Sudoku and Graph Theory: Critical Sets

Prof. Josh Cooper

USC Department of Mathematics
A Sudoku board consists of a 9 by 9 grid of "cells", in which each column, row, and "block" (one of nine 3X3 subgrids that tile the board) has each of the numbers 1 through 9 exactly once. A Sudoku "puzzle" is a partially filled-in board, and a "fair" puzzle is one that can be completed in exactly one way. Mathematicians have become interested in the question of what sets of cells can constitute fair puzzles; in particular, very strong evidence exists that the the fewest number of cells in such a puzzle is 17 , but there is not yet a rigorous proof of this claim. It turns out that the question of the size of the smallest fair puzzle can be translated into a nice question about so called "critical sets" in general graphs - aka networks - about which a growing literature exists. We discuss some of what is known about critical sets, and present several unsolved problems about them.

Tuesday $4^{\text {th }}$ February 2014
$6: 00 \mathrm{pm}$
LeConte 412
followed by a Sudoku Championship

								1
					2		3	
		4			5			
							5	
					4	6		
	1	7		8				
				1				7
	2		9					
5						4		

[^0]
[^0]: (3) For more info visit PME/GMC on FaceBook and at http://www.math.sc.edu/~pme/.

