In this assignment you are given a function $y=f(z)$, where $f:(0, \infty) \rightarrow \mathbb{R}$, and you are asked to find the limit of $y=f(z)$ as $z \rightarrow \infty$, i.e.,

$$
\lim _{z \rightarrow \infty} f(z) \quad \text { which can also be written as } \quad \lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} f(z)
$$

The limits in this assignment are used often in Calc. II and can be done using just Calc. I knowledge. Recall: the handout Indetermine Forms (L'Hôpital's Rule), which is a summary/review of L'H rule, can be found on the course homepage under Handouts (see Preparation).

Instructions.

First compute the limits by-hand, showing all your work below the box and then putting your answer in the box. Next use Maple to check your answers. Hand in only your by-hand work.

1. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} \frac{\ln z}{z}=\square \quad$ Hint: L'Hôpital's Rule.
2. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} z^{1 / z}=\square$

Hint: $\lim _{z \rightarrow \infty} z^{1 / z}$ has the indetermine form ∞^{0} so consider $\ln \left(z^{1 / z}\right) \stackrel{\text { i.e. }}{=}\left(\frac{1}{z}\right) \ln z \stackrel{\text { i.e. }}{=} \frac{\ln z}{z}$, and then apply L'H.
3. Let $c>0$ be a positive constant. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{1 / z}=\square$

Hint: $\ln \left(c^{1 / z}\right)=\left(\frac{1}{z}\right) \ln c=\frac{\ln c}{z}$ and since c is a constant, $\ln c$ is also a constant.
4. Let c be a constant. Think of c as a fixed number, for example $\frac{1}{17}$.

4a. If $0<c<1$ then $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{z}=\square$
Hint: $\ln \left(c^{z}\right)=z \ln c$ and since $0<c<1$ is a constant, $\ln c$ is also a constant and $\ln c<0$.

4b. If $c=1$ then $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{z}=\square$ Hint: For each $z \in \mathbb{R}$ we have $c^{z}=1^{z}=1$.

4c. If $c>1$ then $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}} c^{z}=$
Hint: $\ln \left(c^{z}\right)=z \ln c$ and since $c>1$ is a constant, $\ln c$ is also a constant and $\ln c>0$.
5. Let c be a constant. $\lim _{\substack{z \rightarrow \infty \\ z \in \mathbb{R}}}\left(1+\frac{c}{z}\right)^{z}=\square$

Hint: $\lim _{z \rightarrow \infty}\left(1+\frac{c}{z}\right)^{z}$ has the indetermine form 1^{∞} so consider $\ln \left(\left(1+\frac{c}{z}\right)^{z}\right)$ and rewrite
$\ln \left(\left(1+\frac{c}{z}\right)^{z}\right)=z \ln \left(1+\frac{c}{z}\right)=\frac{\ln \left(1+\frac{c}{z}\right)}{\frac{1}{z}} \stackrel{\text { also }}{=} \frac{\ln \left(\frac{z+c}{z}\right)}{\frac{1}{z}}$. Now apply L'H. If needed, use\&connect another sheet of paper.

