions, one which returns the x-coordinate and the other returns the y-coordinate for the location of a fly at time t.
Problem 1. A fly starts at $(0,0)$ at time $=0$, and ends at $(3,2)$ at time $=1$. The fly is flying in a straight line.

Problem 2. A fly starts at $(-2,3)$ at time $=0$, and ends at $(1,7)$ at time $=1$. The fly is flying in a straight line.

Problem 3. A fly starts at $(3,2)$ at time $=0$, and ends at $(0,0)$ at time $=1$. The fly is flying in a straight line.

Problem 4. A fly starts at $(-2,5)$ at time $=0$, and ends at $(3,10)$ at time $=1$. The fly is flying on a parabolic path.

Problem 5. A fly starts at $(3,9)$ at time $=0$, and ends at $(-2,4)$ at time $=1$. The fly is flying on a parabolic path.

Problem 6. A fly starts at $(1,5)$ at time $=0$, and ends at $\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right)$ at time $=1$. The fly is flying counter clockwise on a circular path.

Problem 7. A fly starts at $(-2,0)$ at time $=0$, and ends at $(2,0)$ at time $=1$. The fly is flying clockwise on a circular path.

