Series Estimations

Integral Test Consider the series $\sum_{\substack{n=k\\n=k}}^{\infty} a_n$ and a function f(x) so that we have • $a_n \ge 0$ For Every n• $f(n) = a_n$ For Every n• $\{a_n\}$ (or if you have established the last dot f(x)) is decreasing then we know for and $t \ge k$ $s_t + \int_{t+1}^{\infty} f(x) \, dx \le s \le s_t + \int_t^{\infty} f(x) \, dx$

where $s = \sum_{n=k}^{\infty} a_n$ and $s_t = \sum_{n=k}^{t} (-1)^n a_n$.

Alternating Series Test

Consider the series $\sum_{\substack{n=k\\n=k}}^{\infty} (-1)^n a_n$ such that following hold: • $a_n \ge 0$ FOR EVERY n• $\lim_{\substack{n\to\infty\\n\to\infty}} a_n = 0$ • $a_n \ge a_{n+1}$ FOR EVERY nThen $\sum_{\substack{n=k\\n=k}}^{\infty} (-1)^n a_n$ converges! and we can estimate with the following error for $t \ge k$ $|s-s_t| \le a_{t+1}$ where $s = \sum_{\substack{n=k\\n=k}}^{\infty} (-1)^n a_n$ and $s_t = \sum_{\substack{n=k\\n=k}}^t (-1)^n a_n$.

Problem 1. Use the Integral Test and n = 3 to estimate the value of $\sum_{n=1}^{\infty} \frac{n}{(n^2 + 1)^2}$

Problem 2. Use the alternating series test and n = 16 to estimate the value of $\sum_{n=2}^{\infty} \frac{(1)^n n}{n^2 + 1}$

Problem 3. Use the Integral Test and n = 8 to estimate the value of $\sum_{n=2}^{\infty} \frac{1}{n (\ln(n))^2}$

Problem 4. Use the Integral Test and n = 14 to estimate the value of $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^{\frac{5}{2}}}$.

Problem 5. Use the Alternating Series Test and n = 12 to estimate the value of $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$.

Problem 6. Use the Alternating Series Test and n = 18 to estimate the value of $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt{n}}{3n+4}$.