Warm-up Problem A. Does $(3+5)^{2}$ simplify to $8 \cdot 8$ or $9+25$?

Problem 1. Distribute each product. Then combine like terms.
(a) $2 m\left(3 m^{3}+7 m^{2}+3\right)$

$$
6 m^{4}+7 m^{3}+6 m
$$

$$
\begin{aligned}
& \text { (b) }-7 z^{3}\left(5 z^{3}-4 z^{2}+2\right) \\
& -35 z^{9}+28 z^{5}-14 z^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (c) }(4 r-2)(6 r+1) \\
& (4 r-2) 6 r+(4 r-2) \\
& 24 r^{2}-12 r+4 r-2 \\
& 24 r^{2}-8 r-2
\end{aligned}
$$

$$
\text { (d) }(3 x-2 p)(2 x-p)
$$

$$
\begin{aligned}
& (3 x-2 p) 2 x-p(3 x-2 p) \\
& =6 x^{2}-4 x p-3 x p+2 p^{2} \\
& 6 x^{2}-7 x p+2 p^{2}
\end{aligned}
$$

(e) $(2 k+5)(2 k-5)$

$$
4 x^{2}-25
$$

(f) $(8 x+5 p)^{2}$

$$
16 x^{2}+25 p^{2}+80 x p
$$

(g) $(5 x-3)^{2}$

$$
25 x^{2}+9-30 x
$$

(h) $a^{2}(3-4 a)(1-2 a)$

$$
\begin{aligned}
& a^{2}(3-4 a)-2 a^{3}(3-4 a) \\
& 3 a^{2}-4 a^{3}-6 a^{3}+8 a^{4} \\
& 8 a^{4}-10 a^{3}+3 a^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (i) } t^{4}\left(8 t^{2}-3\right)^{2} \\
& t^{4}\left(64 t^{4}+9-48 t^{2}\right) \\
& 64 t^{8}+9 t^{4}-48 t^{6}
\end{aligned}
$$

(j) $(3 a-2)\left(a^{2}-a+1\right)$

$$
\begin{aligned}
& (3 a-2) a^{2}-(3 a-2) a+(3 a-2) \\
& 3 a^{3}-2 a^{2}-3 a^{2}+2 a+3 a-2 \\
& 3 a^{3}-5 a^{2}+5 a-2
\end{aligned}
$$

(k) $\left(4 x-\frac{2}{3}\right)\left(4 x+\frac{2}{3}\right)$

$$
16 x^{2}-\frac{4}{9}
$$

Problem 2. A square mirror has sides measuring 2 feet less than the sides of a square painting. If the difference between their areas is 32 square feet, find the lengths of the sides of the mirror and the painting. Hint: Draw a picture.

$$
x^{2}-(x-2)^{2}=32
$$

$$
\Rightarrow x^{2}-\left[x^{2}+4-4 x\right]=32
$$

$\Rightarrow 4 x-4=32 \Rightarrow 4 x=36$
Problem 3. Why is it true that $\frac{x^{2}-3 x-9}{x-5}=x+2+\frac{1}{x-5}$?

$$
\Rightarrow x=18
$$

sunagbe re-wid to

$$
\begin{aligned}
& \text { give a neap } \\
& \text { why }
\end{aligned} \frac{(x+2)(x-5)+1}{x-5}=\frac{x^{2}+2 x-5 x-10+1}{x-5}=\frac{x^{2}-3 x-9}{x-5}
$$

Problem 4. Use polynomial long division to find the following.
(a) $\left(x^{2}-8\right) \div(x-2)=x+2-\frac{4}{x-2}$
(c) $\left(x^{3}+5\right) \div(x-1)=x^{2}+x+1+\frac{6}{x-1}$
$x - 2 \longdiv { x ^ { 2 } - 8 }$ $\frac{-\left(x^{2}-2 x\right)}{2 x-8}$
$x - 1 \longdiv { x ^ { 2 } + x + 1 }$

$$
\frac{-\left(x^{3}-x^{2}\right)}{x^{2}+5}
$$

$$
\frac{-(2 x-4)}{-4}
$$

$$
\frac{-\left(x^{2}-x\right)}{x+5(x-) / 6}
$$

(d) $\left(x^{3}+5\right) \div\left(x^{2}-x+1\right)=x+1+\frac{4}{x^{2}-x+1}$

$$
\begin{gathered}
x^{2}-x+1 \frac{x+1}{\frac{x^{3}+5}{}} \\
\frac{-\left(x^{3}-x^{2}+x\right)}{x^{2}-x+5} \\
\frac{-\left(x^{2}-x+1\right)}{4}
\end{gathered}
$$

Additional Problems

EP 1. Distribute the following products. Then combine like terms.
(a) $(4 m+3)(m+7)$

$$
\begin{aligned}
& 4 m^{2}+28 m+3 m+21 \\
& 4 m^{2}+31 m+21
\end{aligned}
$$

(b) $(2 m+3 n)(-3 m+4 n)$

$$
\begin{aligned}
& -6 m^{2}+8 m n-9 m n+12 n^{2} \\
& =6 m^{2}-m n
\end{aligned}
$$

(c) $(8 s+1)\left(3 s^{2}+s-5\right)$

$$
\begin{aligned}
& 24 s^{3}+8 s^{2}-40 s+3 s^{2}+s-5 \\
& 24 s^{3}+11 s^{2}-39 s-5
\end{aligned}
$$

EP 2. The cost in dollars to produce b baseball caps is $C(b)=4.3 b+7.5$. The revenue in dollars from sales of b caps is $R(b)=25 b$.
(a) Write and simplify a function $P(b)$ that gives profit
(b) Find the profit fif 12 caps are produced and sold.

