Series Estimations

Integral Test

Consider the series $\sum_{n=k}^{\infty} a_{n}$ and a function $f(x)$ so that we have

- $a_{n} \geq 0$ For Every n
- $f(n)=a_{n}$ For Every n
- $\left\{a_{n}\right\}$ (or if you have established the last dot $f(x)$) is decreasing
then we know for and $t \geq k$

$$
s_{t}+\int_{t+1}^{\infty} f(x) d x \leq s \leq s_{t}+\int_{t}^{\infty} f(x) d x
$$

where $s=\sum_{n=k}^{\infty} a_{n}$ and $s_{t}=\sum_{n=k}^{t}(-1)^{n} a_{n}$.

Alternating Series Test

Consider the series $\sum_{n=k}^{\infty}(-1)^{n} a_{n}$ such that following hold:

- $a_{n} \geq 0$ FOR EVERY n
- $\lim _{n \rightarrow \infty} a_{n}=0$
- ${ }_{n}^{n \rightarrow \infty} a_{n} \geq a_{n+1}$ FOR EVERY n

Then $\sum_{n=k}^{\infty}(-1)^{n} a_{n}$ converges!
and we can estimate with the following error for $t \geq k$

$$
\left|s-s_{t}\right| \leq a_{t+1}
$$

where $s=\sum_{n=k}^{\infty}(-1)^{n} a_{n}$ and $s_{t}=\sum_{n=k}^{t}(-1)^{n} a_{n}$.

Problem 1. Use the Integral Test and $n=3$ to estimate the value of $\sum_{n=1}^{\infty} \frac{n}{\left(n^{2}+1\right)^{2}}$

Problem 2. Use the alternating series test and $n=16$ to estimate the value of $\sum_{n=2}^{\infty} \frac{(1)^{n} n}{n^{2}+1}$

Problem 3. Use the Integral Test and $n=8$ to estimate the value of $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$

Problem 4. Use the Integral Test and $n=14$ to estimate the value of $\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{\frac{5}{2}}}$.

Problem 5. Use the Alternating Series Test and $n=12$ to estimate the value of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+1}$.

Problem 6. Use the Alternating Series Test and $n=18$ to estimate the value of $\sum_{n=1}^{\infty} \frac{(-1)^{n} \sqrt{n}}{3 n+4}$.

