Chapter 4

Sections 4.2-4.4

Main Topic \# 1: [Log is "like" square root]
The main concept for Logs is the concept of the opposite in the sense of the inverse of a function. Recall how one calculates the positive branch of the square root:

$$
\sqrt{4}=2
$$

That is because

$$
(2)^{2}=4
$$

In slight more generality:

$$
\begin{aligned}
& \sqrt{b}=c \\
& c^{2}=b
\end{aligned}
$$

It is the same idea for the Log and an exponential. First the technical definition:

The Log

For $a>0$ we call the inverse of the function $f(x)=a^{x} \log$ base a and write it as

$$
\log _{a}(x)=f^{-1}(x)
$$

Now the definition which mimics the idea of square root above.

$$
\begin{aligned}
& \text { The Opposite of an Exponential } \\
& \text { For } a>0 \\
& \text { means } \\
& \qquad \log _{a}(b)=c \\
& \qquad a^{c}=b \\
& \text { or } \\
& \qquad \log _{a}(b) \\
& \\
& \\
& \text { is the power of } a \text { that is } b
\end{aligned}
$$

That is the Log is the function that says "Gimme that exponent"
Finally, there is a special Log that we call The Natural Log:

$$
\log _{e}(x)=\underbrace{\ln (x)}\}
$$

Learning Outcome \# 1: [Using the meaning of Log to calculate]
Problem 1. Complete the following statements.
(a) If $y=\log _{10}(100)$, then $-10^{y}=100$.
(b) $\log _{10}(5.5)$ is the power of 10 that gives 5.5 .
(c) $\log _{2}(\underline{500})$ is the power of 2 that gives 500 .
(d) If $4^{m}=n$ then $\log _{4}(n)=\underline{m}$.
(e) $\log _{e}(556)$ is the power of \underline{e} that gives 556 .

Problem 2. Rewrite the following using exponents instead of logs.
(a) $\log _{e}(5) \approx 1.609$
(b) $\log _{2}(1)=0$
$e^{1.609}=5$
$2^{0}=1$
(c) $\log _{100}(A)=B$
$100^{B}=A$

Problem 3. Rewrite the following using logs instead of exponents.
(a) $e^{15} \approx 3269017.373$
(b) $10^{-2}=\frac{1}{100}$
$\ln (3269017.373) \sim 15$
$\log _{10}\left(\frac{1}{100}\right)=-2$
(c) $7^{t}=H$
$\log _{ \pm}(H)=t$

Problem 4. Evaluate the following without using a calculator:
(a) $3^{\log _{3}(7)}=7$
(b) $\log _{11}\left(11^{4}\right)=4$
(c) $\log _{b}(\underbrace{\sqrt{3}}_{\text {b }})=3 / 2$ $\left(b^{3}\right)^{1 / 2}$

Problem 5. Evaluate the following without using a calculator.
(a) $g^{\ln (17)}=17$
(b) $\ln \left(e^{3}\right)=3$
(c) $\begin{aligned} \ln \left(\frac{1}{\sqrt{e}}\right) & =-\frac{1}{2} \\ \frac{1}{e^{1 / 2}} & =e^{-1 / 2}\end{aligned}$

Main Topic \# 2: [Solving Equations with Log]
In the last section we talked about exponential functions. Today we want to talk about how to solve equations like:

$$
3^{x}=7
$$

So we need a way to:

$$
\text { "un-do" raising to the } x
$$

Just like we did in equations before...

Addition and Subtraction: To solve the equation $x+7=8$ we need to "un-do adding 7 " by subtracting 7 from both sides and get:

$$
\begin{aligned}
& \xrightarrow[-A]{\text { opposite }} x+7 /=8 \\
& x=1
\end{aligned}
$$

Multiplication and Division: To solve the equation $3 x=9$ we need to "un-do the multiplcation by 3 " by dividing by 3 on both sides of the equation to get :

$$
\begin{aligned}
\frac{(3) x}{1} & =\frac{9}{3} \\
x & =3
\end{aligned}
$$

This is exactly what the inverse is for functions. To be more specific when considering the function $f(x)=3^{x}$ the inverse has the following property:

$$
f^{-1}(f(x))=x
$$

To use this property in the first equation we see:

$$
\begin{aligned}
\log _{3}\left(3^{x}\right) & =\log _{3}(9) \\
11 & \\
x & =\log _{3}(9)=2
\end{aligned}
$$

The Take-Away

For $a>0$ we have:

$$
\begin{aligned}
& \text { Concelation property! } \\
& a^{\log _{a}(x)}=x
\end{aligned}
$$

and

$$
\log _{a}\left(a^{x}\right)=x
$$

Finally, let's look at the graph of the Log, using what we learned about inverses in the previous section:

Sketching Logs

Exponential functions look like:

So we see that the Domain of $\log _{a}(x)$ is \qquad $(0, \infty)$ and the Range of $\log _{a}(x)$ is $\quad(-\infty, \infty)$

Learning Outcome \# 2: [Solving Basic Equations with Log]
Problem 6. Solve for x in the equations below.
(a) $a^{9}\left(3^{x}\right)=(29)$
$x=\log _{3}(29)$
(d) $3^{x}-7=12$
(g) $\frac{6 \cdot 3^{-2 x}}{3^{-2 x}}=\frac{3^{4 x}}{3^{-2 x}}$

$$
\begin{aligned}
& 3^{x}=19 \\
& x=\log _{3}(19)
\end{aligned}
$$

(b) $\frac{6}{2}=\frac{2(1.03)^{x}}{2 x}$ $3=(1.03)^{x}$

$$
\log _{10}(3)=x
$$

(e) $3 e^{5 x}+2=8$
$x=\frac{\ln (2)}{5}$
(h) $\left(e^{x}\right)^{4}+3=7$

$$
x=\frac{\ln (4)}{4}
$$

(c) $e^{-x}=\frac{1}{2}$
(f) $4^{-7 x}-2=10$

$$
\begin{gathered}
\frac{\ln \left(e^{-x}\right)}{2}=\ln \left(\frac{1}{2}\right) \\
-x=\ln \left(\frac{1}{2}\right) \\
x=-\ln \left(\frac{1}{2}\right)
\end{gathered}
$$

Main Topic \# 3: [The Laws of Logs]

$$
\begin{aligned}
& 4^{-721}=12 \\
& =12 \\
& -7 x=\log _{4}(12) \\
& x=\frac{\log _{4}(12)}{-7}
\end{aligned}
$$

(i) $2\left(7^{x}\right)^{2}+3=15$

$$
\begin{aligned}
\frac{2\left(7^{x}\right)^{-3}}{2} & =\frac{12}{2} \\
\left(7^{x}\right)^{2} & =6 \\
7^{2 x} & =6 \\
2 x & =\log _{7}(6)
\end{aligned}
$$

Recall the Laws of Exponents

$$
x=\frac{\log _{7}(6)}{2}
$$

The Laws of Exponents

$$
\begin{aligned}
a^{n} \cdot a^{m} & =a^{m+n} \\
\left(a^{n}\right)^{m} & =a^{m \cdot n} \\
\frac{a^{n}}{a^{m}} & =a^{n-m} \\
a^{0} & =1
\end{aligned}
$$

To understand the Laws of Logs we will first investigate what happens to all of the exponential laws when we apply $\log _{a}$ (__ _) to both sides:

$$
\begin{aligned}
& \log _{a}\left(a^{n} \cdot a^{m}\right)=\log _{a}\left(a^{m+n}\right)=m+n=\underline{\log _{e}\left(a^{m}\right)}+\underline{\log _{a}\left(a^{n}\right)} \\
& \log _{a}\left(\left(a^{n}\right)^{m}\right)=\log _{a}\left(a^{m \cdot n}\right)=\underline{m} \cdot \underline{n}=\underline{M} \cdot \underline{\log _{a}\left(a^{n}\right)} \\
& \log _{a}\left(\frac{a^{n}}{a^{m}}\right)=\log _{a}\left(a^{n-m}\right)=n-m=\underline{\log _{a}\left(a^{n}\right)}-\underline{\log _{a}\left(a^{m}\right)} \\
& \boldsymbol{O}=\log _{a}\left(a^{0}\right)=\log _{a}(1)
\end{aligned}
$$

The awesome thing is the far right hand side has nothing to do with the base, which gives us our Laws of Logs, or as I like to call it:

Rob's Log Laws

The Laws of Logs

$$
\begin{aligned}
\log _{a}(A \cdot B) & =\log _{a}(A)+\log _{a}(B) \\
\log _{a}\left(A^{n}\right) & =n \cdot \log _{a}(A) \\
\log _{a}\left(\frac{A}{B}\right) & =\log _{a}(A)-\log _{a}(B) \\
\log _{a}(1) & =0
\end{aligned}
$$

Learning Outcome \# 3: [Identifying and Applying the Laws of Logs]
Problem 7. Match each expression of the left with its equivalent expression on the right for $A, B>0$.

Problem 8. Rewrite each of the following as the sum/difference of simple logarithms.
(a) $\ln \left(\frac{3 x^{2}}{y z}\right)$
(b) $\log _{10}\left(\frac{a^{2} b}{(c d)^{3}}\right)$
(c) $\log _{3}\left(\frac{(z-1)^{3}}{z^{3 / 2}}\right)$
$=\ln \left(3 x^{2}\right)-\ln (y z)$
$=\ln (3)+\ln \left(x^{2}\right)-(\ln (y)+\ln (z))$
$=\log _{10}\left(a^{2} b\right)-\log _{10}\left((c d)^{3}\right)$
$=\log _{3}\left((z-1)^{3}\right)-\log _{3}\left(z^{3 / 2}\right)$
$=\ln (3)+2 \ln (x)-\ln (y)-\ln (z)$
$=\log _{10}\left(a^{2}\right)+\log _{10}(b)-3 \log _{(20}(d)$
$=3 \log _{3}(z-1)-3 / 2 \log _{3}(z)$

Problem 9. Rewrite each of the following as a single logarithm.
(a) $\ln (x)+\ln (3)-2 \ln (y)$

$$
\begin{aligned}
& =\ln (3 x)-\ln \left(y^{2}\right) \\
& =\ln \left(\frac{3 x}{y^{2}}\right)
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
& \log _{10}(a)-2 \log _{10}(b)+3 \log _{10}(c)-4 \log _{10}(d) \\
&= \log _{10}(a)-\log _{10}\left(b^{2}\right)+\log _{10}\left(c^{3}\right)-\log _{10}\left(d^{4}\right) \\
&= \log _{10}\left(\frac{a}{b^{2}}\right)+\log _{10}\left(\frac{c^{3}}{d^{4}}\right)=\log _{10}\left(\frac{a c^{3}}{b^{2} 2^{4}}\right) \\
&\text { (c) } \left.\begin{array}{rl}
& \frac{1}{2} \log _{c}(x)-\log _{c}(y)-\log _{c}(z-1)-\log _{c}(a) \\
= & \log _{c}\left(\frac{\sqrt{x}}{y}\right)-\log _{c}\left(\frac{z-1}{a}\right)=\log _{c}\left(\frac{a \sqrt{x}}{y(z-1)}\right)
\end{array},=>{ }^{y}\right)
\end{aligned}
$$

Learning Outcome \# 4: [Solving Equations using the Laws of Logs]
Problem 10. Solve the following equations:
(a) $3^{x+1}=9^{2 x}$

Done on next page
(b) $6^{x}=7^{x-1}$

Done on page after next
(c) $3^{2 x-1}=5^{x}$

Done on page after next
Problem 11. Solve the following equations:
(a) $\log _{10}(x-3)=4$

Done 3 pages later!
(b) $\log _{2}(x)+\log _{2}(x+2)=\log _{2}(6 x+1)$

Done 3 pages later!
(c) $\log _{3}(x)-\log _{3}(x-1)=2$

Done 4 pages later!
(d) $2 \ln (x)=\ln (x+3)+\ln (x-1)$

* keep on writing the base when writhing $\log _{\underline{\underline{a}}}$ sucks so wi the \log Laws I can Solve every problem that deals ω) an exponential I can use \ln y

10] (a) $3^{x+1}=9^{2 x}$
$\ln \left(3^{x+1}\right)=\ln \left(9^{2 x}\right)$ Take \ln of both sides
$(x+1) \ln (3)=2 x \ln (9)$ use log law to pull down exponent
$x \ln (3)+\ln (3)=2 x \ln (9)$ distribute $\ln (3)(x+1)$
$-x \ln (3) \quad-x \ln (3)$
$\ln (3)=2 x \ln (9)-x \ln (3)$ collect x 's on same side of equation
$\ln (3)=x(2 \ln (9)-\ln (3))$ factor out common x
$\ln (3)=x\left(\ln \left(\frac{9^{2}}{3}\right)\right)$ use log laws to combine
$\frac{\ln (3)}{\ln (27)}=\frac{x \ln (27)}{\ln (27)}$ Reduce the fraction
$\frac{\ln (3)}{\ln (27)}=X \quad$ isolate the x by dividing both sides by $\ln (27)$
10) (b) $6^{x}=7^{x-1}$
$\ln \left(6^{x}\right)=\ln \left(7^{x-1}\right)$ Take \ln of both sides
$x \ln (6)=(x-1) \ln (7)$ use log law to pull down exponent
$x \ln (6)=x \ln (7)-\ln (7)$ distribute the $\ln (7)(x-1)$
$-x \ln (7)-x \ln (f)$
$x \ln (6)-x \ln (7)=-\ln (7)$ collect x 's on one side of equation lay subtracting
$x(\ln (6)-\ln (7))=-\ln (7)$ factor out common x
$\frac{x \ln \left(\frac{6}{7}\right)}{\ln \left(\frac{6}{7}\right)}=\frac{-\ln (7)}{\ln \left(\frac{6}{7}\right)}$ use \log law to combine
$x=\frac{-\ln (7)}{\ln \left(\frac{6}{7}\right)}$ isolate x by dividing
10] (c) $3^{2 x-1}=5^{x}$
$\ln \left(3^{2 x-1}\right)=\ln \left(5^{x}\right)$ Take in of both sides
$(2 x-1) \ln (3)=x \ln (5)$ use log law to pull down the exponent
$2 x \ln (3)-\ln (3)=x \ln (5) \quad$ distribute the $\ln (3)(2 x-1)$
$-2 x \ln (3) \quad-2 x \ln (3)$
$-\ln (3)=x \ln (s)-2 x \ln (3) \quad$ collect x 's on one side of equation lay subtracting
$-\ln (3)=x(\ln (5)-2 \ln (3))$ Factor out common x
$\frac{-\ln (3)}{\ln \left(\frac{5}{9}\right)}=\frac{x \ln \left(\frac{5}{9}\right)}{\ln \left(\frac{5}{9}\right)}$ use log laws to combine
$\frac{-\ln (3)}{\ln \left(\frac{s}{9}\right)}=x \quad$ isolate the x by dividing

* This uses the cancellative properties we discussed earlier of

11] (a) $\log _{10}(x-3)=4$
$10^{\log _{10}(x-3)}=10^{4}$ make both sides the exponet of the base

$x=10003 \quad$ isolate the x by subtraction
117(n)

$$
\log _{2}(x)+\log _{2}(x+2)=\log _{2}(6 x+1)
$$

$\log _{2}(x(x+2))=\log _{2}(6 x+1)$ use log laws to combine

$$
-\log _{2}(6 x+1) \quad-\log _{2}(6 x+1)
$$

$\log _{2}(x(x+1))-\log _{2}(6 x+1)=0 \quad$ collect is on same side
$\log _{2}\left(\frac{x(x+2)}{6 x+1}\right)=0$ use log laws to combine
$2^{\log _{\left(\frac{x(x+2)}{(6 x+1}\right)}}=2$
$\frac{x(x+2)}{6 x+1}=1$
make both sides the exponet of the base
$x(x+2)=6 x+1 \quad$ Multiply both sides by $6 x+1$ to get rid of fraction
$x^{2}-4 x-1=0$
make look like quadratic
$x=\frac{4 \pm \sqrt{16+4}}{2}=\frac{4 \pm \sqrt{20}}{2} \quad$ use quadratic equation

11] (c) $\log _{3}(x)-\log _{3}(x-1)=2$
$\log _{3}\left(\frac{x}{x-1}\right)=2$ use log laws to com bine
$3^{\log _{3}\left(\frac{x}{x-1}\right)}=3^{2}$ make both sides the exponet of the base
$\frac{x}{x-1}=9 \quad$ use cancellative property
$x=9(x-1)$ multiply get rid of faction

$$
\begin{aligned}
& \vdots \\
& x= \frac{9}{8}
\end{aligned}
$$

11] (d)

$$
\begin{aligned}
& 2 \ln (x)=\ln (x+3)+\ln (x-1) \\
& 2 \ln (x)=\ln \left(\frac{x+3}{x-1}\right) \quad \text { use log laws to combine } \\
& -2 \ln (x) \quad-2 \ln (x) \\
& 0=\ln \left(\frac{x+3}{x-1}\right)-2 \ln (x) \text { collect } x \text { on both sides } \\
& 0=\ln \left(\frac{x+3}{x(x-1)} \text { use } \log \right. \text { laws to combine } \\
& e^{0}=e^{\frac{\ln \left(\frac{x+3}{x(-1)}\right)}{} \text { make both sides the exponet of the base }} \\
& 1=\frac{x+3}{x(x-1)} \\
& x(x-1)=x+3 \\
& \vdots \frac{301 d}{} \text { stuff } \\
& x=\frac{2 \pm \sqrt{4+12}}{2}=\frac{2 \pm \sqrt{16}}{2}=\frac{2 \pm 4}{2}=1 \pm 2
\end{aligned}
$$

