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Localized Polynomial Frames on the Ball

Pencho Petrushev and Yuan Xu

Abstract. Almost exponentially localized polynomial kernels are constructed on the
unit ball Bd in Rd with weights wµ(x) = (1−|x |2)µ−1/2, µ ≥ 0, by smoothing out the
coefficients of the corresponding orthogonal projectors. These kernels are utilized to
the design of cubature formulas on Bd with respect to wµ(x) and to the construction of
polynomial tight frames in L2(Bd , wµ) (called needlets) whose elements have nearly
exponential localization.

1. Introduction

The construction of bases and frames on various domains, in particular on Rd and on
the d-dimensional cube, sphere, and ball, is important from many prospectives and has
numerous applications. The example of Meyers’ wavelets [10] and the ϕ- transform of
Frazier and Jawerth (see [6]) clearly shows the advantage of using localized bases or
frames for decomposition of function and distribution spaces on Rd in contrast to other
means such as atomic decompositions or Fourier series (in the periodic case). Three
of their features: (i) infinite smoothness; (ii) almost exponential space localization; and
(iii) infinitely vanishing moments, make them a universal tool for decomposing most of
the classical spaces on Rd , including Besov and Triebel–Lizorkin spaces. The key to this
is that the coefficients in the wavelet or ϕ-transform expansions precisely capture the
information in the norms defining the corresponding spaces.

Our primary goal in this paper is to develop a similar tool for decomposition of
weighted spaces of functions or distributions on the unit ball Bd in Rd (d > 1) with
weights

wµ(x) := (1 − |x |2)µ−1/2, µ ≥ 0,(1.1)

where |x | is the Euclidean norm of x ∈ Rd . The situation here, however, is much
more complicated than on Rd (the shift invariant case) or on the torus or even on the
sphere due to several reasons: (i) there are no dilation or translation operators on Bd ;
(ii) the boundary of Bd in combination with the weight wµ(x) creates a great deal of
inhomogeneity; (iii) orthogonal systems such as orthogonal polynomials on Bd are much
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less friendly than the trigonometric system; and (iv) there are no uniformly distributed
points on Bd or on the d-dimensional unit sphere Sd .

Our approach to the problem at hand will heavily rely on orthogonal polynomials in
the weighted spaces L2(Bd , wµ). The standard Hilbert space theory gives the orthogonal
decomposition

L2(Bd , wµ) =
∞⊕
ν=0

Vd
n , Vd

n ⊂ 
d
n ,(1.2)

where Vd
n is the subspace of all polynomials of degree n which are orthogonal to lower

degree polynomials in L2(Bd , wµ). Note that dimVd
n =

(
n + d − 1

n

)
∼ nd−1, so Vd

n

is a large subspace of L2. The orthogonal projector Projn : L2(Bd , wµ) 
→ Vd
n can be

written as

(Projn f )(x) =
∫

Bd

f (y)Pn(wµ; x, y)wµ(y) dy,

where Pn(wµ; x, y) is its kernel. It is crucial for our further development that the kernels
Pn(wµ; x, y) have an explicit representation [21] in terms of Gegenbauer polynomials
(see (4.1)–(4.2) below). Now,

Kn(wµ; x, y) :=
n∑

ν=0

Pν(wµ; x, y)(1.3)

is the kernel of the orthogonal projector of L2(Bd , wµ) onto
⊕n

ν=0 Vd
ν .

Consider the kernel

Lµ
n (x, y) =

∞∑
j=0

â
( j

n

)
Pj (wµ; x, y),(1.4)

obtained by smoothing out the coefficients in the definition of the kernel Kn(wµ; x, y) in
(1.3) by sampling a smooth function â. One of our main results in this paper essentially
asserts that if â ∈ C∞[0,∞) is compactly supported, then Lµ

n (x, y) has almost expo-
nential (faster than any polynomial) rate of decay away from the main diagonal y = x
in Bd × Bd . To state this result more precisely, let us introduce the distance (see (4.7))

d(x, y) := arccos{〈x, y〉 +
√

1 − |x |2
√

1 − |y|2} on Bd(1.5)

and set

Wµ(n; x) := (
√

1 − |x |2 + n−1)2µ, x ∈ Bd .

Then (see Section 4) for any k > 0 there exists a constant ck > 0 depending only on k,
d , µ, and â such that

|Lµ
n (x, y)| ≤ ck

nd√
Wµ(n; x)

√
Wµ(n; y)(1 + n d(x, y))k

.(1.6)

The localized kernels Lµ
n provide a powerful tool for constructing cubature formulas

on Bd with weights wµ(x), µ ≥ 0, that are exact for all polynomials of degree n and have
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positive coefficients of the right size. It is an important feature of our cubature formulas
(see Section 5) that for all µ ≥ 0 the knots are obtained by projecting onto Bd sets of
“almost equally” distributed points on the upper hemisphere Sd

+ in Rd+1; the knots are
in fact almost equally distributed on Bd with respect to the distance d(·, ·) defined in
(1.5). Currently, very few families of cubature formulas with positive weights are known
on Bd , among them is the family of the product-type formulas [18], [14]. However, the
knots in these formulas are not almost equally distributed.

Most importantly, the kernels Lµ
n enable us to construct localized polynomial frames

in L2(Bd , wµ) which is our primary goal in this paper. Our construction is based on a
semidiscrete Calderón-type decomposition combined with our cubature formulas on the
ball from Section 5. If we denote by� = {ψξ }ξ∈X our frame on Bd , whereX = ⋃∞

j=0 Xj

is an index set consisting of the localization points (poles) of the frame elements, then
we have the following representation of each f ∈ L2(Bd , wµ):

f =
∑
ξ∈X

〈 f, ψξ 〉ψξ and ‖ f ‖L2(Bd ,wµ) =
(∑

ξ∈X
|〈 f, ψξ 〉|2

)1/2

.

The above clearly indicates that � is a tight frame for L2(Bd , wµ). The most important
feature of the frame elements ψξ is their almost exponential localization: For ξ ∈ Xj

(the j th level in X ),

|ψξ(x)| ≤ ck
2 jd/2√

Wµ(2 j ; x)(1 + 2 j d(x, y))k
, ∀ k > 0.(1.7)

Here the presence of the factor
√
Wµ(2 j ; x) is critical; it reflects the expected influence

of the boundary of Bd and the weight wµ(x) on the localization of the frame elements.
Notice that the distance d(·, ·) is also affected by the boundary of Bd . This localization
of the ψξ ’s is the reason for calling them needlets.

The superb localization of the needlets along with their semiorthogonal structure and
increasing (with the levels) number of vanishing moments enables one to utilize them
for decomposition of spaces of functions or distributions on Bd other than L2(Bd , wµ)

such as L p(Bd , wµ) (1 < p < ∞) and the more general weighted Triebel–Lizorkin and
Besov spaces on Bd . This paper is Phase 1 of a bigger project. In [9] we use the results
from this paper for characterization of the weighted Triebel–Lizorkin and Besov spaces
on Bd . Consequently, some of the results here get beyond the immediate needs of this
paper.

These ideas were first used in [15] for the construction of frames on the unit sphere
Sd in Rd+1. In [16] the spherical frames were utilized for decomposition of Besov and
Triebel–Lizorkin spaces on the sphere. Further, this scheme has been applied in [17]
for the development of frames on [−1, 1] with Jacobi weights and then used in [8] for
decomposition of weighted Besov and Triebel–Lizorkin spaces on the interval.

This paper is organized as follows. In Section 2 we outline the general principles
which guide us in constructing localized kernels and frames on domains other than Rd .
In Section 3 we present some results on localized polynomial kernels on [−1, 1] with
Jacobi weights. In Section 4 we prove our main results on localized polynomial kernels
on Bd with weights wµ(x), µ ≥ 0. In Section 5 we construct cubature formulas on Bd
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with weights wµ(x). In Section 6 we construct our needlet system and give some of its
properties.

Throughout this paper positive constants are denoted by c, c1, . . . and they may vary
at every occurrence. As usual the constants may depend on some parameters, which are
indicated explicitly in some important cases. The notation A ∼ B means c1 A ≤ B ≤
c2 A. The set of all algebraic polynomials of total degree n in d variables is denoted
by 
d

n .

2. General Principles for Constructing Localized Kernels and Frames

Let (E, µ) be a measure space with E a metric space and suppose that there is an
orthogonal decomposition of L2(E, µ),

L2(E, µ) =
∞⊕

n=0

Vn,(2.1)

where Vn is a subspace of dimension dimVn ∼ nγ , γ > 0. Let Pn be the kernel of the
orthogonal projector Projn : L2(E, µ) → Vn , i.e.,

(Projn f )(x) =
∫

E
Pn(x, y) f (y) dµ, f ∈ L2(E, µ).

Notice that Pn can be written in the form Pn(x, y) = ∑dimVn
j=1 pj (x)pj (y), where {pj } is

an orthonormal basis for Vn . Then Kn := ∑n
j=0 Pν is the kernel of the orthogonal pro-

jector onto
⊕n

ν=0 Vν . In most cases of interest the kernel Kn(x, y) has poor localization,
examples include the trigonometric system, orthogonal polynomials in one or several
variables on various domains.

Localization principle. Consider now the kernel

Ln(x, y) :=
∞∑

j=0

â

(
j

n

)
Pj (x, y),(2.2)

where â ∈ C∞(R), â is even, and â is compactly supported or â ∈ S (the Schwartz class
of rapidly decreasing C∞ functions on R). It seems that there is a general localization
principle, which says that for all “natural” orthogonal systems, the kernel Ln(x, y) decays
away from the main diagonal y = x at nearly exponential (faster than any polynomial)
rate with respect to the distance in E .

In the case of the trigonometric system this principle is well known and widely used.
It is a simple but fundamental fact in Harmonic Analysis that the Fourier transform of
every function f in the Schwartz space S belongs to the same space. As a consequence,
one standardly shows that any trigonometric polynomial of the form

Ln(t) :=
∑
ν∈Z

â
(ν

n

)
eiνt ,
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where â is a compactly supported C∞ function, has nearly exponential rate of decay
away from zero. More precisely, for any k > 0 and r ≥ 0, there exists a constant ck > 0
depending only on k, r , and â such that

|L(r)
n (t)| ≤ ck

nr+1

(1 + n|t |)k
, t ∈ [−π, π ].(2.3)

This estimate will serve as a prototype for our further localization results.
For Gegenbauer polynomials and spherical harmonics the localization principle is

established and used in [15] and also follows by the general result in [7] on the spectral
properties of elliptic operators. For Jacobi polynomials it is proved in [17] and [3],
and can be extracted from [11] (see Theorem 3.1 below). For Hermite and Laguerre
polynomials the localization principle is established in [5]. We will establish it here for
multivariate orthogonal polynomials in L2(Bd , wµ) (see Theorem 4.2). We believe that
the localization principle is valid in other and in more general settings as well.

For our purposes we restrict our attention to “smoothing functions” â satisfying:

Definition 2.1. A function â is said to be admissible if â ∈ C∞[0,∞), â(t) ≥ 0, and
â satisfies one of the following two conditions:

(a) supp â ⊂ [0, 2], â(t) = 1 on [0, 1], and 0 ≤ â(t) ≤ 1 on [1, 2]; or
(b) supp â ⊂ [ 1

2 , 2].

There are two important applications of the localized kernels Ln(x, y) from (2.2):

(i) If â is admissible of type (a), then the operator

(Ln f )(x) :=
∫

E
Ln(x, y) f (y) dµ(y)

apparently satisfies Ln f = f for all f ∈ ⊕n
ν=0 Vν and Ln f ∈ ⊕2n

ν=0 Vν . These along
with the superb localization of Ln (to be established) make Ln a useful tool. We will see
this operator at work in the construction of cubature formulas on the ball in Section 5.

(ii) More importantly, kernels Ln(x, y) with â admissible of type (b) are a valuable
tool for constructing localized frames. Let, in addition, â satisfy the conditions â(t) ≥ 0
and

â2(t)+ â2(2t) = 1, t ∈ [ 1
2 , 1].(2.4)

Then
∞∑
ν=0

â2(2−ν t) = 1, t ∈ [1,∞).(2.5)

Define

L0(x, y) := P0(x, y)(2.6)

and

L j (x, y) :=
∞∑
ν=0

â
( ν

2 j−1

)
Pν(x, y), j = 1, 2, . . . ,
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and denote briefly

(L j ∗ f )(x) :=
∫

E
L j (x, y) f (y) dµ(y).

One easily obtains the following semidiscrete Calderón-type decomposition (see,
e.g., [17])

f =
∞∑

j=0

L j ∗ L j ∗ f for f ∈ L2(E, µ).(2.7)

To get a completely discretized decomposition of L2(E, µ) one can use quadrature
(cubature) formulas, if available. Assume that there is a quadrature formula∫

E
f dµ ∼

∑
ξ∈Xj

λξ f (ξ)(2.8)

with Xj ⊂ E and λξ > 0, which is exact for all functions f of the form f = gh with

g, h ∈ ⊕2 j

ν=0 Vν . Assume also that if g ∈ Vn , then g ∈ Vn .
After these preparations we now define the frame elements by

ψξ(x) := √
λξ · L j (x, ξ) for ξ ∈ Xj , j = 0, 1, . . . .(2.9)

The ψ’s inherit the localization of the kernels L j , which is almost exponential in all
cases of interest. This is the reason for calling them needlets.

We write X := ⋃∞
j=0 Xj , where any two points ξ, ω ∈ X (from levels Xj �= Xk) are

considered to be different elements of X even if they coincide. We use X as an index set
in the definition of the needlet system

� := {ψξ }ξ∈X .
One easily shows that � is a tight frame in L2(E, µ) (see [15]): If f ∈ L2(E, µ), then

f =
∞∑

j=0

∑
ξ∈Xj

〈 f, ψξ 〉ψξ =
∑
ξ∈X

〈 f, ψξ 〉ψξ in L2(E, µ)(2.10)

and

‖ f ‖L2(E,µ) =
(∑

ξ∈X
|〈 f, ψξ 〉|2

)1/2

.(2.11)

This scheme for the construction of frames was first introduced in [15] and further utilized
in [16], [17].

3. Localized Polynomial Kernels on [−1, 1]

The Jacobi polynomials {P (α,β)
n }∞n=0 constitute an orthogonal basis for the weighted space

L2([−1, 1], wα,β)withwα,β(t) := (1−t)α(1+t)β , α, β > −1. It is well known that [19]∫ 1

−1
P (α,β)

n (t)P (α,β)
m (t)wα,β(t) dt = δn,mh(α,β)

n ,
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where

h(α,β)
n = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)�(n + 1)�(n + α + β + 1)
.

For f ∈ L2([−1, 1], wα,β) the Fourier expansion of f in Jacobi polynomials is

f (t) =
∞∑

n=0

dn( f )(h(α,β)
n )−1 P (α,β)

n (t), dn( f ) =
∫ 1

−1
f (t)P (α,β)

n (t)wα,β(t) dt.

The nth partial sum of this expansion can be written as

(Sn f )(x) =
n∑

j=0

dj ( f )(h(α,β)

j )−1 P (α,β)

j (x) =
∫ 1

−1
f (t)K (α,β)

n (x, t)wα,β(t) dt,

where the kernel is given by

K (α,β)
n (x, t) =

n∑
j=0

(h(α,β)

j )−1 P (α,β)

j (x)P (α,β)

j (y).(3.1)

The grand question here is: What is the localization around the main diagonal y = x
in [−1, 1]2 of a polynomial kernel of the form

Lα,β
n (x, y) =

∞∑
j=0

â

(
j

n

)
(h(α,β)

j )−1 P (α,β)

j (x)P (α,β)

j (y),(3.2)

where â ∈ C∞?
To address this question, denote

wα,β(n; x) := (1 − x + n−2)α+1/2(1 + x + n−2)β+1/2.

Theorem 3.1 [17]. Let α, β > − 1
2 and let â be admissible according to Definition 2.1.

Then for every k > 0 there is a constant ck > 0 depending only on k, α, β, and â such
that, for 0 ≤ θ, ϕ ≤ π ,

|Lα,β
n (cos θ, cosϕ)| ≤ ck

n√
wα,β(n; cos θ)

√
wα,β(n; cosϕ)(1 + n|θ − ϕ|)k

.(3.3)

Here the dependence of ck on â is of the form ck = c(α, β, k)max0≤ν≤k ‖̂a(ν)‖L∞ .

For the proof of this theorem it is important to establish estimate (3.3) first in the
particular case when ϕ = 0 (the localization of Lα,β

n (x, 1)). Set

Qα,β
n (x) := Lα,β

n (x, 1) =
∞∑

j=0

â

(
j

n

)
(h(α,β)

j )−1 P (α,β)

j (1)P (α,β)

j (x).(3.4)

Since [19, (4.1.1), p. 58],

P (α,β)
n (1) =

(
n + α

n

)
= �(n + α + 1)

�(α + 1)�(n + 1)
,
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it is easy to verify that

Qα,β
n (x) = c�

∞∑
j=0

â

(
j

n

)
(2 j + α + β + 1)�( j + α + β + 1)

�( j + β + 1)
P (α,β)

j (x),(3.5)

where c� := 2−α−β−1�(α + 1)−1.
Now the key role is played by the following theorem, which will also be critical for

the proof of our main localization result (Theorem 4.2).

Theorem 3.2. Let â be admissible and assume that α ≥ β > − 1
2 . Then for every k > 0

and r ≥ 0 there exists a constant ck > 0 depending only on k, r , α, β, and â such that∣∣∣∣( d

dx

)r

Qα,β
n (cos θ)

∣∣∣∣ ≤ ck
n2α+2r+2

(1 + nθ)k
, 0 ≤ θ ≤ π.(3.6)

The dependence of ck on â is of the form ck = c(α, β, k, r)max0≤ν≤k ‖̂a(ν)‖L∞ .

This theorem is proved in [3] with â admissible of type (a) (but the proof in [3] is
valid in general) and in [17] with â admissible of type (b). Estimate (3.6), when r = 0,
can also be extracted from [11, Lemma 4.10]. Estimate (3.6) was proved earlier in [15]
in the case α = β = λ − 1

2 (with λ a half-integer) and utilized for the construction of
frames on the n-dimensional sphere. Theorem 3.1 is established in [17]. Its proof rests
on Theorem 3.2.

4. Localized Polynomial Kernels on the Unit Ball

It is known (see [21]) that the orthogonal projector Projn : L2(Bd , wµ) 
→ Vd
n can be

written as

(Projn f )(x) =
∫

Bd

f (y)Pn(wµ; x, y)wµ(y) dy,

where if µ > 0 the kernel Pn(wµ; x, y) has the following explicit representation:

Pn(wµ; x, y) = bµ

d bµ−1/2
1

λ+ n

λ
(4.1)

×
∫ 1

−1
Cλ

n (〈x, y〉 + u
√

1 − |x |2
√

1 − |y|2)(1 − u2)µ−1 du.

Here 〈x, y〉 is the usual Euclidean inner product, the constants bµ

d , bµ−1/2
1 are defined by

(bγ

d )
−1 := ∫

Bd wγ (x) dx , where wγ (x) is as in (1.1), Cλ
n is the nth-degree Gegenbauer

polynomial, and

λ = µ+ d − 1

2
.

The case µ = 0 is a limit case and we have

Pn(w0; x, y) = b0
d

λ+ n

2λ
[Cλ

n (〈x, y〉 +
√

1 − |x |2
√

1 − |y|2)(4.2)

+ Cλ
n (〈x, y〉 −

√
1 − |x |2

√
1 − |y|2)].
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For an admissible â (according to Definition 2.1) we define

Lµ
n (x, y) =

∞∑
j=0

â

(
j

n

)
Pj (wµ; x, y), x, y ∈ Bd .(4.3)

The explicit representation (4.1) gives

Lµ
n (x, y) = bµ

d bµ−1/2
1

∫ 1

−1
Qλ

n(〈x, y〉 + u
√

1 − |x |2
√

1 − |y|2)(1 − u2)µ−1 du,(4.4)

where Qλ
n is defined by

Qλ
n(x) :=

∞∑
j=0

â

(
j

n

)
j + λ

λ
Cλ

j (x).

Since

Cλ
n (x) =

�(λ+ 1
2 )

�(2λ)

�(n + 2λ)

�(n + λ+ 1
2 )

P (λ−1/2,λ−1/2)
n (x),

it readily follows from (3.5) that

Qλ−1/2,λ−1/2
n (x) = cQλ

n(x), where c = 2−2λ�(2λ+ 1)�(λ+ 1
2 )

−2.

Then by Theorem 3.2 we get the following estimate: For all k, λ > 0 and r ≥ 0 there
exists a constant ck > 0 depending only on k, r , λ, and â, such that∣∣∣∣( d

dx

)r

Qλ
n(cos θ)

∣∣∣∣ ≤ ck
n2λ+2r+1

(1 + nθ)k
, 0 ≤ θ ≤ π.(4.5)

Distance on Bd . In order to show that Lµ
n is a well-localized kernel and for our further

development, we need to introduce an appropriate distance in Bd that takes into account
the fact that Bd has a boundary. In [20] it is shown that the orthogonal polynomials on
the unit ball and those on the unit sphere are closely related by the simple map

x ∈ Bd 
→ x ′ := (x,
√

1 − |x |2) ∈ Sd ,(4.6)

which “lifts” the points from Bd to the upper hemisphere Sd
+ in Rd+1, that is, Sd

+ := {x ∈
Sd : xd+1 ≥ 0}. This relation leads us to the following distance on Bd , which will play
a vital role in the following:

d(x, y) := arccos{〈x, y〉 +
√

1 − |x |2
√

1 − |y|2}.(4.7)

In fact this is the geodesic distance between x ′ := (x,
√

1 − |x |2) and y′ :=
(y,

√
1 − |y|2) on Sd

+ ⊂ Rd+1 and, consequently, it is a true distance on Bd . This
distance has been used to prove various polynomial inequalities, see the discussions in
[2] and the references therein.

The map (4.6) also leads to a close relation between the spaces L p(Bd , w0) and
L p(Sd , dω), where dω is the surface measure on Sd . This allows us to derive results on
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L p(Bd , w0) from those on L p(Sd , dω), which are also easier to prove. For these reasons
we will prove our results only in the case µ > 0.

The following lemma provides an important relation between d(·, ·) and the Euclidean
norm | · | in Bd .

Lemma 4.1. For x, y ∈ Bd , we have

||x | − |y|| ≤ 1√
2

d(x, y)(
√

1 − |x |2 +
√

1 − |y|2)(4.8)

and hence

|
√

1 − |x |2 −
√

1 − |y|2| ≤
√

2 d(x, y).(4.9)

Proof. Let 0 ≤ α, β ≤ π/2 be defined from |x | = cosα and |y| = cosβ. Using
spherical-polar coordinates x = |x |ξ and y = |y|ζ , where ξ, ζ ∈ Sd−1, we see that

d(x, y) = arccos(cosα cosβ〈ξ, ζ 〉 + sinα sinβ) ≥ arccos(cos(α − β))

which yields d(x, y) ≥ |α − β|. On the other hand, since 0 ≤ α, β ≤ π/2, we have
cos(α − β)/2 ≥ cos(π/4) = √

2/2 and, consequently,

sinα + sinβ = 2 sin
α + β

2
cos

α − β

2
≥

√
2 sin

α + β

2
.

Using the above we obtain

||x | − |y|| = |cosα − cosβ| = 2 sin
|α − β|

2
sin

α + β

2

≤ 1√
2
|α − β|(sinα + sinβ) ≤ 1√

2
d(x, y)(

√
1 − |x |2 +

√
1 − |y|2).

Thus (4.8) is established. Estimate (4.9) follows immediately from (4.8).

Let us define

Wµ(n; x) := (
√

1 − |x |2 + n−1)2µ, x ∈ Bd .(4.10)

Our next theorem shows that the kernels Lµ
n are almost exponentially localized around

the main diagonal y = x in Bd × Bd .

Theorem 4.2. Let â be admissible. Then for any k > 0 there exists a constant ck > 0
depending only on k, d , µ, and â such that

|Lµ
n (x, y)| ≤ ck

nd√
Wµ(n; x)

√
Wµ(n; y)(1 + n d(x, y))k

, x, y ∈ Bd .(4.11)

Remark 4.3. Theorem 4.2 as well as Theorems 3.1–3.2 can obviously be modified for
the case when â ∈ Ck (k sufficiently large) in place of â ∈ C∞.
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We will derive Theorem 4.2 when µ > 0 from estimate (4.5) and the following
lemma, using representation (4.4) of Lµ

n . The proof in the case µ = 0 is easier and will
be omitted; it utilizes (4.2).

Let us denote briefly

t (x, y; u) := 〈x, y〉 + u
√

1 − |x |2
√

1 − |y|2.(4.12)

Lemma 4.4. Let γ > −1, k > 3γ + 4, and n ≥ 1. Then, for x, y ∈ Bd ,∫ 1

−1

(1 − u2)γ du

(1 + n
√

1 − t (x, y; u))k
(4.13)

≤ cn−2γ−2

(
√

1−|x |2+n−1)γ+1(
√

1−|y|2+n−1)γ+1(1+n d(x, y))k−3γ−4
,

where c > 0 depends only on γ , k, and d .

Proof. Denote briefly t := t (x, y; u). Then we can write

1 − t = 1 − 〈x, y〉 −
√

1 − |x |2
√

1 − |y|2 + (1 − u)
√

1 − |x |2
√

1 − |y|2,
which implies

1 − t ≥ 1 − 〈x, y〉 −
√

1 − |x |2
√

1 − |y|2(4.14)

= 1 − cos d(x, y) = 2 sin2 d(x, y)

2
≥ 2

π2
d(x, y)2

and

1 − t ≥ 2

π2
d(x, y)2 + (1 − u)

√
1 − |x |2

√
1 − |y|2(4.15)

≥ (1 − u)
√

1 − |x |2
√

1 − |y|2.
By (4.14), we have ∫ 1

−1

(1 − u2)γ du

(1 + n
√

1 − t)k
≤ c

(1 + n d(x, y))k
.(4.16)

Inequality (4.13) will follow from this and the estimate:∫ 1

−1

(1 − u2)γ du

(1 + n
√

1 − t)k
(4.17)

≤ cn−2γ−2

(
√

1 − |x |2)γ+1(
√

1 − |y|2)γ+1(1 + n d(x, y))k−2γ−3
.

To establish this last estimate, we split the integral over [−1, 1] into two integrals: one
over [−1, 0] and the other over [0, 1]. For the integral over [−1, 0] we write the factor
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(1 + n
√

1 − t)k as the product of (1 + n
√

1 − t)k−2γ−2 and (1 + n
√

1 − t)2γ+2. Then
we apply inequalities (4.14) and (4.15) to the first and second terms, respectively. This
gives ∫ 0

−1
≤ c

(1 + n d(x, y))k−2γ−2

∫ 0

−1

(1 − u2)γ

[n2
√

1 − |x |2
√

1 − |y|2(1 − u)]γ+1
du

≤ cn−2γ−2

(
√

1 − |x |2)γ+1(
√

1 − |y|2)γ+1(1 + n d(x, y))k−2γ−2
.

We now estimate the integral over [0, 1]. Denote briefly A :=
√

1 − |x |2
√

1 − |y|2.
Using (4.15) and applying the substitution s = An2(1 − u), we get∫ 1

0
≤ c

∫ 1

0

(1 − u2)γ

(1 + n
√

d(x, y)2 + A(1 − u))k
du

≤ c

(An2)γ+1

∫ An2

0

sγ

(1 +
√

n2 d(x, y)2 + s)k
ds

≤ cn−2γ−2

Aγ+1(1 + n d(x, y))k−2γ−3

∫ ∞

0

sγ ds

(1 +
√

n2 d(x, y)2 + s)2γ+3

≤ cn−2γ−2

Aγ+1(1 + n d(x, y))k−2γ−3
.

Putting these estimates together gives (4.17).
To complete the proof of (4.13) we need the following simple inequality (see inequality

(2.21) in [17]):

(a + n−1)(b + n−1) ≤ 3(ab + n−2)(1 + n|a − b|), a, b ≥ 0, n ≥ 1.(4.18)

Inequalities (4.9) and (4.18) yield

(
√

1 − |x |2 + n−1)(
√

1 − |y|2 + n−1)

≤ 3(
√

1 − |x |2
√

1 − |y|2 + n−2)(1 + n d(x, y)).

This along with (4.16) and (4.17) implies (4.13).

Proof of Theorem 4.2. For t = cos θ , 0 ≤ θ ≤ π , we have θ/2 ∼ sin θ/2 ∼ √
1 − t .

Therefore, estimate (4.5) with r = 0 is equivalent to

∣∣Qλ
n(t)

∣∣ ≤ ck
n2λ+1

(1 + n
√

1 − t)k
, −1 ≤ t ≤ 1.

Now, (4.11) follows readily by Lemma 4.4.

The estimate of |Lµ
n (x, y)| from Theorem 4.2 enables us to control its L p-norm.
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Proposition 4.5. For 0 < p ≤ ∞, we have(∫
Bd

|Lµ
n (x, y)|pwµ(y) dy

)1/p

≤ c

(
nd

Wµ(n; x)

)1−1/p

, x ∈ Bd .(4.19)

Proof. If 0 < p < ∞ this proposition is an immediate consequence of Theorem 4.2
and Lemma 4.6 below. In the case p = ∞, estimate (4.19) follows by (4.11) and (4.9)
(see also estimate (4.23) below). Note also that for 1 < p < ∞, estimate (4.19) follows
readily from the cases p = 1 and p = ∞.

Lemma 4.6. If σ > d/p + 2µ|1/p − 1/2|, µ ≥ 0, 0 < p < ∞, then

Jp :=
∫

Bd

wµ(y) dy

Wµ(n; y)p/2(1 + n d(x, y))σ p
≤ cn−dWµ(n; x)1−p/2,(4.20)

where c > 0 depends only on p, µ, and d .

Proof. Let µ > 0 (the case µ = 0 is easier). Three cases present themselves here.

Case 1. p = 2. Using spherical-polar coordinates and the fact that∫
Sd−1

g(〈x, y〉) dω(y) = σd−2

∫ 1

−1
g(|x |t)(1 − t2)(d−3)/2 dt,

where σd−2 is the surface area of Sd−2, it follows that

J2 =c
∫ 1

0

rd−1(1 − r2)µ−1/2

(n−1 + √
1 − r2)2µ

∫ 1

−1

(1 − s2)(d−3)/2 ds

(1 + n arccos(rs|x | +
√

1 − |x |2√1 − r2 ))2σ
dr.

Write briefly F(r, t) := 1/[1 + n arccos(t |x | +
√

1 − |x |2√1 − r2)]2σ . Then

J2 = c
∫ 1

0

rd−1(1 − r2)µ−1/2

(n−1 + √
1 − r2)2µ

∫ 1

−1
F(r, rs)(1 − s2)(d−3)/2 ds dr.(4.21)

Next, we apply the substitution u = rs, then switch the order of integration and, finally,
substitute t = √

1 − r2. This gives

J2 = c
∫ 1

0

r(1 − r2)µ−1/2

(n−1 + √
1 − r2)2µ

∫ r

−r
F(r, u)(r2 − u2)(d−3)/2 du dr

= c
∫ 1

−1

∫ 1

|u|
F(r, u)

r(1 − r2)µ−1/2

(n−1 + √
1 − r2)2µ

(r2 − u2)(d−3)/2 dr du

= c
∫ 1

−1

∫ √
1−u2

0
F(

√
1 − t2, u)

t2µ(1 − t2 − u2)(d−3)/2

(n−1 + t)2µ
dt du.

Using the trivial inequality t/(t + n−1) ≤ 1 we conclude that

J2 ≤ c
∫ 1

−1

∫ √
1−u2

0
F(

√
1 − t2, u)(1 − t2 − u2)(d−3)/2 du dt.
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Since θ ∼ sin θ/2 ∼ √
1 − cos θ for 0 ≤ θ ≤ π , we have

F(
√

1 − t2, u) ∼ (1 + n
√

1 − u|x | − t
√

1 − |x |2)−2σ , 0 ≤ t ≤
√

1 − u2.

But 1 − u|x | − t
√

1 − |x |2 ≥ 0 if −√
1 − u2 ≤ t ≤ 0. Therefore, we can enlarge the

domain of integration to obtain

J2 ≤ c
∫

B2

(1 − t2 − u2)(d−3)/2 du dt

(1 + n
√

1 − u|x | − t
√

1 − |x |2)2σ
.

Here B2 is the unit disk in R2. We now change the variables (u, t) 
→ (a, b), where

a =
√

1 − |x |2 t + |x |u, b = −|x |t +
√

1 − |x |2 u.

It is easy to see that this is an orthogonal transformation so that da db = du dt . Hence

J2 ≤ c
∫

B2

(1 − a2 − b2)(d−3)/2

(1 + n
√

1 − a)2σ
da db

= c
∫ 1

−1

1

(1 + n
√

1 − a)2σ

∫ √
1−a2

−
√

1−a2
(1 − a2 − b2)(d−3)/2 db da

≤ c
∫ 1

−1

(1 − a2)(d−2)/2

(1 + n
√

1 − a)2σ
da

≤ c

n2σ
+ c

∫ 1

0

(1 − a)(d−2)/2

(1 + n
√

1 − a)2σ
da

≤ c

n2σ
+ c

nd

∫ n

0

sd−1

(1 + s)2σ
ds ≤ c

nd
,

since 2σ > d . Thus (4.20) is established when p = 2.
To prove (4.20) when p �= 2 we will need the inequalities√

1 − |x |2 + n−1

√
2(1 + n d(x, y))

≤
√

1 − |y|2 + n−1(4.22)

≤
√

2(
√

1 − |x |2 + n−1)(1 + n d(x, y)), x, y ∈ Bd ,

which follow readily from (4.9). From this and the definition ofWµ(x; n) in (4.10) we
get

cWµ(n; x)(1 + n d(x, y))−2µ ≤Wµ(n; y) ≤ cWµ(n; x)(1 + n d(x, y))2µ.(4.23)

Case 2. 0 < p < 2. Using (4.23) we obtain

Wµ(n; y)p/2 =Wµ(n; y)Wµ(n; y)p/2−1 ≥ cWµ(n; y)

Wµ(n; x)1−p/2(1 + nd(x, y))2µ(1−p/2)
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and hence∫
Bd

wµ(y) dy

Wµ(n; y)p/2(1 + n d(x, y))σ p
≤ cWµ(n; x)1−p/2

∫
Bd

wµ(y) dy

Wµ(n; y)(1 + n d(x, y))τ
,

where τ := (σ − 2µ(1/p − 1/2))p. By the hypothesis of the lemma, τ > d. Then the
above inequality and (4.20) with p = 2 imply (4.20) in this case.

Case 3. 2 < p < ∞. Similarly, as above by (4.23),

Wµ(n; y)p/2 =Wµ(n; y)Wµ(n; y)p/2−1 ≥ cWµ(n; y)Wµ(n; x)p/2−1

(1 + n d(x, y))2µ(p/2−1)
.

Consequently,∫
Bd

wµ(y) dy

Wµ(n; y)p/2(1 + n d(x, y))σ p
≤ cWµ(n; x)1−p/2

∫
Bd

wµ(y) dy

Wµ(n; y)(1 + n d(x, y))τ
,

where this time τ := (σ − 2µ(1/2 − 1/p))p. Since τ > d, the above inequality and
(4.20) with p = 2 imply (4.20) in the case 2 < p < ∞.

It will be vital for our further development that Lµ
n (x, y) is a Lip 1 function in x (or y)

with respect to the distance d(·, ·). Throughout the rest of the paper, we denote by Bξ (r)
the closed ball centered at ξ of radius r > 0 with respect to the distance d(·, ·) on Bd ,
i.e.,

Bξ (r) := {x ∈ Bd : d(x, ξ) ≤ r}, ξ ∈ Bd , r > 0.

Proposition 4.7. Let ξ, y ∈ Bd , n ≥ 1, and c∗ > 0 . Then, for all x, z ∈ Bξ (c∗n−1)

and an arbitrary k, we have

|Lµ
n (x, y)− Lµ

n (ξ, y)| ≤ ck
nd+1 d(x, ξ)√

Wµ(n; y)
√
Wµ(n; z)(1 + n d(y, z))k

,(4.24)

where ck depends only on k, µ, d , â, and c∗.

Proof. Letµ > 0. We will use the notation t (x, y; u) :=〈x, y〉+u
√

1 − |x |2
√

1 − |y|2,
introduced in (4.12). By (4.4) it follows that

|Lµ
n (x, y)− Lµ

n (ξ, y)|(4.25)

≤ c
∫ 1

−1
|Qλ

n(t (x, y; u))− Qλ
n(t (ξ, y; u))|(1 − u2)µ−1 du

≤ c
∫ 1

−1
‖∂Qλ

n(·)‖L∞(Iu)|t (x, y; u)− t (ξ, y; u)|(1 − u2)µ−1 du,

where ∂ f = f ′ and Iu is the interval with endpoints t (x, y; u) and t (ξ, y; u).
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As in the proof of Theorem 4.2, by estimate (4.5) with r = 1, it follows that

‖∂Qλ
n(·)‖L∞(Iu) ≤ ckn2λ+3 max

τ∈Iu

(1 + n
√

1 − τ)−k(4.26)

≤ ckn2λ+3((1 + n
√

1 − t (x, y; u))−k

+ (1 + n
√

1 − t (ξ, y; u))−k),

using the fact that (1 + n
√

1 − τ)−k is an increasing function of τ .
By the definition of t (x, y; u) it follows that (recall x ′ := (x,

√
1 − |x |2)),

|t (x, y; u)− t (ξ, y; u)|
≤ |〈x ′, y′〉 − 〈ξ ′, y′〉| + |1 − u|

√
1 − |y|2|

√
1 − |x |2 −

√
1 − |ξ |2|

≤ |cos d(x, y)− cos d(ξ, y)| +
√

2 |1 − u|
√

1 − |y|2 d(x, ξ),

where we used inequality (4.9) from Lemma 4.1. Denote briefly α := d(x, y) and
β := d(ξ, y). Then

|cos d(x, y)− cos d(ξ, y)| = 2 sin
|α − β|

2
sin

α + β

2
≤ 1

2 |α − β|(α + β)

≤ 1
2 |d(x, y)− d(ξ, y)|(d(x, y)+ d(ξ, y))

≤ 1
2 d(x, ξ)(d(x, y)+ d(ξ, y))

≤ d(x, ξ)(d(y, z)+ c∗n−1)

for z ∈ Bξ (c∗n−1). Hence,

|t (x, y; u)− t (ξ, y; u)| ≤ d(x, ξ)(d(y, z)+ c∗n−1)+
√

2 |1 − u|
√

1 − |y|2 d(x, ξ).

We use this and (4.26) in (4.25) to obtain

|Lµ
n (x, y)− Lµ

n (ξ, y)|
≤ cn2λ+3 d(x, ξ)(d(y, z)+ c∗n−1)

×
(∫ 1

−1

(1 − u2)µ−1 du

(1 + n
√

1 − t (x, y; u)k
+

∫ 1

−1

(1 − u2)µ−1 du

(1 + n
√

1 − t (ξ, y; u)k

)
+ cn2λ+3

√
1 − |y|2 d(x, ξ)

×
(∫ 1

−1

(1 − u)(1 − u2)µ−1 du

(1 + n
√

1 − t (x, y; u)k
+

∫ 1

−1

(1 − u)(1 − u2)µ−1 du

(1 + n
√

1 − t (ξ, y; u)k

)
=: A1 + A2 + A3 + A4.

By Lemma 4.4 with γ = µ− 1, we have

A1 ≤ cn2λ+3 d(x, ξ)(d(y, z)+ c∗n−1)
n−2µ√

Wµ(n; x)
√
Wµ(n; y)(1 + n d(x, y))σ
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with σ := k − 3µ − 1. Note that, for y ∈ Bd and all z ∈ Bξ (c∗n−1), we have 1 +
n d(z, y) ∼ 1 + n d(ξ, y) and

√
1 − |z|2 + c∗n−1 ∼

√
1 − |ξ |2 + n−1, using (4.9).

Consequently,

A1 ≤ cnd+1 d(x, ξ)√
Wµ(n; x)

√
Wµ(n; z)(1 + n d(y, z))σ−1

.(4.27)

We similarly obtain the same bound for A2.
To estimate A3 we employ Lemma 4.4 with γ = µ and obtain

A3 ≤ cn2λ+3
√

1 − |y|2 d(x, ξ)(4.28)

× n−2µ−2

(
√

1 − |x |2 + n−1)µ+1(
√

1 − |y|2 + n−1)µ+1(1 + n d(x, y))σ

with σ := k −3µ−4. By cancelling appropriate terms we conclude that (4.27) holds for
A3 as well. In exactly the same way one can see that A4 also satisfies (4.28) and hence
(4.27). The proof of the proposition is complete.

Remark 4.8. For the sake of completeness, we record next some simple properties of
the operators with kernels Lµ

n (x, y) from (4.3), where â is admissible of type (a). Denote

(Lµ
n f )(x) :=

∫
Bd

f (y)Lµ
n (x, y)wµ(y) dy, µ ≥ 0,(4.29)

Evidently, Lµ
n f ∈ 
d

2n and Lµ
n g = g for g ∈ 
d

n . A classical argument using
Proposition 4.5 shows that, for 1 ≤ p ≤ ∞, ‖Lµ

n ‖L p
µ→L p

µ
≤ c and hence

‖ f − Lµ
n f ‖L p

µ
≤ cEn( f )p, f ∈ L p

µ,

where En( f )p denotes the best approximation of f from 
d
n in L p

µ := L p(Bd , wµ). In
the next section we will put the operators Lµ

n to work for their primary purpose, namely,
for the construction of cubature formulas on Bd .

5. Cubature Formula on Bd

Cubature formulas on Bd with weightswµ(x),µ ≥ 0, which are exact for all polynomials
of degree n, are valuable from many prospectives. Those with positive coefficients are
preferred for numerical computation and are called positive cubature formulas. In the
literature, only a handful of positive cubature formulas are known. For our purpose of
constructing polynomial frames on Bd (see Section 6)) we will need positive cubature
whose knots are almost equally distributed with respect to the distance d(·, ·) introduced
in (4.7). To the best of our knowledge there are no such cubature formulas available up
to now. There is a close relation between cubature formulas on the unit ball and those
on the unit sphere Sd [20]. In the following we will apply the method used in [12], [13]
(see also [15]) for constructing cubature formulas on the unit sphere.

One of the difficulties in constructing cubature formulas on Bd is the lack of uniformly
distributed points on Bd . We shall use, as a substitute, sets of “almost equally distributed
points” with respect to the distance d(·, ·) in Bd which we describe next.
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Definition 5.1. We say that a setXε ⊂ Bd , along with an associated partitionRε of Bd

consisting of measurable subsets of Bd , is a set of almost uniformly ε-distributed points
on Bd if:

(i) Bd = ⋃
R∈Rε

R and the sets inRε do not overlap (R◦
1 ∩ R◦

2 = ∅ if R1 �= R2).
(ii) For each R ∈ Rε there is a unique ξ ∈ Xε such that Bξ (c∗ε) ⊂ R ⊂ Bξ (ε).

Hence #Xε = #Rε ≤ c∗∗ε−d . Here the constant c∗ > 0, depending only on d, is fixed but
sufficiently small, so that the existence of sets of almost uniformly ε-distributed points
on Bd is guaranteed (see the next lemma).

Lemma 5.2. For sufficiently small constant c∗ > 0, depending only on d , and an
arbitrary 0 < ε ≤ π , there exists a setXε ⊂ Bd of almost uniformly ε-distributed points
on Bd , where the associated partition Rε of Bd consists of projections of spherical
simplices.

Proof. As we already mentioned, the distance d(x, y) (x, y ∈ Bd ) is the geodesic
distance between x ′, y′ ∈ Sd

+. So, we need to subdivide properly Sd
+. We first divide Sd

+
into 2d spherical simplices analogous to the intersections of S2 with the octants in R3.
LetO1 be the spherical simplex on which all coordinates of ξ ∈ O1 are nonnegative and
let

T1 :=
{

d+1∑
j=1

tj ej : tj ≥ 0,
d+1∑
j=1

tj = 1

}
,

where {ej } are the standard unit vectors in Rd+1. If v := (1, . . . , 1), then the map
x(ξ) := ξ/〈ξ, v〉 gives an one-to-one correspondence between O1 and T1. It is readily
seen that, for ξ, ζ ∈ O1,

1

2
√

d
d(ξ, ζ ) ≤ |x(ξ)− x(ζ )| ≤ 2

√
d d(ξ, ζ ).(5.1)

Here | · | denotes the Euclidean norm in Rd+1 and d(·, ·) is the geodesic distance on
Sd ⊂ Rd+1.

We set M := �2
√

dε−1� and divide the equilateral simplexT1 into Md equal equilateral
subsimplices of side length L = √

2/M . We denote by R̃1
ε the set of all spherical

simplices obtained by applying the inverse map x−1 to the simplices defined above. We
similarly define the set X̃ 1

ε of the “centers” of all spherical simplices in R̃1
ε by applying the

inverse map x−1 to the midpoints of the corresponding Euclidean simplices. After these
preparations, we define R1

ε as the set of projections onto Bd of all spherical simplices
from R̃1

ε and we similarly define X 1
ε .

It is straightforward to show that an equilateral Euclidean simplex with each side
of length L contains the ball of radius L/

√
2d(d + 1) centered at its midpoint and is

contained in a ball of radius < L/
√

2 with the same center. Then (5.1) yields that the
corresponding spherical simplex contains the spherical cap centered at its center and of
radius L/(2d

√
2(d + 1)) and is contained in a spherical cap with the same center and

radius <
√

2d L ≤ 2
√

d/M ≤ ε. This establishes property (ii) of Lemma 5.2 for the
spherical simplices inR1

ε . Also, we have #X 1
ε = #R1

ε = Md ≤ (4
√

dε−1)d .
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Repeating this procedure with all other initial simplices, we establish the existence of
the desired partitionRε.

The following lemma contains additional information about the partition Rε from
above.

Lemma 5.3. LetRε be as in Lemma 5.2. Then, for any ξ ∈ Xε,

|Rξ | :=
∫

Rξ

1 dx ∼ εd
√

1 − |ξ |2 ∼ εd(
√

1 − |ξ |2 + ε)(5.2)

and

mµ(Rξ ) :=
∫

Rξ

wµ(x) dx ∼ εd(1 − |ξ |2)µ = εd wµ(ξ)

w0(ξ)
∼ εd(

√
1 − |ξ |2 + ε)2µ.(5.3)

Here the constants of equivalence depend only on d and µ.

Proof. To prove (5.2) we use Lemma 5.2. Hence property (ii) in Definition 5.1 yields

|Rξ | ∼ |Bξ (ε)| and d(ξ, ∂Bd) ≥ c∗ε.(5.4)

We can assume without loss of generality that ξ lies on the positive x1-axis, i.e., ξ =
(ξ1, 0, . . . , 0) and 0 < ξ1 < 1. The boundary ∂Bξ (ε) of Bξ (ε) is given by the equation

x1ξ1 +
√

1 − |x |2
√

1 − ξ 2
1 = cos ε. A simple manipulation of this identity shows that

∂Bξ (ε) is the ellipsoid

(x1 − ξ1 cos ε)2

1 − |ξ1|2 + x2
2 + . . .+ x2

d = sin2 ε.

From this it follows that |Bξ (ε)| ∼ εd
√

1 − |ξ |2 (using that sin ε ∼ ε) and then (5.2)
follows.

We now turn to the proof of (5.3). There are two cases to be considered.

Case 1. µ ≥ 1
2 . Denote R−

ξ := Rξ ∩ {x ∈ Bd : |x | ≤ |ξ |}. It is easily seen that

|R−
ξ | ∼ |Rξ | ∼ εd

√
1 − |ξ |2. Then∫

Rξ

wµ(x) dx ≥
∫

R−
ξ

wµ(x) dx ≥ wµ(ξ)|R−
ξ | ∼ wµ(ξ)ε

d
√

1 − |ξ |2 = εd(1 − |ξ |2)µ.

Since ξ is in the center of Rξ by construction, we have
√

1 − |ξ |2 ≥ cε. Hence, for
x ∈ Rξ ⊂ Bξ (ε), inequality (4.9) shows that

wµ(x) ≤ (
√

1 − |ξ |2 + ε)2µ−1 ≤ cwµ(ξ),

which yields∫
Rξ

wµ(x) dx ≤ cwµ(ξ)|Rξ | ∼ wµ(ξ)ε
d
√

1 − |ξ |2 = εd(1 − |ξ |2)µ.
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Case 2. 0 ≤ µ < 1
2 . Denote R+

ξ := Rξ ∩ {x ∈ Bd : |x | ≥ |ξ |}. Proceeding as above
we again get (5.3).

Finally, using (5.4) we obtain
√

1 − |ξ |2 ≥ sin c∗ε ≥ cε which implies the last
equivalence in (5.3). The proof of the lemma is complete.

Theorem 5.4. There exists a constant c� > 0 (depending only on d ) such that for any
n ≥ 1 and a set Xε of almost uniformly ε-distributed points on Bd with ε := c�/n, there
exist positive coefficients {λξ }ξ∈Xε

such that the cubature formula∫
Bd

f (x) dx ∼
∑
ξ∈Xε

λξ f (ξ)

is exact for all polynomials of degree ≤ n. In addition,

λξ ∼ n−dWµ(n; ξ) ∼ εd(1 − |ξ |2)µ ∼ mµ(Bξ (ε))

with constants of equivalence depending only on µ and d . Here mµ(E) := ∫
E wµ(x) dx .

Note that when µ = 0 the cubature formula of Theorem 5.4 can be derived from the
cubature formula on Sd+1 from [12], [13], [15] by applying [20, Theorem 4.2].

Assume thatXε (with associated partitionRε) is a set of almost uniformly ε-distributed
points on Bd (see Definition 5.1), where ε = δ/n with n ≥ 1 and δ will be selected later
on. We introduce the following weighted �1-norm for functions defined on Bd :

‖ f ‖�1
µ(Xε)

:=
∑
ξ∈Xε

| f (ξ)|mµ(Rξ ).(5.5)

Also, recall the notation ‖ f ‖L1
µ
= ‖ f ‖L1(wµ,Bd ) := ∫

Bd | f (x)|wµ(x) dx .
We need a couple of additional results.

Lemma 5.5. If g ∈ 
d
n , then

|‖g‖L1
µ
− ‖g‖�1

µ(Xε)
| ≤

∑
ξ∈Xε

∫
Rξ

|g(x)− g(ξ)|wµ(x) dx ≤ c δ‖g‖L1
µ

(5.6)

and hence

(1 − c δ)‖g‖L1
µ
≤ ‖g‖�1

µ(Xε)
≤ (1 + c δ)‖g‖L1

µ
,(5.7)

where c depends only on d and µ.

Proof. Let Lµ
n be the operator from (4.29). Using that g = Lµ

n g and the fact thatRε is
a partition of Bd (see Lemma 5.2), we obtain

|‖g‖L1
µ
− ‖g‖�1

µ(Xε)
| ≤

∑
ξ∈Xε

∫
Rξ

|g(x)− g(ξ)|wµ(x) dx

≤
∑
ξ∈Xε

∫
Rξ

∫
Bd

|Lµ
n (x, y)− Lµ

n (ξ, y)||g(y)|wµ(y) dywµ(x) dx

≤ ‖g‖L1
µ

sup
y∈Bd

∑
ξ∈Xε

∫
Rξ

|Lµ
n (x, y)− Lµ

n (ξ, y)|wµ(x) dx .
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By Proposition 4.7 with z = x , it follows that∫
Rξ

|Lµ
n (x, y)− Lµ

n (ξ, y)|wµ(x) dx

≤
∫

Rξ

cknd+1 d(x, ξ)wµ(x) dx√
Wµ(n; x)

√
Wµ(n; y)(1 + n d(y, x))k

.

Choosing k sufficiently large (k > d +µ will do) we apply Lemma 4.6 with p = 1 and
use that d(x, ξ) ≤ δn−1 for x ∈ Rξ to obtain

sup
y∈Bd

∑
ξ∈Xε

∫
Rξ

|Lµ
n (x, y)− Lµ

n (ξ, y)|wµ(x) dx

≤ cδnd
∫

Bd

wµ(x) dx√
Wµ(n; x)

√
Wµ(n; y)(1 + nd(y, x))k

≤ cδ.

The lemma follows.

The Farkas Lemma. A variant of the well known in Optimization Farkas lemma will
play an important role in the proof of Theorem 5.4.

Proposition 5.6. Let V be a finite-dimensional real vector space and denote by V ∗ its
dual. Let u1, u2, . . . , un ∈ V ∗ and suppose u ∈ V ∗ has the property that u(x) ≥ 0 for all
x ∈ V such that uj (x) ≥ 0 for j = 1, 2, . . . , n. Then there exist aj ≥ 0, j = 1, 2, . . . , n,
such that

u =
n∑

j=1

aj uj .(5.8)

For the proof of this proposition, see, e.g., [1].

Proof of Theorem 5.4. First, we choose δ := 1/3c , where c is the constant from
Lemma 5.5. In applying Proposition 5.6, we take V := 
d

n and {uj } to be the set of all
point evaluation functionals {δξ }ξ∈Xε

.
Let the linear functionals u and uγ be defined by

u(g) :=
∫

Bd

g(x)wµ(x) dx and uγ (g) := u(g)− γ
∑
ξ∈Xε

g(ξ)mµ(Rξ ).

Since c δ = 1
3 , the left-hand side estimate in (5.7) yields

‖g‖L1
µ
≤ 3

2‖g‖�1
µ(Xε)

, g ∈ 
d
n .(5.9)

Suppose g ∈ 
d
n and g(ξ) ≥ 0 for all ξ ∈ Xε. Then using (5.6) with c∗δ = 1

3 and (5.9),
we obtain

|u(g)− ‖g‖�1
µ(Xε)

| =
∑
ξ∈Xε

∫
Rξ

|g(x)− g(ξ)|wµ(x) dx ≤ c δ‖g‖L1
µ
≤ 1

2‖g‖�1
µ(Xε)
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and hence u(g) ≥ 1
2‖g‖�1

µ(Xε)
. Choose γ := 1

3 . Then since g(ξ) ≥ 0, ξ ∈ Xε, we obtain

uγ (g) = u(g)− 1
3‖g‖�1

µ(Xε)
≥ 1

6‖g‖�1
µ(Xε)

≥ 0.

Applying Proposition 5.6 to uγ , there exist numbers aξ ≥ 0, ξ ∈ Xε, such that

uγ (g) =
∑
ξ∈Xε

aξ g(ξ), g ∈ 
d
n ,

and hence

u(g) =
∑
ξ∈Xε

(aξ + 1
3 mµ(Rξ ))g(ξ) =:

∑
ξ∈Xε

λξ g(ξ), g ∈ 
d
n .

Therefore, the linear functional
∑

ξ∈Xε
λξ g(ξ) provides a cubature formula exact for all

polynomials of degree n.
Clearly, λξ ≥ mµ(Rξ )/3 and the estimate λξ ≤ cmµ(Rξ ) follows from Lemma 5.3

and Proposition 5.7 below.

The last ingredient in bounding λξ from above is the following general result that is
of independent interest.

Proposition 5.7. If a positive cubature formula∫
Bd

f (x)wµ(x) dx ∼
∑
ξ∈Xε

λξ f (ξ), λξ > 0, |ξ | < 1,(5.10)

is exact for all polynomials of degree ≤ n, then

λξ ≤ cn−dWµ(n; ξ) = cn−d(
√

1 − |ξ |2 + n−1)2µ, ξ ∈ Xε,(5.11)

where c > 0 depends only on µ and d .

Proof. Recall the kernel Km(wµ; x, y) defined in (1.3). Evidently, Km(wµ; ξ, ξ) > 0
and ∫

Bd

[Km(wµ; x, y)]2wµ(y) dy = Km(wµ; x, x).

Let m =  n/2!. Then it follows that

λξ ≤
∑
η∈Xε

λη

[
Km(wµ; ξ, η)
Km(wµ; ξ, ξ)

]2

=
∫

Bd

[
Km(wµ; ξ, x)

Km(wµ; ξ, ξ)
]2

wµ(x) dx = 1

Km(wµ; ξ, ξ) .

Hence, the stated result is a consequence of an upper bound for [Km(wµ; x, x)]−1, to be
established in Proposition 5.9 below.

In order to establish the needed upper bound for [Kn(wµ; x, x)]−1 we now construct
a family of well-localized polynomials.



Localized Polynomial Frames on the Ball 143

Lemma 5.8. For any k,m ≥ 1 and ξ ∈ Bd there exists a polynomial Pξ ∈ 
d
2km and

a constant c∗ > 0 depending only on k and d such that Pξ (ξ) = 1 and for 0 ≤ γ ≤ k,
x ∈ Bd ,

0 ≤ Pξ (x) ≤ c∗

(1 + m d(ξ, x))2k
≤ c(

√
1 − |ξ |2 + m−1)γ

(
√

1 − |x |2 + m−1)γ (1 + m d(ξ, x))k
.(5.12)

Proof. Let q(θ) := (sin(mθ/2)/m sin(θ/2))2k . Evidently, q is a trigonometric poly-
nomial of degree less than km, q(0) = 1, and

0 ≤ q(θ) ≤ c

(1 + m|θ |)2k
, |θ | ≤ π.(5.13)

For 0 ≤ α ≤ π , we define the algebraic polynomial Qα(t) by

Qα(cos θ) := q(θ − α)+ q(θ + α)

1 + q(2α)
.

It is readily seen that deg Qα < km, Qα(cosα) = 1, and

0 ≤ Qα(cos θ) ≤ c

(1 + m|θ − α|)2k
, 0 ≤ θ ≤ π.(5.14)

Also, Qπ/2 is even and

0 ≤ Qπ/2(t) ≤ c

(1 + m|arccos t − π/2|)2k
≤ c

(1 + m|t |)2k
, |t | ≤ 1.(5.15)

Without loss of generality we may assume that ξ = (ξ1, 0, . . . , 0) with 0 < ξ1 < 1. We
choose α ∈ (0, π/2) so that ξ1 = cosα. Then (5.14) gives

0 ≤ Qα(t) ≤ c

(1 + m d1(ξ1, t))2k
, |t | ≤ 1,(5.16)

where d1(ξ1, t) := arccos(ξ1t+√
1 − ξ 2

1

√
1 − t2) is the univariate version of the distance

d(·, ·) (see (4.7)). We define

Pξ (x) := Qα(x1)Qπ/2(
√

x2 + · · · + x2
d).

Clearly, Pξ ∈ 
d
2km , Pξ (ξ) = 1 and, by (5.15)–(5.16),

0 ≤ Pξ (x) ≤ c

[(1 + m|x∗|)(1 + m d1(ξ1, x1))]2k
, x ∈ Bd ,(5.17)

where x∗ := (x2, . . . , xd) and |x∗| := (x2
2 + · · · + x2

d)
1/2.

It remains to show that Pξ obeys (5.12). To this end, we first show that

d(ξ, x) ≤ 2(|x∗| + d1(ξ1, x1)).(5.18)

Denote briefly x� := (x1, 0, . . . , 0). We have

d(ξ, x) ≤ d(ξ, x�)+ d(x�, x) = d1(ξ1, x1)+ d(x�, x).
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Our next step is to prove the inequality

d(x�, x) ≤ 2|x∗|.(5.19)

Evidently,

d(x�, x) = arccos(〈x ′
�, x ′〉) = arccos(x2

1 +
√

1 − x2
1

√
1 − x2

1 − x2
2 − · · · − x2

d).

One easily verifies the inequality arccos t ≤ 2
√

1 − t , 0 ≤ t ≤ 1, and hence (5.19) will
be established if we show that

(1 − x2
1 −

√
1 − x2

1

√
1 − x2

1 − |x∗|2)1/2 ≤ |x∗|.

Denote briefly a :=
√

1 − x2
1 and b := |x∗|. Then the above inequality is equivalent

to a2 − a
√

a2 − b2 ≤ b2 or a
√

a2 − b2 − (a2 − b2) ≥ 0. But the latter inequality is
apparently valid since

a
√

a2 − b2 − (a2 − b2) = b2
√

a2 − b2

a + √
a2 − b2

≥ 0.

Thus (5.19) is established and hence (5.18) holds. Combining (5.17) with (5.18) gives

0 ≤ Pξ (x) ≤ c

(1 + m d(ξ, x))2k
, x ∈ Bd ,(5.20)

which is the first estimate of Pξ (x) in (5.12).
To prove the second estimate in (5.12) we need the estimate

1

1 + m d(ξ, x)
≤ c

√
1 − |ξ |2 + m−1√
1 − |x |2 + m−1

, x ∈ Bd ,(5.21)

which apparently follows by inequality (4.9) in Lemma 4.1 (see also (4.22)).
Finally, applying (5.21) in (5.20), we get the second estimate in (5.12), which com-

pletes the proof.

The function "n(x) := [Kn(wµ; x, x)]−1 is the so-called Christoffel function, which
has the following characteristic property [4, p. 109]:

"n(x) = min
P(x)=1,P∈
d

n

∫
Bd

[P(y)]2wµ(y) dy, x ∈ Bd .(5.22)

The localized polynomials in Lemma 5.8 give an upper bound for the Christoffel function,
used in the proof of Proposition 5.7.

Proposition 5.9. For any µ ≥ 0 and d > 1 there exists a constant c > 0 such that

"n(x) ≤ cn−dWµ(n; x), x ∈ Bd , n ≥ 1.(5.23)
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Proof. Write k := [max{d/2, µ}] + 1 and let n ≥ 4k (the case 1 ≤ n < 4k is
trivial). Set m := [n/2k]. By Lemma 5.8 there exists a polynomial Px (y) ∈ 
d

n such
that Px (x) = 1 and (5.12) holds with γ = µ and ξ, x replaced by x, y. Then, by (5.22),
(5.12), and Lemma 4.6 with p = 2, we infer

"n(x) ≤
∫

Bd

[Px (y)]2wµ(y) dy ≤ c
∫

Bd

Wµ(m; x)wµ(y) dy

Wµ(m; y)(1 + m d(x, y))2k

≤ cm−dWµ(m; x) ≤ cn−dWµ(n; x).

For the construction of our frames, we will need the following result which is an
immediate consequence of Lemma 5.2 and Theorem 5.4.

Corollary 5.10. There exists a sequence {Xj }∞j=0 of sets of almost uniformly εj -distrib-
uted points on Bd (Xj := Xεj ) with εj := c�2− j−2 and there exist positive coefficients
{λξ }ξ∈Xj such that the cubature∫

Bd

f (x)wµ(x) dx ∼
∑
ξ∈Xj

λξ f (ξ)(5.24)

is exact for all polynomials of degree ≤ 2 j+2. Moreover, λξ ∼ mµ(Bξ (2− j )) and #Xj ∼
2 jd with constants of equivalence depending only on d and µ.

6. Localized Polynomial Frames (Needlets) in L2(Bd , wµ)

We will apply the general scheme, described in Section 2, for construction of polynomial
frames in L2

µ := L2(Bd , wµ). To this end, we will utilize the localized polynomials from
Theorem 4.2 and the cubature formula from Theorem 5.4 (see Corollary 5.10).

Let â satisfy the conditions

â ∈ C∞[0,∞), â ≥ 0, supp â ⊂ [ 1
2 , 2],(6.1)

â(t) > c > 0, if t ∈ [ 3
5 ,

5
3 ],(6.2)

â2(t)+ â2(2t) = 1, if t ∈ [ 1
2 , 1].(6.3)

For the construction of such functions, see, e.g., [15].
We introduce a sequence of polynomial “kernels”: L0(x, y) := P0(wµ; x, y) and (see

Section 4)

L j (x, y) :=
∞∑
ν=0

â
( ν

2 j−1

)
Pν(wµ; x, y), j = 1, 2, . . . .

We now define the needlets (frame elements) by

ψξ(x) := √
λξ · L j (x, ξ) for ξ ∈ Xj , j = 0, 1, . . . ,
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where Xj is the set of the knots and the λξ ’s are the coefficients of the cubature formula
(5.24) from Corollary 5.10. We write X := ⋃∞

j=0 Xj (see Section 2) and define the
needlet system � by

� := {ψξ }ξ∈X .
Denoting

(L j ∗ f )(x) :=
∫

Bd

L j (x, y) f (y)wµ(y) dy,

we get as in (2.7) the semidiscrete needlet decomposition of L2
µ:

f =
∞∑

j=0

L j ∗ L j ∗ f for f ∈ L2
µ.

It readily follows by (2.10)–(2.11) and Corollary 5.10 that the needlet system � is a
tight frame in L2

µ:

Theorem 6.1. If f ∈ L2
µ, then

f =
∞∑

j=0

∑
ξ∈Xj

〈 f, ψξ 〉ψξ =
∑
ξ∈X

〈 f, ψξ 〉ψξ in L2
µ

and

‖ f ‖L2
µ
=

(∑
ξ∈X

|〈 f, ψξ 〉|2
)1/2

.

Remark 6.2. We restricted our attention here to the needlet decomposition of L2
µ only,

however, much more is true. In [9] we show that the needlets from this paper can be
used for characterization of L p

µ(Bd) (1 < p < ∞) and the more general weighted
Triebel–Lizorkin and Besov spaces on the ball with weight wµ(x).

We finally show that each needlet ψξ has faster than any polynomial rate of decay
away from its “center” ξ with respect to the distance d(·, ·) on Bd . This property of the
needlets is critical for using them for decomposition of spaces other than L2

µ.

Theorem 6.3. For any k > 0 there exists a constant ck > 0 depending only on k, µ,
d , and â such that, for ξ ∈ Xj , j = 0, 1, . . .,

|ψξ(x)| ≤ ck
2 jd/2√

Wµ(2 j ; x)(1 + 2 j d(x, ξ))k
, x ∈ Bd .(6.4)

Proof. Estimate (6.4) follows readily from (4.11) (see Theorem 4.2), taking into ac-
count that λξ ≤ c2− jdWµ(2 j ; ξ) for ξ ∈ Xj .
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Corollary 6.4. For 0 < p ≤ ∞, we have

‖ψξ‖L p
µ
≤ c

(
2 jd

Wµ(2 j ; ξ)
)1/2−1/p

, ξ ∈ Xj .(6.5)

In particular, ‖ψξ‖L2
µ
≤ c, which shows that estimate (6.4) is sharp (in a sense).

Estimate (6.5) follows readily by (6.4) and Lemma 4.6.
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[10] Y. MEYERS (1990): Ondelletes et Opérateurs I: Ondelletes. Paris: Hermann.
[11] H. MHASKAR (2004): Polynomial operators and local smoothness classes on the unit interval. J. Approx.

Theory, 131:243–267.
[12] H. MHASKAR, F. NARCOWICH, J. WARD (2001): Spherical Marcinkiewicz–Zygmund inequalities and

positive quadrature. Math. Comp., 70:1113–1130.
[13] H. MHASKAR, F. NARCOWICH, J. WARD (2001): Corrigendum to “Spherical Marcinkiewicz–Zygmund

inequalities and positive quadrature”. Math. Comp., 71(#237):453–454.
[14] I. P. MYSOVSKIKH (1981): Interpolatory Cubature Formulas. In Russian. Moscow: Nauka.
[15] F. NARCOWICH, P. PETRUSHEV, J. WARD (2006): Localized tight frames on spheres. SIAM J. Math.

Anal., 38:347–692.
[16] F. NARCOWICH, J. WARD, P. PETRUSHEV (2006): Decomposition of Besov and Triebel–Lizorkin spaces

on the sphere. J. Funct. Anal., 238:530–564.
[17] P. PETRUSHEV, YUAN XU (2005): Localized polynomial frames on the interval with Jacobi weights.

J. Fourier Anal. Appl., 5:557–575.
[18] A. STROUD (1971): Approximation Calculation of Multiple Integrals. Englewood Cliffs, NJ: Prentice-

Hall.
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