Chapter 4 Sections 4.2 - 4.4

Main Topic # 1: [Log is "like" square root]

The main concept for Logs is the concept of the **opposite** in the sense of the inverse of a function. Recall how one calculates the positive branch of the square root:

That is because

In slight more generality:

$$\sqrt{4} = \underline{2}$$
$$(\underline{2})^2 = \underline{4}$$
$$\sqrt{b} = c$$

 $c^2 = b$

means

It is the same idea for the Log and an exponential. First the technical definition:

The Log
For $a > 0$ we call the inverse of the function $f(x) = a^x \operatorname{Log} \operatorname{base} a$ and write it as
$\log_a(x) = f^{-1}(x)$

Now the definition which mimics the idea of square root above.

The Opposite of an Expo	ential
For $a > 0$	
	$\log_a(b) = c$
means	
	$a^c = b$
or	$\log_a(b)$
	is the power of $\underline{0}$ that is $\underline{\mathbf{b}}$

That is the Log is the function that says "Gimme that exponent"

Finally, there is a special Log that we call **The Natural Log**:

$$\log_e(x) = \ln(x)$$

Learning Outcome # 1: [Using the meaning of Log to calculate]

Problem 1. Complete the following statements.

- (a) If $y = \log_{10}(100)$, then y = 100.
- (b) $\log_{10}(5.5)$ is the power of <u>lo</u> that gives <u>5.5</u>.
- (c) $\log_2(\underline{500})$ is the power of $\underline{2}$ that gives 500.
- (d) If $4^m = n$ then $\log_4(n) = \underline{\mathsf{M}}$.
- (e) $\log_e(556)$ is the power of <u>e</u> that gives <u>556</u>.

Problem 2. Rewrite the following using exponents instead of logs.

(a)
$$\log_e(5) \approx 1.609$$
 (b) $\log_2(1) = 0$ (c) $\log_{100}(A) = B$
 $e^{1.609} = 5$ $2^{\circ} = 1$ $100^{\circ} = A$

Problem 3. Rewrite the following using logs instead of exponents.

(a)
$$e^{15} \approx 3269017.373$$

(b) $10^{-2} = \frac{1}{100}$
(c) $7^{t} = H$
 $\log_{10}(\frac{1}{100}) = -2$
 $\log_{\frac{1}{2}}(H) = \frac{1}{2}$

Problem 4. Evaluate the following without using a calculator:

(a)
$$3^{\log_3(7)} = 4$$
 (b) $\log_{11}(11^4) = 4$ (c) $\log_b(\sqrt{b^3}) = \frac{3}{2}$

Problem 5. Evaluate the following without using a calculator.

(a)
$$e^{\ln(17)} = 17$$
 (b) $\ln(e^3) = 3$ (c) $\ln\left(\frac{1}{\sqrt{e}}\right) = -\frac{1}{2}$
 $\frac{1}{e^{\ln}} = e^{1/2}$

Main Topic # **2:** [Solving Equations with Log]

In the last section we talked about exponential functions. Today we want to talk about how to solve equations like:

 $3^{x} = 7$

So we need a way to:

"un-do" raising to the x

Just like we did in equations before...

Addition and Subtraction: To solve the equation x + 7 = 8 we need to "un-do adding 7" by subtracting 7 from both sides and get:

openie x+7/=8

x = 1

$$\underbrace{(3)}_{\mathbf{X}} x = \frac{9}{3}$$
$$x = 3$$

This is exactly what the inverse is for functions. To be more specific when considering the function $f(x) = 3^x$ the inverse has the following property:

$$f^{-1}(f(x)) = x$$

To use this property in the first equation we see:

The T

and

$$[3^{x}] = [0_{3}(9)$$

$$x = \log_{3}(9) = \underline{2}$$
The Take-Away
For $a > 0$ we have:

$$a^{\log_{a}(x)} = x$$
and

$$\log_{a}(a^{x}) = x$$

Finally, let's look at the graph of the Log, using what we learned about inverses in the previous section:

Learning Outcome # 2: [Solving Basic Equations with Log]

Problem 6. Solve for x in the equations below.

$$(a)^{\frac{4}{9}} \underbrace{(s')}_{==2}^{=2} \underbrace{(d)}_{X = \log_{2}(29)} \\ x = \log_{2}(29) \\ x = \log_{2}(103)^{x} \\ (b) = 2(1.03)^{x} \\ (c) = \frac{2(1.03)^{x}}{2} \\ (c) = \frac{1}{2} \\ (c) = \frac$$

Recall the Laws of Exponents

The Laws of Exponents

 $a^n \cdot a^m = a^{m+n}$ $(a^n)^m = a^{m \cdot n}$ $\frac{a^n}{a^m} = a^{n-m}$ $a^{0} = 1$

To understand the Laws of Logs we will first investigate what happens to all of the exponential laws when we apply $\log_a(_)$ to both sides:

$$\log_{a} (a^{n} \cdot a^{m}) = \log_{a} (a^{m+n}) = m + n = \underbrace{(og_{\bullet}(a^{m})_{+} | log_{\bullet}(a^{n})}_{+ | log_{\bullet}(a^{n})}$$
$$\log_{a} ((a^{n})^{m}) = \log_{a} (a^{m \cdot n}) = m \cdot n = \underline{\mathcal{M}} \cdot \underbrace{(og_{\bullet}(a^{n})_{-}}_{- | og_{\bullet}(a^{n})}$$
$$\log_{a} \left(\frac{a^{n}}{a^{m}}\right) = \log_{a} (a^{n+n}) = n - m = \underbrace{(og_{\bullet}(a^{n})_{-} - \underbrace{\log_{\bullet}(a^{n})_{-}}_{- | og_{\bullet}(a^{n})_{-}}}_{- | og_{\bullet}(a^{n})_{-}}$$
$$\underbrace{\mathcal{O}} = \log_{a} (a^{0}) = \log_{a} (1)$$

The awesome thing is the far right hand side has nothing to do with the base, which gives us our Laws of Logs, or as I like to call it:

Rob's Log Laws

The Laws of Logs
$\log_a(A \cdot B) = \log_a(A) + \log_a(B)$
$\log_a \left(A^n \right) = n \cdot \log_a(A)$
$\log_a\left(\frac{A}{B}\right) = \log_a(A) - \log_a(B)$
$\log_a(1) = 0$

Learning Outcome # 3: [Identifying and Applying the Laws of Logs]

Problem 7. Match each expression of the left with its equivalent expression on the right for A, B > 0.

Problem 8. Rewrite each of the following as the sum/difference of simple logarithms.

Problem 9. Rewrite each of the following as a single logarithm.

(a)
$$\ln(x) + \ln(3) - 2\ln(y)$$

$$= |n(3x) - |n(y^{2})|$$

$$= |n(\frac{3x}{y^{2}})|$$
(b) $\log_{10}(a) - 2\log_{10}(b) + 3\log_{10}(c) - 4\log_{10}(d)$

$$= \log_{10}(a) - \log_{10}(b) + \log_{10}(c^{3}) - \log_{10}(d^{4})|$$

$$= \log_{10}(\frac{a}{b^{3}}) + \log_{10}(\frac{c^{3}}{d^{4}}) = \log_{10}(\frac{ac^{3}}{b^{3}d^{4}})|$$
(c) $\frac{1}{2}\log_{c}(x) - \log_{c}(y) - \log_{c}(z-1) - \log_{c}(a)$

$$= \log_{10}(\frac{1x}{y}) - \log_{c}(\frac{2-1}{a}) = \log_{c}(\frac{a(x)}{y(z-1)})|$$

Learning Outcome # 4: [Solving Equations using the Laws of Logs]

Problem 10. Solve the following equations:

- (a) $3^{x+1} = 9^{2x}$ Done on next page
- (b) $6^x = 7^{x-1}$

(c) $3^{2x-1} = 5^x$

Problem 11. Solve the following equations:

- (a) $\log_{10}(x-3) = 4$ Done 3 pages later!
- (b) $\log_2(x) + \log_2(x+2) = \log_2(6x+1)$ Done 3 pages later!
- (c) $\log_3(x) \log_3(x-1) = 2$ Done 4 pages later! (d) $2\ln(x) = \ln(x+3) + \ln(x-1)$ Done 4 pages later!

* keep on writing the base when writting log sucks so withe log laws I can solve every publish that deals will an exponential I can use in p

$$\begin{aligned} |D](a) \quad 3^{X+1} = q^{aX} \\ &\ln(3^{x+1}) = \ln(q^{2X}) \quad \text{Take In of both Sides} \\ (x+1)\ln(3) &= 2x\ln(q) \quad \text{Use log law to pull down exponent} \\ &X\ln(3) + \ln(3) &= 2x\ln(q) \quad \text{distribute In(3)} (x+1) \\ &-x\ln(3) \\ &-x\ln(3) \\ &-x\ln(3) \\ &-x\ln(3) \\ &-x\ln(3) \\ &\ln(3) &= x(2\ln(q) - \ln(3)) \quad \text{factor out Gumon X} \\ &\ln(3) &= x(2\ln(q) - \ln(3)) \quad \text{factor out Gumon X} \\ &\ln(3) &= x(\ln(\frac{q^{x}}{7})) \quad \text{use log laws to combine} \\ &\ln(3) &= x(\ln(\frac{q^{x}}{7})) \quad \text{use log laws to combine} \\ &\ln(3) &= x(\ln(27) \quad \text{Reduce the fraction} \\ &\ln(27) \\ &-x(1) \\ &\ln(27) \\ &= \chi \\ &-x(1) \\ &\ln(27) \\ &= \chi \end{aligned}$$

.

 $\frac{-\ln(3)}{\ln(\frac{3}{q})} = \chi$ isolate the χ by dividing

11] (c)
$$\log_{3}(x) - \log_{3}(x-1) = 2$$

 $\log_{3}(\frac{x}{x-1}) = 2$ use lig luss to combine
 $\log_{3}(\frac{x}{x-1}) = 2^{2}$ make both Sides the expined of the base
 $\frac{x}{x-1} = 9$ use concellative parparty
 $x = 9(x-1)$ multiply get rid of faction
 $\vdots \quad \frac{1}{3}$ and $\sin 2 t$
 $x = \frac{9}{8}$
11] (e) $2\ln(x) = \ln(x+3) + \ln(x-1)$
 $2\ln(x) = \ln(\frac{y+3}{x-1})$ use log laws to combine
 $-2\ln(x) = -2\ln(x)$
 $0 = \ln(\frac{y+3}{x-1})$ use log laws to combine
 $-2\ln(x) = -2\ln(x)$ collect x on total sides
 $0 = \ln(\frac{y+3}{x-1})$ use log laws to combine
 $e^{2} = e^{\ln(\frac{y+3}{x-1})}$ use log laws to combine
 $1 = \frac{x+3}{x(x-1)}$ use conclusive paramy
 $x(x-1) = x+3$
 $\vdots \quad \frac{1}{3}$ oil shell
 $x = 2\frac{2\pi(1-1)}{2} = 2\frac{2\pi(1-1)}{2} = \frac{2\pi(1-1)}{2} = \frac{1+2}{2}$