Round 1

Differentiate this: You are to differentiate the expression. Correct questions will be of the form “What is the antiderivative of f’(x)?”

Men in Mathematics
Mathematical Objects
Fundamental Theorems
Enumeration

Differentiate This
$100 \ 2x$
$200 \ cos(x)$
$300 \ \frac{1}{x}$
$400 \ 2^x \ln(2)$
$500 \ x^x(\ln(x) + 1)$

Men in Mathematics
$100 \ Isaac Newton$
$200 \ Evariste Galois$
$300 \ Carl Friedrich Gauss$
$400 \ Leonhard Euler$
$500 \ Cedric Villani$

Mathematical Objects
$100 \ Sphere$
$200 \ Graph$
$300 \ Cauchy Sequence$
$400 \ Analytic function$
$500 \ Algebraic Variety$

Fundamental Theorems
$100 \ Fundamental Theorem of Calculus$
$200 \ Fundamental Theorem of Arithmetic$
$300 \ Fundamental Theorem of Algebra$
$400 \ Fundamental Theorem of Finite Abelian Groups$
$500 \ Fundamental Theorem of Galois Theory$

Enumeration
$100 \ 12$
$200 \ 20$
$300 \ 64$
$400 \ 10$
$500 \ 5$
Round 2
Integrate that: You are to integrate the given expression.
Correct questions will be of the form “What is the derivative of F(x)?”

Women in Mathematics
Who proved it?

Integer Sequences
Proper Name Adjectives

Integrate That
\[\frac{x^3}{3} \]
$100 \frac{x^3}{3}$
$200 \sin(x)$
$300 \arcsin(x)$
$400 \ln(\sec(x))$
$500 x\ln(x)-x$

Women in Mathematics
100 Maryam Mirzakhani
200 Sophie Germain
300 Ada Lovelace
400 Emmy Noether
500 Julia Robinson ne Bowman

Who proved it?
100 Euclid
200 Andrew Wiles
300 Leonhard Euler
400 Paul Cohen
500 Johann Bernoulli

Integer Sequences
100 Squares)
200 Fibonacci sequence
300 Triangular numbers
400 Perfect Numbers
500 Catalan numbers

Proper Name Adjectives
100 Abelian
200 Eulerian
300 Hamiltonian
400 Euclidean
500 Noetherian
Final Jeopardy
Category: Ramanujan

1729