B-spaces and their Characterization via Anisotropic Franklin Bases

G. Kyriazis, K. Park, and P. Petrushev *

B-spaces (generalized Besov spaces) generated by multilevel nested triangulations of compact polygonal domains in \mathbb{R}^2 are explored. Mild conditions are imposed on the triangulations which prevent them from deterioration and at the same time allow for a lot of flexibility and, in particular, arbitrarily sharp angles. It is shown that the B-spaces can be characterized by the corresponding anisotropic Franklin bases. This result is applied to nonlinear n-term approximation from anisotropic Franklin bases.

1. Introduction

We consider general B-spaces generated by sequences of multilevel nested triangulations of compact polygonal domains in \mathbb{R}^2. For a given polygonal domain E in \mathbb{R}^2 we consider a sequence of nested triangulations T_0, T_1, \ldots of general nature. Mild conditions are imposed on the triangulations which prevent them from deterioration. At the same time these conditions allow for a great deal of flexibility and, in particular, arbitrarily sharp angles. Generalized Besov spaces B^{α}_{pq} (called B-spaces) are naturally associated with every such sequence of triangulations and provide a specific nonstandard means of measuring the smoothness of the functions. A particular class of B-spaces needed in nonlinear approximation were introduced in [7] and further developed and used in [2, 3, 8].

In this article, we show that the general B-spaces can be characterized via Franklin bases obtained by applying the Gram-Schmidt orthogonalization process to the corresponding Courant elements. Similar results for Besov spaces in regular setups are obtained in [6] (see also the references in [6]). Further, we show how the B-spaces can be used to characterize the approximation spaces of nonlinear n-term approximation from anisotropic Franklin systems in L_p ($1 < p < \infty$). This is a follow up paper of [9], where among other things it is

*Supported by NSF Grant DMS-0200665.
proved that the anisotropic Franklin bases are Schauder bases for C and L_1, and unconditional bases for L_p ($1 < p < \infty$) and the corresponding Hardy space H_1.

The paper is organized as follows. In §2 we give all auxiliary results and introduce the anisotropic Franklin bases. In §3 we introduce the general B-spaces B_{pq}^α and show that the anisotropic Franklin bases characterize the B-spaces. In §4, we show that the approximation spaces of nonlinear n-term approximation from anisotropic Franklin bases can be characterized by certain B-spaces.

Notation. Throughout this article for a set $G \subset \mathbb{R}^2$, $|G|$ denotes the Lebesgue measure of G, while $\mathbf{1}_G$ denotes the characteristic function of G, and $\tilde{\mathbf{1}}_G := |G|^{-1/2}\mathbf{1}_G$. For a finite set G, $\#G$ denotes the cardinality of G. Positive constants are denoted by c, c_1, \ldots (if not specified, they may vary at every occurrence), $A \approx B$ means $c_1 A \leq B \leq c_2 B$, and $A := B$ or $B =: A$ stands for “A is by definition equal to B”. We set $\langle f, g \rangle := \int_E fg$.

2. Preliminaries

In this section we collect all prerequisites regarding triangulations, maximal operators, local approximation, etc., which will be needed in the development of the B-spaces and their characterization via Franklin bases.

2.1. Multilevel Triangulations

A set $E \subset \mathbb{R}^2$ is said to be a **bounded polygonal domain** if its interior E° is connected and E is the union of a finite set T_0 of closed triangles with disjoint interiors: $E = \bigcup_{\triangle \in T_0} \triangle$. We call $T = \bigcup_{m=0}^\infty T_m$ a **locally regular triangulation** of E or briefly an LR-triangulation with levels $(T_m)_{m \geq 0}$ if the following conditions are fulfilled:

(a) Every level T_m is a partition of E, that is, $E = \bigcup_{\triangle \in T_m} \triangle$ and T_m consists of closed triangles with disjoint interiors.

(b) The levels (T_m) of T are nested, i.e., T_{m+1} is a refinement of T_m.

(c) Each triangle $\triangle \in T_m$ has at least two and at most M_0 children (subtriangles) in T_{m+1}, where $M_0 \geq 2$ is a constant.

(d) The valence N_v of each vertex v of any triangle $\triangle \in T_m$ (the number of the triangles from T_m which share v as a vertex) is at most N_0, where N_0 is a constant.

(e) **No hanging vertices condition**: No vertex of any triangle $\triangle \in T_m$ which belongs to the interior of E lies in the interior of an edge of another triangle from T_m.
(f) There exist constants $0 < r < \rho < 1$ ($r \leq \frac{1}{2}$) such that for each $\Delta \in \mathcal{T}_m$ ($m \geq 0$) and any child $\Delta' \in \mathcal{T}_{m+1}$ of Δ,
\[r|\Delta| \leq |\Delta'| \leq \rho|\Delta|. \tag{2.1} \]

(g) There exists a constant $0 < \delta \leq 1$ such that for $\Delta', \Delta'' \in \mathcal{T}_m$ ($m \geq 0$) with a common vertex,
\[\delta \leq |\Delta'|/|\Delta| \leq \delta^{-1}. \tag{2.2} \]

We call $\mathcal{T} = \bigcup_{m=0}^{\infty} \mathcal{T}_m$ a regular triangulation of a bounded polygonal domain $E \subset \mathbb{R}^2$ if \mathcal{T} satisfies conditions (a)-(e) of LR-triangulations and also the minimal angle condition, that is, $\min \text{angle}(\Delta) \geq \beta$ for every triangle $\Delta \in \mathcal{T}$, where $\beta > 0$ is a constant. Evidently, every regular triangulation is locally regular but not the other way around. For other types of triangulations, see [7].

We denote by V_m the set of all vertices of triangles from \mathcal{T}_m and by E_m the set of all edges of triangles in \mathcal{T}_m. We also set $V := \cup_{m \geq 0} V_m$ and $E := \cup_{m \geq 0} E_m$.

We next give some basic facts concerning LR-triangulations. For more details about LR-triangulations, we refer the reader to [7] and [9].

The constants $M_0, N_0, r, \rho, \delta$, and $\#T_0$ associated with an LR-triangulation \mathcal{T} are assumed fixed. We refer to them as parameters of \mathcal{T}.

The most important conditions (f)-(g) on LR-triangulations involve only areas of triangles but not angles. Consequently, if \mathcal{T} is an LR-triangulation and $\Delta', \Delta'' \in \mathcal{T}_m$ have a common edge, then it may happen that Δ' is an equilateral triangle (or close to an equilateral triangle) but Δ'' has an uncontrollably sharp angle.

In an LR-triangulation \mathcal{T} there can be an equilateral (or close to such) triangle Δ_0 at any level \mathcal{T}_m with descendants $\Delta_1 \supset \Delta_2 \supset \ldots$ such that $\min \text{angle}(\Delta_j) \to 0$ as $j \to \infty$.

It is important to know how fast the area $|\Delta|$ of a triangle $\Delta \in \mathcal{T}_m$ may change when Δ moves away from a fixed triangle within the same level. Condition (f) suggests a geometric rate of change but in fact it is polynomial.

Lemma 1. If $\Delta, \Delta' \in \mathcal{T}_m$ can be connected by n intermediate edges from E_m, then
\[c_1^{-1}(n+1)^{-s} \leq |\Delta'|/|\Delta''| \leq c_1(n+1)^s, \tag{2.3} \]
where $s, c_1 > 0$ depend only on the parameters of \mathcal{T}.

Graph distance. We next introduce the mth level graph distance between vertices, which will play an important role in our further development: For any two vertices $v', v'' \in \mathcal{T}_m$, $m \geq 0$, we define the graph distance $\rho_m(v', v'')$ as the minimum number of edges from E_m needed to connect v' and v''.

The following lemma will be needed later on (see [9]).
Lemma 2. There exist constants $c > 0$ and $t > 0$ depending only on the parameters of \mathcal{T} such that for any $v^c \in \mathcal{V}_m$

$$\# \{ v \in \mathcal{V}_m : \rho_m(v, v^c) \leq n \} \leq cn^t, \quad n \geq 1.$$ \hfill (2.4)

Cells. For any vertex $v \in \mathcal{V}_m$ ($m \geq 0$), we denote by θ_v the union of all triangles from \mathcal{T}_m which have v as a common vertex. We denote by Θ_m the set of all such cells θ_v with $v \in \mathcal{V}_m$ and set $\Theta = \bigcup_{m \geq 0} \Theta_m$. For a given cell $\theta \in \Theta$, we shall denote by v_θ the “central” vertex of θ.

For given $\theta', \theta'' \in \Theta_m$, we define the graph distance $\rho_m(\theta', \theta'')$ between θ' and θ'' by $\rho_m(\theta', \theta'') := \rho_m(v_{\theta'}, v_{\theta''})$, where $v_{\theta'}, v_{\theta''} \in \mathcal{V}_m$ are the “central vertices” of θ', θ''.

Definition of θ^n_m. We want to associate with each $x \in E$ a cell $\theta^n_m \in \Theta_m$, $m \geq 0$, which contains x. To this end we first associate with each triangle $\Delta \in \mathcal{T}_m$ a cell $\theta_{\Delta}^m \in \Theta_m$ such that $\Delta \subset \theta_{\Delta}^m$. Such a cell can be selected in three different ways. We choose one of them for each $\Delta \in \mathcal{T}_m$. Then for each $x \in E$ such that $x \in \Delta^0$ with $\Delta \in \mathcal{T}_m$, we define $\theta^n_m := \theta_{\Delta}^m$. If x lies on the edge of a triangle from \mathcal{T}_m, we define θ^n_m as any cell from θ_m such that x belongs to its interior, but if $x = v_\theta$ for some $\theta \in \Theta_m$, we set $\theta^n_m := \theta$.

Stars. In order to deal with graph distances and neighborhood relations it is convenient to employ the notion of the nth level star of a set: For any set $G \subset E$ and $m \geq 0$, we define the first mth level star of G by

$$\text{Star}_m(G) := \text{Star}_m^1(G) := \cup \{ \theta \in \Theta_m : \theta \cap G \neq \emptyset \}$$ \hfill (2.5)

and inductively, $\text{Star}_m^k(G) := \text{Star}_m^1(\text{Star}_m^{k-1}(G))$, $k > 1$.

Maximal operator. Every LR-triangulation \mathcal{T} of E naturally generates a maximal operator $\mathcal{M}_2^\mathcal{T}$ defined by

$$\mathcal{M}_2^\mathcal{T} f(x) := \sup_{\theta \in \Theta} \left(\frac{1}{|\theta|} \int_{\theta} |f(y)|^s \, dy \right)^{1/s}$$ \hfill (2.6)

where the supremum is over all cells $\theta \in \Theta$ containing x or $\theta = E$.

It is important that the Fefferman-Stein [5] vector valued maximal inequality holds for the maximal operator $\mathcal{M}_2^\mathcal{T}$ (for more details, see [9]):

Proposition 1. Let \mathcal{T} be an LR-triangulation of $E \subset \mathbb{R}^2$. If $0 < p < \infty$, $0 < q \leq \infty$, and $0 < s < \min \{ p, q \}$, then for any sequence of functions $(f_j)_{j=1}^\infty$ on E,

$$\left\| \left(\sum_{j=1}^\infty |\mathcal{M}_2^\mathcal{T} f_j|^q \right)^{1/q} \right\|_p \leq c \left\| \left(\sum_{j=1}^\infty |f_j|^q \right)^{1/q} \right\|_p,$$ \hfill (2.7)

where c depends only on p, q, s, and the parameters of \mathcal{T}.
2.2. Local Piecewise Linear Approximation and Courant Elements

The no-hanging-vertices condition (e) on LR-triangulations guarantees the existence of Courant elements, that is, for every cell $\theta \in \Theta_m$ there exists a unique continuous piecewise linear function φ_θ on E which is supported on θ and satisfies $\varphi_\theta(v_\theta) = 1$. This is the so called Courant element associated to θ. We denote $\Phi_m := \Phi_{m,T} := (\varphi_\theta)_{\theta \in \Theta_m}$ and $\Phi := \Phi_T := \bigcup_{m \geq 0} \Phi_m$.

We let S_m denote the space of all continuous piecewise linear functions over T_m. Clearly, $S \in S_m$ if and only if $S = \sum_{v \in V_m} S(v) \varphi_\theta$. Evidently, $S_0 \subset S_1 \subset \ldots$ and it is easy to see [7] that $\bigcup_{m \geq 0} S_m = L^p(E)$, $0 < p \leq \infty$.

We shall frequently use the obvious fact that all norms of a polynomial on a triangle are equivalent, namely, if P is a polynomial of degree $\leq k$ and \triangle is a triangle in \mathbb{R}^2, then

$$\|P\|_{L^p(\triangle)} \approx |\triangle|^{1/p-1/q} \|P\|_{L^q(\triangle)}, \quad 0 < p, q \leq \infty, \quad (2.8)$$

with constants of equivalence depending only on k, p, and q.

The L^p-stability of $\Phi_m = (\varphi_\theta)_{\theta \in \Theta_m}$ is immediate from (2.8): If $(a_\theta)_{\theta \in \Theta_m}$ is an arbitrary sequence of real numbers and $S := \sum_{\theta \in \Theta_m} a_\theta \varphi_\theta$, then

$$\|S\|_p \approx \left(\sum_{\theta \in \Theta_m} \|a_\theta \varphi_\theta\|_p^p \right)^{1/p} \approx \left(\sum_{\theta \in \Theta_m} |\theta| |a_\theta|^p \right)^{1/p}, \quad 0 < p \leq \infty. \quad (2.9)$$

The local piecewise linear approximation will play an important role in our further development. For $f \in L^q(E)$ and $\triangle \in T_m$, we denote the error of L^q-approximation to f from S_m on $\text{Star}_m(\triangle)$ by

$$S_\triangle(f)_q := S_\triangle(f, T)_q := \inf_{S \in S_m} \|f - S\|_{L^q(\text{Star}_m(\triangle))}. \quad (2.10)$$

The set Φ of all Courant elements is obviously redundant. A standard way of representing functions is by using the so called quasi-interpolant operators defined by

$$Q_m(f) := Q_{m,T}(f) = \sum_{\theta \in \Theta_m} \langle f, \tilde{\varphi}_\theta \rangle \varphi_\theta, \quad m \geq 0, \quad (2.11)$$

where the dual functions $\tilde{\varphi}_\theta$ are constructed so that they are supported in θ and $\langle \tilde{\varphi}_\theta, \varphi_{\theta'} \rangle = \delta_{\theta \theta'}$ for $\theta, \theta' \in \Theta_m$. In particular, the duals can be defined by

$$\tilde{\varphi}_\theta := \sum_{\triangle \in T_m, \triangle \subset \theta} 1_\triangle \cdot \lambda_{\triangle, \theta}, \quad (2.12)$$

where $\lambda_{\triangle, \theta}$ is the linear polynomial which is equal to $\frac{9}{N_v |\triangle|}$ at v_θ (the “central vertex” of θ) and it takes the value $-\frac{3}{N_v |\triangle|}$ at the other two vertices of \triangle (recall that N_v is the valence of v).
Evidently, \(Q_m \) is a linear projector, i.e., \(Q_m(S) = S \) for \(S \in \mathcal{S}_m \). It is important that \(Q_m \) is locally bounded and provides good local approximation: If \(f \in L_q(E) \), \(1 \leq q \leq \infty \), and \(\triangle \in \mathcal{T}_m \), then

\[
\| Q_m(f) \|_{L_q(\triangle)} \leq c \| f \|_{L_q(\text{Star}_m(\triangle))},
\]

and

\[
\| f - Q_m(f) \|_{L_q(\triangle)} \leq c S_\triangle(f)_q,
\]

where the constants depend only on \(q \) and the parameters of \(\mathcal{T} \).

We define

\[
q_m := Q_m - Q_{m-1} \quad \text{for} \quad m \geq 0, \quad \text{where} \quad Q_{-1} := 0.
\]

Clearly, \(q_m(f) \in \mathcal{S}_m \). For a given function \(f \) we define the coefficients \((b_\theta(f))_{\theta \in \Theta_m} \) from the expression

\[
q_m(f) := \sum_{\theta \in \Theta_m} b_\theta(f) \varphi_\theta, \quad m \geq 0.
\]

It is readily seen that for \(f \in L_p(E) \), \(1 \leq p \leq \infty \),

\[
f = \sum_{m=0}^{\infty} (Q_m(f) - Q_{m-1}(f)) = \sum_{m=0}^{\infty} \sum_{\theta \in \Theta_m} b_\theta(f) \varphi_\theta,
\]

where \(Q_{-1}(f) := 0 \) and the convergence is in \(L_p(E) \). For the proofs of all of the above and more details, we refer the reader to [7] (see also [8]).

2.3. Anisotropic Franklin Bases

Here we define the Franklin system \(\mathcal{F}_T \) generated by Courant elements and present our main results on Franklin bases obtained in [9].

Let \(\mathcal{T} := \bigcup_{m \geq 0} \mathcal{T}_m \) be an LR-triangulation of \(E \) and recall that \(\mathcal{V}_m \) denotes the set of all vertices of triangles from \(\mathcal{T}_m \). We set \(\mathcal{V}_0 = \emptyset \) and \(\mathcal{V}_* = \mathcal{V}_m \setminus \mathcal{V}_{m-1} \) for \(m \geq 1 \) and write \(\mathcal{V}_* = \bigcup_{m=0}^{\infty} \mathcal{V}_m^* \).

Let \(\Theta_0 := E \). Choose \(\theta_{\max} \in \Theta_0 \) to be of maximum area and denote \(\Theta_0^* := \{ \theta_0 \} \cup \Theta_0 \setminus \{ \theta_{\max} \} \), i.e., we replace \(\theta_{\max} \) by \(\theta_0 = E \). Moreover, we associate \(\theta_0 \) with \(v_{\theta_{\max}} \) and set \(\varphi_{\theta_0} := 1_{\theta_0} \). For \(m \geq 1 \) denote by \(\Theta_m^* \) the set of all cells \(\theta \in \Theta_m \) with “central” vertices \(v_\theta \in \mathcal{V}_m^* \) and set \(\Theta^* := \bigcup_{m=0}^{\infty} \Theta_m^* \).

Note that for each \(m \), the set \(\{ \varphi_\theta : \theta \in \Theta_m^* \} \) is linearly independent. Also, \(\mathcal{S}_m = \text{span} \{ \varphi_\theta : \theta \in \Theta_m \} = \text{span} \{ \varphi_\theta : \theta \in \bigcup_{m=0}^{\infty} \Theta_m^* \} \).

We consider an arbitrary (but fixed) linear order \(\preceq \) on \(\Theta^* \) satisfying the following conditions:

(i) If \(\theta \in \Theta_m^* \) and \(\theta' \in \Theta_n^* \) with \(m < n \), then \(\theta \preceq \theta' \) and (ii) \(\theta_0 \preceq \theta \), \(\forall \theta \in \Theta^* \).

We now define the Franklin system \(\mathcal{F}_T \) by applying the Gram-Schmidt orthogonalization process to \(\{ \varphi_\theta \}_{\theta \in \Theta^*} \) in \(L_2(E) \) with respect to the order \(\preceq \). We obtain an orthonormal system \(\mathcal{F}_T := \{ f_\theta \}_{\theta \in \Theta^*} \) in \(L_2(E) \) consisting of continuous
piecewise linear functions. Each Franklin function \(f_\theta \) is uniquely determined (up to a multiple \(\pm 1 \)) by the conditions:

(a) \(f_\theta \in \text{span}\{ \varphi_{\theta'} : \theta' \preceq \theta \} \).

(b) \(\langle f_\theta, \varphi_{\theta'} \rangle = 0 \) for all \(\theta' \prec \theta \).

(c) \(\| f_\theta \|_2 = 1 \).

Note that \(f_{\theta_0} = \pm \mathbf{1}_{\theta_0} := \pm |E|^{-1/2} \mathbf{1}_E \).

Our main results on anisotropic Franklin systems from \cite{9} read as follows: The Franklin system \(F_T := \{ f_\theta \}_{\theta \in \Theta} \) is a Schauder basis for \(L^p(E) \), \(1 \leq p \leq \infty \), with \(L_\infty(E) := C(E) \) and a unconditional basis for \(L^p(E), 1 < p < \infty \) and the corresponding Hardy space \(H_1(E,T) \). Also, \(H_1(E,T) \) is exactly the space of all functions in \(L_1 \) for which the Franklin system expansion converge unconditionally in \(L_1 \). Finally, the Franklin bases characterize the corresponding anisotropic BMO spaces.

For the purposes of this article, we need the localization properties of the Franklin functions \cite{9} (we use the notation from \S 2.1).

Proposition 2. There exist constants \(0 < q_1 < 1 \) and \(c > 0 \) depending only on the parameters of \(T \) such that for any \(\theta \in \Theta^*_m \) (\(m \geq 0 \)),

\[
|f_\theta(x)| \leq c|\theta|^{-1/2}q_1^{\alpha_m(\theta,\theta_m)}, \quad x \in E,
\]

and for any \(s > 0 \) there exists a constant \(c_s \) such that

\[
|f_\theta(x)| \leq c_s|\theta|^{-1/2}(M_T^\alpha \mathbf{1}_\theta)(x), \quad x \in E,
\]

where \(M_T^\alpha \) is the maximal operator defined in (2.6). Furthermore,

\[
c_p^{-1}|\theta|^{1/p-1/2} \leq \|f_\theta\|_{L_\infty(\theta)} \leq \|f_\theta\|_p \leq c_p|\theta|^{1/p-1/2}, \quad 0 < p \leq \infty.
\]

3. **B-spaces**

In this section we define the general B-spaces \(B_{pq}^\alpha \) and show that they can be characterized by the corresponding Franklin bases.

3.1. **Definition of B-spaces and Basic Properties**

We begin by introducing the B-space \(B_{pq}^\alpha := B_{pq}^\alpha(T) \) induced by an arbitrary LR-triangulation \(T \) of a compact polygonal domain \(E \) in \(\mathbb{R}^2 \). Since our primary goal here is to relate them to the corresponding Franklin bases, we consider only B-spaces which are imbedded in \(L_1 \). We say that the indices \(\alpha, p, \) and \(q \) are **admissible** if one of the following holds:

(a) \(0 < p, q \leq \infty \) and \(\alpha > (1/p - 1)_+ \) or

(b) \(0 < p < 1, 0 < q \leq 1, \) and \(\alpha = 1/p - 1. \)
As will be shown these conditions guarantee the desired embedding.

For a given LR-triangulation of E, we define $B_{\alpha}^{pq}(T)$ as the set of all functions $f \in L^p(E)$ such that

$$
|f|_{B_{\alpha}^{pq}(T)} := \left(\sum_{m=0}^{\infty} \left(\sum_{\triangle \in T_m} (|\triangle|^{-\alpha} S_\Delta(f)_p) \right)^{q/p} \right)^{1/q} < \infty,
$$

(3.1)

where $S_\Delta(f)_p$ is the error of L^p-approximation to f from S_m on Star$_m(\triangle)$ (see (2.10)). We set

$$
\|f\|_{B_{\alpha}^{pq}(T)} := |E|^{-\alpha} \|f\|_p + |f|_{B_{\alpha}^{pq}(T)}.
$$

(3.2)

Evidently, $\|\cdot\|_{B_{\alpha}^{pq}(T)}$ is a norm if $p, q \geq 1$ and quasi-norm otherwise.

The B-space B_{α}^{pq} has an atomic decomposition. We define

$$
\|f\|_{B_{\alpha}^{pq}(T)}^A := \inf_{f = \sum_{\theta \in \Theta_m} a_\theta \varphi_\theta} \left(\sum_{m=0}^{\infty} \left(\sum_{\theta \in \Theta_m} (|\theta|^{-\alpha} \|a_\theta \varphi_\theta\|_p)^p \right)^{q/p} \right)^{1/q},
$$

(3.3)

where the infimum is taken over all representations $f = \sum_{\theta \in \Theta_m} a_\theta \varphi_\theta$ in $L^p(E)$.

A third approach to the B-spaces B_{α}^{pq} is by using the decomposition via quasi-interpolants from (2.17). We define

$$
\|f\|_{B_{\alpha}^{pq}(T)}^Q := \left(\sum_{m=0}^{\infty} \left(\sum_{\theta \in \Theta_m} (|\theta|^{-\alpha} \|b_\theta(f)\varphi_\theta\|_p)^p \right)^{q/p} \right)^{1/q}.
$$

(3.4)

The following lemma serves as a justification of our definition of admissible indices.

Lemma 3. If α, p, q are admissible indices and $\|f\|_{B_{\alpha}^{pq}(T)}^A < \infty$, then

$$
\|f\|_{L^1} \leq c \|f\|_{B_{\alpha}^{pq}(T)}^A.
$$

(3.5)

Proof. We consider only the case when $p < 1$, $q > 1$, and $\alpha > 1/p - 1$, since the other cases are similar. Let $f = \sum_{\theta \in \Theta_m} a_\theta \varphi_\theta$ in L^p. Then using (2.8) and (2.9) we infer

$$
\|f\|_1 \leq c \|f\|_{B_{\alpha}^{pq}(T)}^A \leq c \sum_{m=0}^{\infty} \sum_{\theta \in \Theta_m} \|a_\theta \varphi_\theta\|_1
$$

$$
\leq c \sum_{m=0}^{\infty} \sum_{\theta \in \Theta_m} |\theta|^{1-1/p} \|a_\theta \varphi_\theta\|_p
$$

$$
= c |E| \sum_{m=0}^{\infty} \sum_{\theta \in \Theta_m} (|\theta|/|E|)^{\epsilon} |\theta|^{-\alpha} \|a_\theta \varphi_\theta\|_p,
$$

where
where $\varepsilon := \alpha - (1/p - 1) > 0$. By (2.1)-(2.2) if $\theta \in \Theta_m$, then $|\theta|/|E| \leq c p^m$. We use this, the fact that $p < 1$, and Hölder’s inequality to obtain

$$
\|f\|_1 \leq c|E|^{\varepsilon} \sum_{m=0}^{\infty} \rho^{\varepsilon m} \left(\sum_{\theta \in \Theta_m} (|\theta|^{-\alpha}\|a_{\theta}\varphi_\theta\|_p)^p \right)^{1/p} \leq c|E|^{\varepsilon} \left(\sum_{m=0}^{\infty} \rho^{\varepsilon m q} \right)^{1/q},
$$

where $1/q + 1/q' = 1$. Since $0 < \rho < 1$, the above yields (3.5).

Theorem 1. For a given LR-triangulation T of E and admissible indices α, p, and q, the norms $\|\cdot\|_{B_{pq}^\alpha(T)}$, $\|\cdot\|_{A_{B_{pq}^\alpha(T)}}$, and $\|\cdot\|_{Q_{B_{pq}^\alpha(T)}}$, defined in (3.2)-(3.4), are equivalent with constants of equivalence depending only on α, p, q, and the parameters of T.

The proof of this theorem is fairly simple and will be omitted (see the proofs of the corresponding results in [2, 3, 7]; see also the more complicated proof of Theorem 2 below).

Remark 1. As was shown above the B-spaces B_{pq}^α are in essence sequence spaces and hence they can be interpolated by utilizing standard techniques. We do not present such result here. For some interpolation results on B-spaces, see [3].

Remark 2. In general the B-spaces are different from Besov spaces. However, if T is a regular triangulation of a compact polygonal domain E in \mathbb{R}^2, then the B-space $B_{pq}^\alpha(T)$ coincides with the Besov space $B_{q}^{2\alpha}(L_p(E))$ for sufficiently small $\alpha > 0$. For more details, see [7].

3.2. Franklin Basis Decomposition of B-spaces

Our main goal in this section is to show that the B-spaces $B_{pq}^\alpha(T)$ can be characterized via representations using Franklin bases. We define

$$
\|f\|_{F_{B_{pq}^\alpha(T)}} := \left(\sum_{m=0}^{\infty} \left(\sum_{\theta \in \Theta_m^*} (|\theta|^{-\alpha}\|c_\theta(f)\varphi_\theta\|_p)^p \right)^{q/p} \right)^{1/q},
$$

where $c_\theta(f) := \langle f, \varphi_\theta \rangle$.

Theorem 2. Suppose α, p, and q are admissible indices and let T be an LR-triangulation of a bounded polygonal domain $E \subset \mathbb{R}^2$. Then $f \in B_{pq}^\alpha(T)$ if and only if $\|f\|_{F_{B_{pq}^\alpha(T)}} < \infty$ and

$$
\|f\|_{F_{B_{pq}^\alpha(T)}} \approx \|f\|_{B_{pq}^\alpha(T)}.
$$

(3.7)
Proof. (a) We first show that if \(\|f\|_{B^p_{pq}} < \infty \), then
\[
\|f\|_{B^p_{pq}} \leq c \|f\|_{B^p_{pq}}^r.
\] (3.8)
We consider only the case when \(1 < p < q < \infty \), since the other cases are the same or easier.

Let \(\triangle \in T_j \) \((j \geq 0)\) and denote briefly \(\triangle^* := \text{Star}_j(\triangle) \) (see (2.5)). Evidently, \(S_\triangle(g)_p = 0 \) if \(g \in S_{j-1} \). Therefore, using that \(f = \sum_{\theta \in \Theta_j} c_\theta f_\theta \) in \(L_p \) with \(c_\theta := c_\theta(f) := (f, f_\theta) \), we have
\[
S_\triangle(f)_p \leq \sum_{m=0}^\infty \| \sum_{\theta \in \Theta^*_m} c_\theta f_\theta \|_{L_p(\triangle^*)}. \quad (3.9)
\]

For \(\theta \in \Theta^*_m \), we denote \(g_\theta(x) := |\theta|^{-1/2} q_1^{\rho_m(\theta, \theta^m)/2} \). Then by (2.18), we have \(|f_\theta(x)| \leq c g_\theta(x) q_1^{\rho_m(\theta, \theta^m)/2}, \) \(x \in E \). Applying Hölder’s inequality, we obtain
\[
\left| \sum_{\theta \in \Theta^*_m} c_\theta f_\theta(x) \right|^p \leq c \left(\sum_{\theta \in \Theta^*_m} |c_\theta| g_\theta(x) q_1^{\rho_m(\theta, \theta^m)/2} \right)^p \leq c \left(\sum_{\theta \in \Theta^*_m} |g_\theta(x)| q_1^{\rho_m(\theta, \theta^m)/2} \right)^p \left(\sum_{\theta \in \Theta^*_m} q_1^{\rho_m(\theta, \theta^m)p'/2} \right)^{p'/p}, \quad (3.10)
\]
where as usual \(1/p + 1/p' = 1 \).

Fix \(\omega \in \Theta_m \) and denote
\[
\Theta^*_m := \{ \theta \in \Theta_m : \rho_m(\omega, \theta) = \nu \}, \quad \nu \geq 0.
\]
Note that by Lemma 2, \(\# \Theta^*_m \leq \nu + 1 \). Therefore, for an arbitrary \(\beta > 0 \),
\[
\sum_{\theta \in \Theta_m} q_1^{\beta \rho_m(\omega, \theta)} \leq \sum_{\nu=0}^{\infty} \sum_{\theta \in \Theta^*_m} q_1^{\beta \nu} \leq \sum_{\nu=0}^{\infty} \# \Theta^*_m q_1^{\beta \nu} \leq c \sum_{\nu=0}^{\infty} \nu + 1 \right|^\beta q_1^{\beta \nu} \leq c < \infty. \quad (3.11)
\]
We use (3.11) in (3.10) with \(\beta = p'/2 \) and integrate to obtain
\[
\left\| \sum_{\theta \in \Theta^*_m} c_\theta f_\theta \right\|_{L_p(\triangle^*)} \leq c \left(\sum_{\theta \in \Theta^*_m} \|c_\theta g_\theta\|_{L_p(\triangle^*)}^p \right)^{1/p}. \quad (3.12)
\]
We need estimate \(\|g_\theta\|_{L_p(\triangle^*)} \). To this end we define, for \(\theta \in \Theta_m \) and \(\triangle \in \Theta_j \) \((m \geq j)\),
\[
\rho_m(\theta, \triangle^*) := \inf \{ \rho_m(\theta, \theta^m_\triangle) : x \in (\triangle^*)^\circ \} \quad (3.13)
\]
and
\[
\rho_j(\triangle, \theta) := \inf \{ \rho_j(\theta^j_\triangle) : x \in \triangle^\circ, \; y \in \theta^\circ \}.
\]
We next show that
\[
\|g\|_{L^p(E)}^p \leq c \|f\|_{L^p(E)}^p \rho_2(\triangle), \quad \text{where } 0 < q_2 < 1. \tag{3.14}
\]

Denote briefly \(r := \rho_m(\theta, \triangle^*) \) and let \(E_r := \{ x \in E : \rho_m(\theta, \omega^m) \geq r \} \). Also, let \(\Theta_m^\nu := \{ \eta \in \Theta_m : \rho_m(\theta, \eta) = \nu \} \). Then \(E_r = \bigcup_{\nu=r}^{\infty} \bigcup_{\eta \in \Theta_m^\nu} \eta \). Evidently, \(\triangle^* \subset E_r \) and hence
\[
\|g\|_{L^p(\triangle^*)}^p \leq \sum_{\nu=r}^{\infty} \sum_{\eta \in \Theta_m^\nu} \|g\|_{L^p(\eta)}^p.
\]

Further, we use the definition of \(g \theta \) to obtain
\[
\|g\|_{L^p(\triangle^*)}^p \leq c |\theta|^{-p/2} \sum_{\nu=r}^{\infty} \sum_{\eta \in \Theta_m^\nu} |\eta| \rho_1^{\nu} \leq c |\theta|^{1-p/2} \sum_{\nu=r}^{\infty} \sum_{\eta \in \Theta_m^\nu} (|\eta|/|\theta|) \rho_1^{\nu p/2}.
\]

By (2.3), \(|\eta|/|\theta| \leq c(\nu + 1)^s\) and by Lemma 2, \(\# \Theta_m^\nu \leq c(\nu + 1)^t \). Consequently,
\[
\|g\|_{L^p(\triangle^*)}^p \leq c |\theta|^{1-p/2} \sum_{\nu=r}^{\infty} \# \Theta_m^\nu (\nu + 1)^s \rho_1^{\nu p/2} \leq c |\theta|^{1-p/2} \sum_{\nu=r}^{\infty} (\nu + 1)^{t+s} \rho_1^{\nu p/2} \tag{3.15}
\]
for some \(0 < q_2 < 1 \). Now taking into account that \(\|f\|_{L^p(E)} \approx |\theta|^{1/p-1/2} \) by (2.20) and \(\rho_m(\theta, \triangle^*) \geq \rho_j(\triangle, \theta) - 1 \), since \(m \geq j \), we conclude that (3.15) yields (3.14).

Combining (3.9) with (3.12) and (3.14), we obtain
\[
|\triangle|^{-\alpha} S_\triangle(f)_p \leq c \sum_{m=j}^{\infty} \left(\sum_{\delta \in \Theta_m^\nu} (|\theta|/|\triangle|)^{\alpha p} |\theta|^{-\alpha p} \|f\|_{L^p(E)}^{\rho_2(\triangle, \theta)} \right)^{1/p}.
\]

Let \(\omega \in \Theta_j \) be such that \(\theta \subset \omega \). Then by (2.1)-(2.2), \(|\theta|/|\omega| \leq c \rho^{m-j}\) and using (2.3), \(|\omega|/|\triangle| \leq c(\rho_j(\triangle, \omega) + 1)^s \leq c(\rho_j(\triangle, \theta) + 1)^s\). Therefore,
\[
(|\theta|/|\triangle|)^{\alpha p} \rho_2^{\rho_2(\triangle, \theta)} \leq c_1 (\rho_j(\triangle, \theta) + 1)^{\alpha p} \rho_2^{\rho_2(\triangle, \theta)} \rho^{\rho(m-j)} \leq c_2 \rho_2^{\rho_2(\triangle, \theta)} \rho^{\rho(m-j)},
\]
for some \(0 < q_3 < 1 \). Thus
\[
|\triangle|^{-\alpha} S_\triangle(f)_p \leq c \sum_{m=j}^{\infty} \rho^{\rho(m-j)} \left(\sum_{\delta \in \Theta_m^\nu} A_2^{\rho_2(\triangle, \theta)} \right)^{1/p}.
\]
where \(A_\theta := |\theta|^{-\alpha} \| c_\theta f_\theta \|_p \). Finally, applying Hölder’s inequality, we get

\[
(|\Delta|^{-\alpha} S_\Delta (f)_p)^p \leq c \left(\sum_{m=j}^{\infty} \rho^{\alpha p(m-j)/2} \sum_{\theta \in \Theta_m^*} A_\theta^{p} q_j^{(\Delta, \theta)} \right) \left(\sum_{m=j}^{\infty} \rho^{\alpha p'(m-j)/2} \right)^{p'/p'} \\
\leq c \sum_{m=j}^{\infty} \rho^{\alpha p(m-j)/2} \sum_{\theta \in \Theta_m^*} A_\theta^{p} q_j^{(\Delta, \theta)},
\]

(3.16)

since \(0 < \rho < 1 \).

We are now prepared to prove (3.8). Using (3.16) in the definition of \(|f|_{B^pq} \), we have

\[
|f|_{B^pq}^q = \sum_{j=0}^{\infty} \left(\sum_{\Delta \in T_j} (|\Delta|^{-\alpha} S_\Delta (f)_p)^p \right)^{q/p} \\
\leq c \sum_{j=0}^{\infty} \left(\sum_{m=j}^{\infty} \rho^{\alpha p(m-j)/2} \sum_{\theta \in \Theta_m^*} A_\theta^{p} q_j^{(\Delta, \theta)} \right)^{q/p} \\
\leq c \sum_{j=0}^{\infty} \left(\sum_{m=j}^{\infty} \frac{\rho^{\alpha p(m-j)/2}}{\rho^{\alpha q(m-j)/2}} \sum_{\theta \in \Theta_m^*} A_\theta^{p} \sum_{\Delta \in T_j} q_j^{(\Delta, \theta)} \right)^{q/p},
\]

where we once switched the order of summation. Similarly as in (3.11), we have

\[
\sum_{\Delta \in T_j} q_j^{(\Delta, \theta)} \leq c < \infty.
\]

On the other hand, using Hölder’s inequality,

\[
\left(\sum_{m=j}^{\infty} \frac{\rho^{\alpha p(m-j)/2}}{\rho^{\alpha q(m-j)/2}} \sum_{\theta \in \Theta_m^*} A_\theta^{p} \right)^{q/p} \leq \left(\sum_{m=j}^{\infty} \rho^{\alpha p(m-j)/4} \sum_{\theta \in \Theta_m^*} A_\theta^{p} \right)^{q/p} \left(\sum_{m=j}^{\infty} \rho^{\alpha q(m-j)/4} \right)^{1/q} \\
\leq c \sum_{m=j}^{\infty} \rho^{\alpha q(m-j)/4} \left(\sum_{\theta \in \Theta_m^*} A_\theta^{p} \right)^{q/p},
\]

where \(\gamma > 1 \) is determined from \(p/q + 1/\gamma = 1 \). Consequently,

\[
|f|_{B^pq}^q \leq c \sum_{j=0}^{\infty} \sum_{m=j}^{\infty} \rho^{\alpha q(m-j)/4} \left(\sum_{\theta \in \Theta_m^*} A_\theta^{p} \right)^{q/p} \\
\leq c \sum_{m=0}^{\infty} \left(\sum_{\theta \in \Theta_m^*} A_\theta^{p} \right)^{q/p} \sum_{j=0}^{m} \rho^{\alpha q(m-j)/4} \\
\leq c \sum_{m=0}^{\infty} \left(\sum_{\theta \in \Theta_m^*} A_\theta^{p} \right)^{q/p},
\]
where we once switched the order of summation and used that $0 < \rho < 1$. Therefore, $\|f\|_{B^p_{\rho q}} \leq c \|f\|_{B^p_{\rho q}}^{\frac{p}{q}}$.

It remains to show that $\|f\|_p \leq c \|E\|_\alpha \|f\|_{B^p_{\rho q}}$. Exactly as in (3.12), we obtain

$$\|f\|_p \leq \sum_{j=0}^{\infty} \left| \sum_{\theta \in \Theta^*_m} c_\theta f\theta \right|_p \leq c \sum_{j=0}^{\infty} \left(\sum_{\theta \in \Theta^*_m} \|c_\theta f\theta\|_p^p \right)^{1/p},$$

and continuing as in the proof of Lemma 3 we arrive at $\|f\|_p \leq c \|E\|_\alpha \|f\|_{B^p_{\rho q}}$. Thus (3.8) is established.

(b) We next show that

$$\|f\|_{B^p_{\rho q}} \leq c \|f\|_{B^p_{\rho q}},$$

provided $\|f\|_{B^p_{\rho q}} < \infty$. We again consider only the most complicated case when $1 < p < q < \infty$. We first estimate $|c_\theta(f)|$, where $c_\theta(f) := \langle f, \theta \rangle$. If $f \in L_p(E)$, then by (2.17)

$$f = Q_0 f + \sum_{j=1}^{\infty} (Q_j(f) - Q_j-1(f)) =: \sum_{j=0}^{\infty} q_j. \tag{3.18}$$

Fix $\theta \in \Theta^*_m (m \geq 1)$. Then since $f_\theta \perp S_{m-1}$ and $q_j \in S_j$,

$$|c_\theta(f)| \leq \int_E |f_\theta(x) \sum_{j=m}^{\infty} q_j(x)| dx \leq \sum_{j=m}^{\infty} \int_E |f_\theta(x)q_j(x)| dx.$$

Denote $g_\theta(x) := q_1^{\rho_m(\theta, \theta')}\frac{1}{2}$ and $h_\theta(x) := |\theta|^{-1/2} q_1^{\rho_m(\theta, \theta')/2}$. Exactly as in the estimate of $\|g_\theta\|_{L_{p}(\Delta^*)}^p$ above (see (3.15) and also the estimate of $\|f_\theta\|_p$ in [9]) we have $\|h_\theta\|_\tau \approx |\theta|^{1/\tau - 1/2}$ for $0 < \tau \leq \infty$. By (2.18), $|f_\theta(x)| \leq c g_\theta(x) h_\theta(x), x \in E$. Using the above and Hölder’s inequality, we obtain

$$|c_\theta(f)| \leq c \sum_{j=m}^{\infty} \|q_\Delta g_\theta\|_p \|h_\theta\|_{p'} \leq c |\theta|^{1/p' - 1/2} \sum_{j=m}^{\infty} \left(\sum_{\Delta \in S_j} \|q_\Delta g_\theta\|_{L_{p}(\Delta)}^p \right)^{1/p} \leq c |\theta|^{1/2 - 1/p} \sum_{j=m}^{\infty} \left(\sum_{\Delta \in S_j} \|q_\Delta\|_{L_{p}(\Delta)}^p q_1^{\rho_m(\theta, \Delta')/2} \right)^{1/p}, \tag{3.19}$$

where $\rho_m(\theta, \Delta)$ is defined as in (3.13).

For $\Delta \in S_j$, we denote by Δ' the only triangle in T_{j-1} such that $\Delta \subset \Delta'$. Then by (2.14),

$$\|q_\Delta\|_{L_{p}(\Delta')} \leq \|f - Q_1(f)\|_{L_{p}(\Delta')} + \|f - Q_{j-1}(f)\|_{L_{p}(\Delta')} \leq c (S_{\Delta}(f)_p + S_{\Delta'}(f)_p)$$

and evidently $\rho_m(\theta, \Delta') \leq \rho_m(\theta, \Delta)$. Using this in (3.19), we obtain

$$|c_\theta(f)| \leq c |\theta|^{1/2 - 1/p} \sum_{j=m-1}^{\infty} \left(\sum_{\Delta \in S_j} S_{\Delta}(f)_p q_1^{\rho_m(\theta, \Delta')/2} \right)^{1/p}.$$
and since \(\|f\|_p \approx |\theta|^{1/p - 1/2} \), we have

\[
|\theta|^{-\alpha p} \|c_\theta(f) f_\theta\|_p^p \leq c|\theta|^{-\alpha p} \left(\sum_{j=m-1}^{\infty} \left(\sum_{\Delta \in T_j} S_\Delta(f)^p \cdot q_{\rho_0(\theta, \Delta)^2} \right)^{1/p} \right)^p.
\] (3.20)

If \(\theta \in \Theta_0 \), then

\[
\|c_\theta(f) f_\theta\|_p = |\langle f, f_\theta \rangle| \leq \|f\|_p \|f_\theta\|_{p'} \leq c\|f\|_p
\]

and by (2.1)-(2.2), \(|\theta| \geq c|E| \) for \(\theta \in \Theta_0 \), where \(c > 0 \) depends on the parameters of \(T \) (including \(T_0 \)). Therefore,

\[
|\theta|^{-\alpha} \|c_\theta(f) f_\theta\|_p \leq c|E|^{-\alpha} \|f\|_p. \tag{3.21}
\]

From (3.20)-(3.21), we infer

\[
(\|f\|_{B^p_{p'}(T)})^q = \sum_{m=0}^{\infty} \left(\sum_{\theta \in \Theta_m} |\theta|^{-\alpha} \|c_\theta(f) f_\theta\|_p^p \right)^{q/p} \leq c(\|E\|^{-\alpha} \|f\|_p)^q
\]

\[
+ c \sum_{m=1}^{\infty} \left(\sum_{\theta \in \Theta_m} |\theta|^{-\alpha} \left(\sum_{j=m-1}^{\infty} \left(\sum_{\Delta \in T_j} S_\Delta(f)^p \cdot q_{\rho_0(\theta, \Delta)^2} \right)^{1/p} \right)^p \right)^{q/p}
\]

\[
\leq c A_E^q + c \sum_{m=1}^{\infty} \left(\sum_{\theta \in \Theta_m} \left(\sum_{j=m-1}^{\infty} \left(\sum_{\Delta \in T_j} \left(\frac{|\Delta|}{|\theta|} \right)^{\alpha p} A_{\Delta} q_{\rho_0(\theta, \Delta)^2} \right)^{1/p} \right)^{p/q} \right)^{q/p},
\]

where \(A_E := |E|^{-\alpha} \|f\|_p \) and \(A_{\Delta} := |\Delta|^{-\alpha} S_\Delta(f)_p \). As in (a) it is readily seen that, for \(\theta \in \Theta_m \) and \(\Delta \in T_j \) with \(j \geq m - 1 \), we have \(|\Delta|/|\theta| \leq c p^{-m}(\rho_0(\theta, \Delta) + 1)^{s} \). Therefore,

\[
(\|f\|_{B^p_{p'}(T)})^q \leq c A_E^q + c \sum_{m=1}^{\infty} \left(\sum_{\theta \in \Theta_m} \left(\sum_{j=m-1}^{\infty} \rho^{\alpha(j-m)} \sigma_j^{1/p} \right)^{p/q} \right)^{q/p}, \tag{3.22}
\]

where \(\sigma_j := \sum_{\Delta \in T_j} A_{\Delta}^p q_{\rho_0(\theta, \Delta)}^{p} \) for some \(q_1 < q_* < 1 \).

Applying Hölder’s inequality, we obtain

\[
\left[\sum_{j=m-1}^{\infty} \rho^{\alpha(j-m)} \sigma_j^{1/p} \right]^p \leq \left(\sum_{j=m-1}^{\infty} \rho^{\alpha(j-m)p/2} \sigma_j \right) \left(\sum_{j=m-1}^{\infty} \rho^{\alpha(j-m)p'/2} \right)^{p/p'}
\]

\[
\leq c \sum_{j=m-1}^{\infty} \rho^{\alpha(j-m)p/2} \sigma_j.
\]

Substituting this in (3.22), we find

\[
(\|f\|_{B^p_{p'}(T)})^q \leq c A_E^q + c \sum_{m=1}^{\infty} \left(\sum_{\theta \in \Theta_m} \sum_{j=m-1}^{\infty} \rho^{\alpha(j-m)p/2} \sum_{\Delta \in T_j} A_{\Delta}^p q_{\rho_0(\theta, \Delta)} \right)^{q/p}
\]

\[
\leq c A_E^q + c \sum_{m=1}^{\infty} \left(\sum_{j=m-1}^{\infty} \rho^{\alpha(j-m)p/2} \sum_{\Delta \in T_j} \sum_{\theta \in \Theta_m} q_{\rho_0(\theta, \Delta)} \right)^{q/p},
\]
where we once switched the order of summation. Exactly as in (3.11), we have
\[\sum_{\theta \in \Theta^*} q_{m(\theta, \Delta)}^\ell \leq c < \infty. \]
We insert this above and apply once again Hölder’s inequality to obtain
\[
\left(\sum_{\theta \in \Theta^*} q_{m(\theta, \Delta)}^\ell \right)^{q/p} \leq c A_{qE}^p + c \sum_{j=0}^{\infty} \left(\sum_{\Delta \in T_j} A_{\Delta}^p \right)^{q/p} \leq c A_{qE}^p + c \sum_{j=0}^{\infty} \left(\sum_{\Delta \in T_j} A_{\Delta}^p \right)^{q/p} \leq c \|f\|_{B^{\alpha q}_p}(T),
\]
where \(p/q + 1/\gamma = 1 \). Since \(0 < \rho < 1 \), the last sum above is \(\leq c < \infty \). We switch one last time the order of summation and obtain
\[
\left(\sum_{\theta \in \Theta^*} q_{m(\theta, \Delta)}^\ell \right)^{q/p} \leq c A_{qE}^p + c \sum_{j=0}^{\infty} \left(\sum_{\Delta \in T_j} A_{\Delta}^p \right)^{q/p} \leq c \|f\|_{B^{\alpha q}_p}(T),
\]
which completes the proof of (3.17).

4. Nonlinear Approximation from Franklin Bases

In this section, we apply the characterization of B-spaces via Franklin bases from the previous section to nonlinear \(n \)-approximation.

Suppose that \(F_T \) is a Franklin basis generated by an LR-triangulation \(T \) of a compact polygonal domain \(E \) in \(\mathbb{R}^2 \). We let \(F_n \) denote the nonlinear set of all functions \(g \) of the form

\[
g = \sum_{\theta \in \Lambda} a_{\theta} f_{\theta},
\]
where \(\Lambda \subset \Theta^* \), \(\#\Lambda \leq n \), and \(\Lambda \) is allowed to vary with \(g \). We denote by \(\sigma^F_n(f)_p \) the error of best \(L_p \)-approximation to \(f \in L_p(E) \) from \(F_n \):

\[
\sigma^F_n(f)_p := \inf_{g \in F_n} \|f - g\|_p.
\]

We shall use the machinery of Jackson-Bernstein estimates to characterize the approximation spaces generated by \((\sigma^F_n(f)_p) \), \(1 < p < \infty \). To this end we need the B-spaces \(B^{\alpha}_p(T) := B^{\alpha q}_p(T) \), where \(\alpha > 0 \) and \(\tau \) is determined by \(1/\tau = \alpha + 1/p \).

Theorem 3 (Jackson estimate). If \(f \in B^{\alpha}_p(T) \), then

\[
\sigma^F_n(f)_p \leq c n^{-\alpha} \|f\|_{B^{\alpha}_p(T)}
\]

where \(c \) depends only on \(\alpha \), \(p \), and the parameters of \(T \).
Here it is crucial that the space $B^\alpha_\tau(T)$ is embedded in L_p, namely, if $f \in B^\alpha_\tau(T)$, then $f \in L_p$ and $\|f\|_p \leq c\|f\|_{B^\alpha_\tau(T)}$, see [7, 8]. In fact, $B^\alpha_\tau(T)$ lies on the Sobolev embedding line.

For the proof of Theorem 3 one uses the scheme of the proof of Theorem 3.4 from [7] combined with the vector valued maximal inequality (2.7) from Proposition 1. The following (embedding) estimate plays an important role: If $f = \sum_{\theta \in \Theta^*} c_\theta f_\theta$ and $0 < s < 1$, then

$$\|f\|_p \leq c \left\| \sum_{\theta \in \Theta^*} (M_T^c c_\theta \tilde{1}_\theta)(\cdot) \right\|_p \leq c \left\| \sum_{\theta \in \Theta^*} |c_\theta| \tilde{1}_\theta(\cdot) \right\|_p,$$

where we used (2.19) and the maximal inequality (2.7). We now invoke Theorem 3.3 from [7] and obtain

$$\|f\|_p \leq c \left(\sum_{\theta \in \Theta^*} \|c_\theta \tilde{1}_\theta\|_p^s \right)^{1/\tau} \leq c \left(\sum_{\theta \in \Theta^*} \|c_\theta f_\theta\|_p^s \right)^{1/\tau} \leq c\|f\|_{B^\alpha_\tau(T)},$$

which is the above mentioned embedding. We skip further details.

Theorem 4 (Bernstein estimate). If $g \in F_n$, then

$$\|g\|_{B^\alpha_\tau(T)} \leq c n^\alpha \|g\|_p$$

(4.2)

where c depends only on α, p, and the parameters of the T.

The proof of this theorem can be carried out exactly as in the wavelet case by utilizing the fact that F_T is an unconditional bases for L_p ($1 < p < \infty$) and the localization properties of the Franklin functions given in Proposition 2 (see e.g. [4], Theorem 6). The proof relies on the important fact [9] that if $f \in L_p(E)$, $1 < p < \infty$, and $f = \sum_{\theta \in \Theta} c_\theta f_\theta$, then

$$\|f\|_p \approx \left\| \sum_{\theta \in \Theta^*} |c_\theta|^2 \tilde{1}_\theta(\cdot) \right\|_p^{1/2}.$$

We omit the details.

One can now follow the standard lines to obtain direct and inverse estimates for $\sigma^F_n(f)_p$. To this end, denote by $K(f, t)_p := K(f, t; L_p, B^\alpha_\tau(T))$ the K-functional defined by $K(f, t)_p := \inf_{g \in B^\alpha_\tau(T)} \|f - g\|_p + t\|g\|_{B^\alpha_\tau(T)}$, $t > 0$.

By standard arguments (see e.g. [10]), the Jackson and Bernstein estimates (4.1)-(4.2) imply the following direct and inverse estimates: For $f \in L_p(E)$ one has

$$\sigma^F_n(f)_p \leq c K(f, n^{-\alpha})_p$$

(4.3)

and

$$K(f, n^{-\alpha})_p \leq c n^{-\alpha} \left(\sum_{\nu=1}^n \frac{1}{\nu^\alpha (\nu^\alpha \sigma^F_\nu(f)_p)^\tau} \right)^{1/\tau'} + \|f\|_p,$$

(4.4)
where $\tau^* := \min\{\tau, 1\}$.

We define the approximation space $A^\gamma_q(\mathcal{F}_T, L_p)$ to be the set of all functions $f \in L_p(E)$ such that

$$
\|f\|_{A^\gamma_q} := \|f\|_p + \left(\sum_{n=1}^{\infty} (n^\gamma \sigma_n^\mathcal{F}(f)_p)^{q} \frac{1}{n} \right)^{1/q} < \infty
$$

(4.5)

with the usual modification when $q = \infty$.

The following characterization of the approximation spaces A^γ_q is immediate from estimates (4.3)-(4.4).

Theorem 5. If $0 < \gamma < \alpha$ and $0 < q \leq \infty$, then

$$
A^\gamma_q(\mathcal{F}_T, L_p) = (L_p, B^\alpha(\mathcal{T}))_{\frac{\gamma}{\alpha}, q}
$$

with equivalent (quasi-)norms, where $(L_p, B^\alpha(\mathcal{T}))_{\frac{\gamma}{\alpha}, q}$ is the real interpolation space between L_p and $B^\alpha(\mathcal{T})$ (see e.g. [1]).

In one specific case the approximation space $A^\alpha_q(\mathcal{F}_T, L_p)$ can be identified as a B-space:

Theorem 6. Assuming that $1 < p < \infty$, $\alpha > 0$, and $1/\tau := \alpha + 1/p$, we have

$$
A^\alpha(\mathcal{F}_T, L_p) = B^\alpha(\mathcal{T})
$$

(4.6)

with equivalent norms.

The proof is a mere repetition of the proof of Theorem 3.4 in [3] and will be omitted.

Finally, we want to compare the nonlinear n-term approximation from \mathcal{F}_T with the n-term approximation from Φ_T (Courant elements). Let Σ_n denote the set of all functions g of the form $g = \sum_{\varphi \in \mathcal{M}} a_{\varphi}\varphi$, where $\mathcal{M} \subset \Theta$, $\# \mathcal{M} \leq n$.

We denote by $\sigma_n^\Phi(f)_p$ the error of best L_p-approximation to $f \in L_p(E)$ from Σ_n:

$$
\sigma_n^\Phi(f)_p := \inf_{g \in \Sigma_n} \|f - g\|_p.
$$

Let $A^\gamma_q(\Phi_T, L_p)$ be the approximation space generated by $(\sigma_n^\Phi(f)_p)$, defined similarly as in (4.5). As is shown in [7], the approximation space $A^\gamma_q(\Phi_T, L_p)$ has precisely the same characterization as the one from Theorem 5. Consequently, $A^\gamma_q(\mathcal{F}_T, L_p) = A^\gamma_q(\Phi_T, L_p)$ with equivalent (quasi-)norms, if $1 < p < \infty$, for all $\gamma > 0$ and $0 < q \leq \infty$.

We close by noting that results similar to the results from Theorems 3 - 6 hold true for nonlinear n-term approximation from \mathcal{F}_T in $H_1(E, \mathcal{T})$ [9], the Hardy space generated by an LR-triangulation \mathcal{T} of E. For the proofs one utilizes the fact that the Franklin system \mathcal{F}_T is an unconditional basis for $H_1(E, \mathcal{T})$ (see [9]) and the techniques used above.
References

GEORGE KYRIAZIS
Department of Mathematics and Statistics
University of Cyprus
1678 Nicosia
CYPRUS
E-mail: kyriazis@ucy.ac.cy

KYUNGWON PARK
Department of Mathematics
University of South Carolina
Columbia, SC 29208
USA
E-mail: kpark001@math.sc.edu

PENCHO PETRUSHEV
Department of Mathematics
University of South Carolina
Columbia, SC 29208
USA
E-mail: pencho@math.sc.edu