Pret Talk: (The Gist)
Objective: Discuss Summer Research Done w/ or.Ballerd \& Dr. R:Faddin This Research involved Studying the homology of Flops
So what's a flop The "categorical" picture (you may real them for Ballard" presentation)
tor is a flop
 word "equmand" "Common Zlawep!

the noplowim
thar defines
sundison or
equation cooks fax a popnomials
like gat $\quad \longrightarrow 3$-fold
The Aliyah flop: (2-dimensional) flap

Conjecture: (Sandal 3 ark) any two spaces related by a flop are Defined equivalent (ie. Htmodgicaly equivalent)

F Joke about now tuat'f a loaded word "Deriv eek" 4 Ives heard "quick" expleations like: "jus) formally invert quasi-isomospoperas"
blat

$$
\left.X_{\|}+\cdots \cdots \cdots\right\rangle x \|_{-}^{f} \text { Q.I.T Quotents... }
$$

bat
Minimal
The larger
concept here dealing
w) the words G.I.T and Derived is ACTION

$$
X=A_{k}^{2} x_{k} A_{k}^{2}
$$

(where I lose 19 yeas)
Now we take the quotient

$$
x \|_{t}:=\mathbb{e}^{k} x^{x_{t}^{s s}}
$$

$$
\begin{aligned}
x \|_{-} & =C^{x^{x^{s 1}}} \\
& \cong \operatorname{Tot}\left(O(-1)_{p(x)}^{O 2}\right)
\end{aligned}
$$

$$
\frac{j^{-2}}{c^{2}} \cos ^{2 x} e^{2 x}
$$

$$
y^{\infty}=c^{c}+x^{2}
$$

again sorry alfcbaic!
finally $\quad X /)_{0}=\operatorname{spec}(k(a, b i c, d] /(a d-b c))$
"Singular quadric"
For Muse desiring something more geometric, a picture:

Moral of the story: Quotients get messy!
So what do we do? Try $\# 1$ notice $x \%_{0}$ is singular to avoid messyness like that we consider quotient Stacks... for orpine that has done anything with projective space knows it's easier to consider the charts (effing pathless) cor we do that? Yes since the spaces are less in portent to us, we care more about the stuff it "acts" on.."

Big Ideas:
shat of functions \longleftrightarrow Geometry of the space
11

Big Ideas (cont.): but the universe is "Squishy" and Month is to rigid So...
we will say two spaces are "the same" if they act on the same stofle up to homotopy (ail we goop be mon ology)

But every 20 yeas thu re is a news homology... same times they are the same so we wont to consider a place where all the present and future ones covid live ... This is the Derived Category

Slightly mare formal:

Notation: let R be a ring
only consider chains...
$D(\operatorname{Mod}(R)), D^{b^{b}}(\operatorname{Mod}(R))$
More A.G. y :

$$
D^{6}(Q \operatorname{con}(x))
$$

The Big Result

$$
G \times X \xrightarrow{1 \times f} G \times Y \xrightarrow{\sigma_{X}} \mid \xrightarrow{\sigma_{Y}}\left(\operatorname{Qcon}\left(X_{ \pm}^{s s}\right)\right) \xlongequal{\simeq} D\left(\operatorname{Qcoh}\left(X^{ \pm}\right)\right)
$$

More general:

$$
G_{a}(Q \operatorname{coh}(x)) \cong D(Q \operatorname{cin}([x / G]))
$$ group

Integral Transforms
with this new concept of sameness we will reed maps

How do we stretch it out?
The kernel
let $k \in D(Q \cos (x, y))$
then define for ${ }^{\prime} \in D(\operatorname{Qan}(x))$

$$
\Phi_{k}(\gamma):=\pi_{y *}\left(k \otimes \pi_{x}^{*}(y)\right) \text { (tue fonctoo need to be "doings") }
$$

that "group action")
Now say GOX and H OY Then GXH $O X X Y$

$$
\begin{aligned}
& \text { real } \\
& \text { The BDF kerne): } \\
& \left.x=V B V^{V}=\mathbb{A}_{\mathbb{C}}^{2} \times \mathbb{A}_{C}^{2} \cong \sec \left(\sigma C_{x}, x_{2}, y_{1}, s_{2}\right)\right) \\
& \mathbb{C}^{2} \times\left(\mathbb{C}^{2}\right)^{x} \text { the } d^{x} \text {-action is equinelat } \\
& \text { to } \operatorname{deg}\left(x_{i}\right)=+1 \quad \operatorname{deg}\left(y_{i}\right)=-1 \\
& Q:=\frac{\mathbb{C}\left[x_{1}, x_{2}, x_{i}^{\prime}, x_{2}, y_{1}, y_{2}, y_{2}^{\prime}, y_{2}, u\right]}{\left\langle\begin{array}{ll}
x_{1}-x_{1} u \\
x_{2}^{\prime}-x_{2} u & y_{1}-u y_{1}^{\prime} \\
k_{2}-u y_{2}^{\prime}
\end{array}\right\rangle} \cong \mathbb{C}\left[x_{1}, x_{2}, y_{1}, y_{2}^{\prime}, u\right] \stackrel{\circ}{=} \mathbb{C}\left[x_{1}, x_{2}, y u^{-1}, y_{2} u^{-1}, u\right] \\
& \begin{array}{lll}
\mathbb{C}\left[x_{1}, x_{2}, y_{1}, y_{2}\right] \text {-bimasile via the maps } & \begin{array}{ll}
x_{i} & \stackrel{p}{\longmapsto} x_{i} \\
y_{i} & \longmapsto y_{i}^{\prime} u
\end{array} \quad x_{i} \stackrel{s}{\longmapsto} u x_{i} \\
y_{i}^{\prime} \longmapsto y_{i}^{\prime}
\end{array}
\end{aligned}
$$

and hence \tilde{Q} is an $\partial_{x x x}$-sheaf of modules then we embed into the dived category to let $i: x_{+}^{s s} u x$ and $j: x^{s s} \hookrightarrow x$ then getour Kenel!
$\Phi_{(i x j)^{n} \tilde{Q}}: D^{b}\left(x_{t}^{s 5}\right) \rightarrow D^{b}\left(x^{n}\right)$ is an equivalence! Thus by "Big Trick" get ar result l

Cosl Eeometric properties of
The BDF Kernel
$A G_{m}$ is the sheme for $\mathbb{C}^{x} x$
w/ previess maps $p\{s$ indnce maps of shemes $\hat{p}, \& \hat{S}$

This is known as a portial compactifiction of the action of $\mathbb{G m o n} x$
Boundary:

$$
\partial_{Q}:=\operatorname{Spec}(Q)-\tau\left(\left(4_{m} \times x\right)\right.
$$

un-stable loci:

$$
X_{\hat{s}}^{u s}:=\hat{s}\left(\partial_{Q}\right) \quad X_{\hat{p}}^{u s}:=\hat{p}\left(\partial_{Q}\right)
$$

Semi-stable bai:

$$
X_{\hat{s}}^{5 s}:=X-\hat{S}\left(\partial_{a}\right) \quad x_{\hat{p}}^{s /}:=X-\hat{p}\left(\partial_{a}\right)
$$

Awesome thiny:

$$
X_{\hat{s}}^{s s}=X^{s s}+\text { and } \quad x_{\hat{p}}^{s s}=x^{s s}-
$$

Talk: (out line)

- Grassmannian Flop
- rank 1 gives Atigah
- windows (the idea)
- The BDF - kernel
- (portal) Compactification
- loci $\left\{\begin{array}{l}\text { Bondśs } \\ \text { unstable } \\ \text { semi -stable }\end{array}\right.$
- localization
- $\operatorname{Im} \Phi_{\mathbb{Q}^{+}} \check{ }=\operatorname{Im} \Phi_{\tilde{Q}^{-}}$
- karerunol window
- Gascon
- $\Phi_{Q^{+}}(v)=(V)_{7,0}$
- $\Phi_{Q^{+}}\left(F_{z}\right)=\eta_{z}$
- Future directions... ${ }^{i a}$

$$
\langle\underbrace{}_{\rightarrow-\cdots} \quad<\operatorname{Hm}_{\rightarrow}\left(N_{p} \mid N_{m}\right)=0
$$

only pains found

The Talk: Joint work w/ Dr. Ballard \&Dr. Mc Fad in $]$
The Gerassmannian Flop:
wet V and W be complex V.S. sit $* \operatorname{dim} v=n \leq \operatorname{dim} \omega=m *$ * and denote:

$$
x=\operatorname{Hom}(v, \omega) 巴 \operatorname{Hom}(\omega, v)=\operatorname{spec}(\underbrace{k\left[\begin{array}{l}
A \\
x_{i}, \tilde{y}_{i}, j
\end{array}\right]}_{R})
$$

ad

$$
\begin{aligned}
& X^{S S}=\{Q \mid \operatorname{rank} \theta \leq n-1\} \in \operatorname{Hom}(\omega, v) \quad R \text { not } \\
& x_{+}^{s s}=\operatorname{Hom}(v, \omega) \oplus\{\psi \mid \operatorname{sank} \psi \leq n-1\}
\end{aligned}
$$

The Grassmannian Flop is the following

$$
\text { [X+GL(G)]} \xrightarrow{[X / G((0)]} \text { L/GL(0)]} \text { of open }
$$

* note for $\operatorname{din} V=1$ this recovers the Aliyah flop if
 using 'windows'
The Idea of window (s):

we almost have proven that a gencalized BDF-kennel also realizes this...
Just as in the pretalk (and it's essential smaze is a window!)

The Big Result

So we only reed to consider the Gl-equiralaf derived categories

$$
b_{G L}^{b}\left(x_{+}^{s s}\right) \text { and } D_{G C}^{b}\left(x_{-}^{s s}\right)
$$

and pride a kernel for this equivalence
The BDF kernel

$$
G L \times X \underset{\rightarrow \pi}{\sigma} X
$$

$$
R \stackrel{s^{*}}{\stackrel{p^{*}}{\longrightarrow}} Q
$$

$A \stackrel{*}{\leftrightarrows} \tilde{A} \quad A \stackrel{P^{*}}{\longrightarrow} \tilde{A C}$
$B \longmapsto C B \quad B \longmapsto B$ again Q hus a R bi-modale Structure and hance \tilde{Q} is an $O_{x x x}$-module
we con consider the functor

$$
\Phi \tilde{Q}^{2}: D_{a l}^{b}(Q \cos (x)) \rightarrow D_{a L}^{b}(Q \cos (x))
$$

another useful functor:

$$
\begin{gathered}
I d: D_{G C}^{b}(Q \operatorname{con}(x)) \rightarrow D_{G C}^{b}(Q \operatorname{Gon}(x)) \\
I d=\Phi_{\Delta} \text { where } \Delta=G l \times X
\end{gathered}
$$

Further mare w/ tens bi-modille structure we have the following isomorphism

$$
\begin{array}{ll}
\frac{\mathbb{C}\left[A_{1}, A_{2}, B_{1}, B_{2}, C\right]}{\left(A_{1}-A_{2} C, B_{2}-C B_{1}\right)} \cong Q & A_{1} B_{1} \leftarrow p^{*} \text { stative } \\
& A_{21} B_{2} \leftarrow s^{*} \text { structure }
\end{array}
$$

similar to the pre-talk this is also
a partial compactification

and Recall $\partial_{Q}=\operatorname{spec}(Q)-\tau\left(G(x x) \quad X_{s}^{u s}=s\left(\partial_{Q}\right) \quad X_{P}^{u s}=P(\partial Q)\right.$

$$
x_{s}^{s s}=x-s\left(\partial_{a}\right)=x_{t}^{s s} \quad x_{p}^{s s}=x-p\left(\partial_{a}\right)=x^{s s}
$$

So not only will this pride a kennel for this equivaleve but it also encodes all of the information of the bi "internally"

The "first half" (of the equivalence)
denote $i: X_{+}^{s s} \rightarrow X$ the inclusion of the open set and $\tilde{Q}_{+}:=(i \times 1)^{n} \tilde{Q}$

$$
\begin{gathered}
\pi_{1}^{s s} x_{1}^{s x} \times x \\
x_{L}^{\prime s} \\
J_{2} \\
\pi_{x}
\end{gathered}
$$

Then $\Phi_{\widetilde{Q}^{+}}: D_{G L}^{b}\left(Q \operatorname{con}\left(x_{r}^{55}\right)\right) \rightarrow D_{G L}^{b}\left(Q \operatorname{con}\left(x^{5 \prime}\right)\right)$

Quick why:
This functor 's faithful
it has a left inverse $i^{t}: D_{G L}^{b}(Q \operatorname{con}(x)) \rightarrow D_{G C}^{b}\left(\operatorname{ach}\left(x_{t}^{s}\right)\right)$, to see this note that $X_{t}^{s s}$ has on affine chart consisting of the localization of the maximal minors of B, denote one of those by t_{I} then $w \mid I \subseteq\{1, \ldots m\}$, $|I|=n$ indexing the now and note $R_{t_{I}}\left(\mathbb{C}_{S} Q \cong K[G L] \otimes R\right.$ as if you smut a minor of " B " from above you invert the deteminue of C, and hence as $K[G L] O R$ is the kernel to the identity and $i^{*} \circ \Phi_{\tilde{Q}^{+}}$

Bousfreld localtzertions

Definition 3.3.1. Let \mathcal{T} be a triangulated category. A Bousfield localization is an exact endofunctor $L: \mathcal{T} \rightarrow \mathcal{T}$ equipped with a natural transformation

$$
\delta: \operatorname{Id}_{\mathcal{T}} \rightarrow L
$$

such that:
a) $L \delta=\delta L$ and
b) $L \delta: L \rightarrow L^{2}$ is invertible.

If instead we have an endofunctor $C: \mathcal{T} \rightarrow \mathcal{T}$ equipped with a natural transformation $\epsilon: C \rightarrow 1$ such that
a) $C \epsilon=\epsilon C$ and
b) $C \epsilon: C^{2} \rightarrow C$ is invertible,
then one calls C a Bousfield colocalization.

Definition 3.3.3. Suppose we have maps of endofunctors

$$
C \xrightarrow{\epsilon} \operatorname{Id}_{\mathcal{T}} \xrightarrow{\delta} L
$$

of a triangulated category \mathcal{T} such that

$$
C x \xrightarrow{\epsilon_{x}} x \xrightarrow{\delta_{x}} L x
$$

is an exact triangle for any object x. Then $C \rightarrow \operatorname{Id}_{\mathcal{T}} \rightarrow L$ is called a a Bousfield triangle for \mathcal{T} if any of the following equivalent conditions are satisfied:
(i) L is Bousfield localization and $C\left(\epsilon_{x}\right)=\epsilon_{C x}$,
(ii) C is a Bousfield colocalization and $L\left(\delta_{x}\right)=\delta_{L x}$,
(iii) L is Bousfield localization and C is a Bousfield colocalization.

Lemma 3.3.4. Let $C \rightarrow \operatorname{Id}_{\mathcal{T}} \rightarrow L$ be a Bousfield triangle for a triangulated category \mathcal{T}. Then there is a weak semi-orthogonal decomposition

$$
\begin{equation*}
\mathcal{T}=\langle\operatorname{Im} \underset{\epsilon \underset{K}{\operatorname{IIm}}}{ } \xrightarrow{\rightarrow}\rangle \tag{3.11}
\end{equation*}
$$

Here Tm denotes the essential image.

$$
\begin{aligned}
& \text { The follurinstion anat trionse } \\
& Q_{X} \xrightarrow{\eta^{\sharp}} \Delta_{X} \rightarrow \text { cone }_{\eta^{\sharp}} \rightarrow Q_{X}[1] \\
& \text { Thus by clanks of kernels the following is a Bousfield Triangle } \\
& \Phi_{\widetilde{Q}_{X}} \xrightarrow{\hat{\eta}} 1 \rightarrow \Phi_{\text {cone }} \eta
\end{aligned}
$$

Lemma 3.3.5. Let $C_{1} \xrightarrow{\epsilon_{1}} 1 \xrightarrow{\delta_{1}} L_{1}$ and $C_{2} \xrightarrow{\epsilon_{2}} 1 \xrightarrow{\delta_{2}} L_{2}$ be Bousfield triangles for a triangulated category \mathcal{T} such that $L_{1} C_{2} \xrightarrow{L_{1}\left(\epsilon_{2}\right)} L_{1}$ is an isomorphism. Then there is a weak semi-orthogonal decomposition

$$
\mathcal{T}=\left\langle\operatorname{Im} C_{2} \circ L_{1}, \operatorname{Im} C_{2} \circ C_{1}, \operatorname{Im} L_{2}\right\rangle .
$$

This induces a full uther functor

$$
F: \mathcal{T} / \operatorname{Im} C_{1} \rightarrow \mathcal{T} \text {. flour form of os ult of }
$$

We now see that from Lemma 3.25 it follows, since the map $Q(\eta)$ is just ρ_{X}, which is an isomorphism by the previous Lemma. With this proof and by denoting $J_{+}:=j_{*} \circ j^{*}$ where $j: X_{s}^{\text {ss }} \rightarrow X$, and Γ_{+}as the local cohomology, we are now ready to prove that $\Phi_{\widetilde{Q}^{+}}$is full.
Proposition 3.28. Let X be an object of $\mathrm{HP}_{\mathfrak{k}}^{\mathrm{GL}(V)}$. There is a semi-orthogonal decomposition

$$
\mathrm{D}\left(\mathrm{Q} \operatorname{coh}^{\mathrm{GL}(V)} X\right)=\left\langle\operatorname{Im} \Phi_{\text {cone } \eta}, \operatorname{Im} \Phi_{Q} \circ \Gamma_{+}, \operatorname{Im} \Phi_{\widetilde{Q}^{+}}\right\rangle
$$

where Im denotes the essential image. Furthermore, $\Phi_{\tilde{Q}^{+}}$is fully-faithful.
hare since these are calubi-lan
$\Phi_{\tilde{Q}^{+}}$is an equivalence!
Smiter for $\bar{\Phi}_{\tilde{Q}_{-}}$
what we are still finishing up:
$D^{b}(x)$
probing these image equal each otur!
$\nabla^{b}\left(x^{s s}\right) \frac{\infty}{\Phi_{a} x}$

check The time 7 if too little Jump to future directions!
to show $\operatorname{In} \Phi_{\gamma+} \subseteq\langle T E\rangle$
we show that
$F_{0} \xrightarrow{\text { dis }} \tilde{Q}+$ (using the Lascaux Desolation)

$$
x^{5} \times x
$$

$$
\begin{gathered}
F_{i}=\bigoplus p^{+} E \otimes_{\mathbb{C}} q^{*} E^{\prime} \longrightarrow \text { denote as } E_{E^{*}} \\
\text { where } E^{\prime}
\end{gathered}
$$

$$
\text { as } \Phi_{E \boxplus E^{\prime}}(\gamma)=E \otimes \underset{\substack{\text { avs. }}}{\sim} \cong \oplus E
$$

5.1. The Lascoux Construction. Let $Y=\operatorname{Hom}(W, V \oplus V)$. For $s \in \mathbb{N}$ and partitions α and β, we set

$$
\Pi(s):=\left\{(\alpha, \beta) \mid \alpha \subset(m-r-s)^{s}, \beta \subset(s)^{(2 n-r-s)}\right\}
$$

For $(\alpha, \beta) \in \Pi(s)$, let

$$
\begin{aligned}
& P_{1}(\alpha, \beta):=\left(r+s+\alpha_{1}, \ldots, r+s+\alpha_{s}, \beta_{1}, \ldots, \beta_{2 n-r-s}\right) \\
& P_{2}(\alpha, \beta):=\left(r+s+\beta_{1}^{\prime}, \ldots, r+s+\beta_{s}^{\prime}, \alpha_{1}^{\prime}, \ldots, \alpha_{m-r-s}^{\prime}\right)
\end{aligned}
$$

where α^{\prime} and β^{\prime} are the conjugate partitions. Furthermore, let

$$
F_{i}:=\bigoplus_{s \geq 0} \bigoplus_{\substack{(\alpha, \beta) \in \Pi(s) \\ i=s^{2}+|\alpha|+|\beta|}} L_{P_{1}(\alpha, \beta)} W \otimes_{\mathbb{k}} L_{P_{2}(\alpha, \beta)}\left(V^{*} \oplus V^{*}\right) \otimes_{\mathbb{k}} \mathbb{k}[Y]
$$

Consider the following subvariety of Y :

$$
Y_{L}:=\{\varphi \in \operatorname{Hom}(W, V \oplus V) \mid \operatorname{rank}(\varphi) \leq n\}
$$

Then F_{\bullet} is a resolution of $\mathbb{k}\left[Y_{L}\right]$ by [Wey03, Proposition 6.1.4], which is called the Lascoux resolution. Under the correct localization, the Lascoux resolution resolves Q_{X}. Note that
using the lascoux we can write \tilde{Q}^{+}as a resolution of cements of $\forall E$ and were $\Phi_{\tilde{Q}^{+}}(E) \subset\langle k\rangle$

* probably doit need to write all this Junk!

To show $\left\langle q^{*}\right\rangle \subseteq \operatorname{Im} \Phi_{\tilde{Q}^{+}}$
want to show $\Phi_{\tilde{Q}}\left(i^{+} E\right) \stackrel{\text { qi s }}{\cong} E$ for $E \subset\langle\bar{E}\rangle$
To do this we are using the fact
for flat V

$$
\Phi_{\widetilde{Q}}(V)=V_{70} \text { i.e. the "polynomial rep pout" }
$$

and as $Z^{2} F$ is only made of polynomial reps

$$
\Phi_{\tilde{Q}}(E) \cong E \text { so just need no higher Lhandogy }
$$

Future directions (generalization to the singular (axe)

HORI-MOLOGICAL PROJECTIVE DUALITY

JøRGEN VOLD RENNEMO AND ED SEGAL

$$
(2017)
$$

Let V be a vector space of odd dimension v. For any even number $0 \leq 2 q<v$, we have a Pfaffian variety

$$
\operatorname{Pf}_{q} \subset \mathbb{P}\left(\wedge^{2} V^{\vee}\right)
$$

consisting of all 2-forms on V whose rank is at most $2 q$. This variety is not a complete intersection, and is usually highly singular - the singularities occur where the rank drops below $2 q$. We only get smooth varieties in the cases $q=1$, which gives the $\operatorname{Grassmannian} \operatorname{Gr}(V, 2)$, and $q=\frac{1}{2}(v-1)$, which gives the whole of $\mathbb{P}\left(\wedge^{2} V^{\vee}\right)$.

The projective dual of Pf_{s} is another Pfaffian variety; it's the locus

$$
\operatorname{Pf}_{s} \subset \mathbb{P}\left(\wedge^{2} V\right)
$$

consisting of bivectors of rank at most $2 s$, where $2 s=v-1-2 q$.
These ore derive bo equivalent stops a for being a G-luceczation
but this time highly singular so to use the BLT we will need to residue our Q (Simpliialls) for any hope that it works Pond en piece in this resolute will be a co-locahratin

