Chain Rule

Differentiation Rules

Let y = f(x) and y = g(x) be functions which are differentiable at x. Let a and b be constants.

Linearity:

$$D_x \left[af(x) + bg(x) \right] = af'(x) + bg'(x)$$

Product Rule:

$$D_x [f(x) \cdot g(x)] = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

Quotient Rule:

In the case
$$g(x) \neq 0$$

$$D_x \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x)\right]^2}$$

Chain Rule:

In the case that f is differentiable at x and g is differentiable at f(x) $D_x \left[g\Big(f(x)\Big)\right] = g'\Big(f(x)\Big)f'(x)$

The Functions

Students at time can become overwhelmed with all the possible functions. To help this lets list them here.

 x^n

 e^x

 $\ln(x)$

Powers

$$\frac{d}{dx}x^n = nx^{n-1}$$

Trig

$$\sin(x) \qquad \qquad \frac{d}{dx}\sin(x) = \cos(x)$$
$$\cos(x) \qquad \qquad \frac{d}{dx}\cos(x) = -\sin(x)$$
$$\vdots \qquad \qquad \vdots \qquad \qquad \vdots$$

Exponential

$$\frac{d}{dx}e^x = e^x$$

Logarithm

$$\frac{d}{dx}\ln(x) = \frac{1}{x}$$

Composition

Now that we have our list of functions in hand lets discuss the key player in the chain rule *COMPOSITION*!

f(g(x))

I will call f(x) the **OUTSIDE FUNCTION** and I will call g(x) the **INSIDE FUNCTION**! Now lets look at our different functions in this different roles!

x^n : **POWERS** on the **OUTSIDE**

$$\left(\ldots \right)^n$$

Examples:

$$\left(x^2 + 2x + 7\right)^3$$
$$\left(\sin(x)\right)^4 = \sin^4(x)$$
$$\left(e^x\right)^2 = e^{2x}$$

Trig: Trig function on the OUTSIDE

$$\sin\left(\ldots\right)$$

Examples:

$$\sin\left(x^2 + 3x + 7\right)$$
$$\tan\left(e^x\right)$$
$$\sec\left(e^x + 7x + \ln(x)\right)$$

- e^x : Exponential on the OUTSIDE
- $e^{(\dots)}$

Examples:

 $e^{3x^2+7x+10}$ $e^{\sin(x)}$ $e^{5x+\tan(x)}$

 $\ln(x)$: Logs on the OUTSIDE

 $\ln \left(\ldots \right)$

Examples:

$$\ln\left(x^2 + 8x - 2\right)$$
$$\ln\left(\sin(x) + 4\right)$$
$$\ln\left(e^x - 7x + 4\right)$$

Problem 1. In this next question JUST <u>IDENTIFY</u> which function is the INSIDE function and which function is the OUTSIDE function.

i.
$$h(x) = \sqrt{x^2 + 2x + 7}$$
 iii. $h(x) = \tan\left(\sqrt[3]{3x^2 + 4} + 7\right)$ v. $h(w) = e^{w^4 - 3w^2 + 9}$

ii.
$$h(x) = (2t^3 + \cos(t))^5$$
 iv. $h(x) = \ln(x^{-4} + x^7 + 2)$ vi. $h(t) = \sec(\tan(x) + x^{-7})$

Problem 2. Differentiate the given functions (using the chain rule!)

i.
$$f(x) = \cos(x^2 e^x)$$
 iv. $y = \sqrt[3]{1 - 8z}$

ii.
$$f(x) = (6x^2 + 7x)^4$$
 v. $f(t) = 5 + e^{4t+t^7}$

iii.
$$g(t) = (4t^2 - 3t + 2)^{-2}$$
 vi. $g(x) = e^{1 - \cos(x)}$

vii. $H(z) = 2^{1-6z}$ xii. $S(w) = \sqrt{7w} + e^{-w}$

viii.
$$u(t) = \cos(3t - 1)$$
 xiii. $g(z) = 3z^7 - \sin(z^2 + 6)$

ix.
$$g(y) = \ln(1 - 5y^2 + y^3)$$
 xiv. $f(x) = \ln(\sin(x)) - (x^4 - 3x)^{10}$

x.
$$V(x) = \ln(\sin(x) - \cos(x))$$
 xv. $h(t) = t^6 \sqrt{5t^2 - t}$

xi.
$$h(z) = \sin(z^6) + \sin^6(z)$$
 xvi. $q(t) = t^2 \ln(t^5)$