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Decomposition of weighted Triebel-Lizorkin and Besov spaces
on the ball

G. Kyriazis, P. Petrushev and Yuan Xu

ABSTRACT

Weighted Triebel-Lizorkin and Besov spaces on the unit ball B in R* with weights wy(z) =
(1- \m|2)“71/2, u >0, are introduced and explored. A decomposition scheme is developed in
terms of almost exponentially localized polynomial elements (needlets) {¢¢}, {1¢} and it is
shown that the membership of a distribution to the weighted Triebel-Lizorkin or Besov spaces
can be determined by the size of the needlet coefficients {(f, p¢)} in appropriate sequence spaces.

1. Introduction

Localized bases and frames allow to decompose functions and distributions in terms of building
blocks of simple nature and have numerous advantages over other means of representation. In
particular, they enable one to encode smoothness and other norms in terms of the coefficients
of the decompositions. Meyer’s wavelets [10] and the ¢-transform of Frazier and Jawerth [5-7]
provide such building blocks for decomposition of Triebel-Lizorkin and Besov spaces in the
classical case on RY.

The aim of this article is to develop similar tools for decomposition of weighted Triebel—-
Lizorkin and Besov spaces on the unit ball B¢ in R? (d > 1) with weights

w(w) = (L= [a)*~12, p>o,

where |z| is the Euclidean norm of z € BY. These include L,(B% w),), the Hardy spaces
Hp(Bd, w,, ), and weighted Sobolev spaces. For our purpose, we develop localized frames which
can be viewed as an analog of the o-transform of Frazier and Jawerth on B9,

For the construction of our frame elements, we shall use orthogonal polynomials in the
weighted space Lo(w,,) := La(B% w,). Denote by II,, the space of all algebraic polynomials
of degree n in d variables and by V,, the subspace of all polynomials of degree n which are
orthogonal to lower-degree polynomials in La(w,). These are eigenspaces of the differential
operator

D, = —A+ (z,V)? + (2u+d—1)(z,V). (1.1)
More precisely (see, for example, [3]),

D,P=n(n+d+2p—1)P for PeV,. (1.2)
We have the orthogonal polynomial decomposition

Ly(wy) =@ Vo, Vi CIIL,. (1.3)

n=0

Received 15 February 2007; revised 22 January 2008; published online 2 April 2008.
2000 Mathematics Subject Classification 41A25, 42B35, 42C15.

The second author has been supported by NSF grant DMS-0709046 and the third author by NSF grant
DMS-0604056.



478 G. KYRIAZIS, P. PETRUSHEV AND YUAN XU

Note that dimV,, = ("+z_1) ~n?=1. As is shown in [19] the orthogonal projector Proj,, :
Lo(wy,) — Vi, can be written as

(Proi, )(e) = | F5)Pu(e. 9}, () (1.4

where, for © > 0, the kernel P,,(z,y) has the representation

- A
Poatavy) = Bt DT | @ () u/ T=RPVI=ToP) (1= o) (1)

Here (x,y) is the Euclidean inner product in R?, C}) is the nth degree Gegenbauer polynomial,

d—1
A= pt (1.6)
and the constants /], '~/ are defined by ()71 = [ga(1 —|z|?)7"1/2 da. For a represen-
tation of P, (z,y) in the limiting case u = 0; see [19, (3.8)] or [14, (4.2)].
Evidently,

Kn(x,y) ::ij(xvy) (17)
=0

is the kernel of the orthogonal projector of Ls(w,) onto the space @ _, V,.

A key role in this study will play the fact (established in [14]) that if the coefficients on the
right hand side in (1.7) are ‘smoothed out’ by sampling a compactly supported C> function,
then the resulting kernel has nearly exponential localization around the main diagonal y = =
in B? x B?. More precisely, let

La(w,y) = Y a(2)P;(@.y). (1.8)
j=0

where the ‘smoothing’ function @ is admissible in the sense of the following definition.

DEFINITION 1.1. A function @ € C*°[0, 00) is called admissible of type (a) if suppa C [0, 2]
and a(t) = 1 on [0, 1], and of type (b) if suppa C [1/2,2].

We introduce the distance

d(x,y) := arccos {(a:,y) + /1 —|z[2/1 - |y|2} on B4 (1.9)

and set
2
Wo(nsz) i= (VI=[al2 +n71) " reBl (1.10)

One of our main results in [14, Theorem 4.2] asserts that for any k > 0 there exists a constant
¢ > 0 depending only on k, d, uu, and @ such that

nd

VWiu(n;2) /W (nsy) (1 + nd(z,y)*
The kernels L,, are our main ingredient in constructing analysis and synthesis needlet systems
{pe}eex and {¢¢}eex here, indexed by a multilevel set X' = (J;Z, X (see §3). This is a pair

of dual frames with elements that have nearly exponential localization on B? and provide
representation of every distribution f on B%:

F=(f0e)e. (1.12)

feXx

| Ln(2,9)| < cx z,y € B (1.11)
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The superb localization of the frame elements prompted us to term them needlets.

Our main interest lies with distributions in the weighted Triebel-Lizorkin (F-spaces)
and Besov spaces (B-spaces) on B? These spaces are naturally defined via orthogonal
decompositions (see [15, 18] for the general idea). To be specific, let

o0 R v )
Po(z,y) =1 and @;(z,y):= ;Q(W—JPV(%?J), j=1,
where P(-,-) is from (1.5) and @ is admissible of type (b) (see Definition 1.1) such that |a] > 0
on [3/5,5/3].
The F-space Ff with s,p € R, 0 <p < 00, 0 < ¢ < 00, is defined (§4) as the space of all
distributions f on B? such that

/1

i . . 1/q
By = (ZQSJW;L(?J; )@ f(-))q) < 00, (1.13)

0
J Ly (wp)

where ®; « f(x) := (f, ®(z,-)) (see Definition 2.7).
The corresponding scales of weighted Besov spaces Bl with s,p € R, 0 <p,q < oo, are
defined (§5) via the (quasi-)norms

1/q
oo
q

e D CallUACIDREE SEFTO] NS I I (1.14)

Jj=0

Unlike in the classical case on R?, we have introduced an additional parameter p, which
allows considering different scales of Triebel-Lizorkin and Besov spaces. To us most natural
are the spaces

Fy,=Fy, and B =B, (1.15)

which embed correctly with respect to the smoothness parameter s (see §4). A ‘classical’ choice
would be to consider the spaces F;g and Bf,g, where the weight W, (275 ) is excluded from (1.13)
and (1.14). The introduction of the parameter p enables us to treat these spaces simultaneously.

One of the main results of this paper is the characterization of the F-spaces in terms of the

size of the needlet coefficients in the decomposition (1.12), namely,

1/q
Al ~ | D029 1(f,0e) W (27:€) 7 e ()]
j=0 tex;
Lyp(wy)
Similarly for the Besov spaces B, we have the characterization
- a/p\ /1
. . p
10 ~ [ 3029 | 32 (Wl ©)P/f, w0l )
j=0 EX;

Further, the weighted Besov spaces are applied to nonlinear n-term approximation from
needlets on B

This is a follow-up paper of [14], where the localization (1.11) is established and the
construction and basic properties of a single system of needlets are given. Our development
here is a part of a broader undertaking for needlet characterization of Triebel-Lizorkin and
Besov spaces on nonclassical domains, including the multidimensional unit sphere [11, 12],
ball, and cube (interval [9, 13]) with weights. The results in this paper generalize the results in
the univariate case from [9] (with « = 3), where needlet characterizations of F- and B-spaces
on the interval are obtained.
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The organization of the paper is the following. In § 2 the needed results from [14] and some
background material are given, including localized polynomial kernels, the maximal operator,
distributions on B?, and cubature formula on B?. The definition and some basic properties of
needlets are given in §3. In §4 the weighted Triebel-Lizorlin space on B are introduced and
characterized via needlets, while the weighted Besov spaces are explored in §5. In §6 Besov
spaces are applied to nonlinear n-term approximation from needlets; § 7 contains the proofs of
various lemmas from previous sections.

Throughout the paper we use the following notation:

1/p
1= (] 1r@runwie) 0 <p <o Il = e sup [l

For a measurable set E C B?, |E| denotes the Lebesgue measure of E, m(E) := [, w,(z)dz,
1p is the characteristic function of E, and 1p :=m(FE)~"/?1p is the Lg(w,) normalized
characteristic function of FE. Positive constants are denoted by ¢, ¢i,c¢s,... and they may
vary at every occurrence; A ~ B means c;A < B < o A.

2. Preliminaries

2.1. Localized polynomial kernels on B?

The polynomial kernels L, (x,y) introduced in (1.8) will be our main vehicle in developing
needlet systems. Here we give some additional properties of these kernels.

‘We have
d

1-1/p
" )) , zeBY 0<p< o (2.1)

[ Ln(z, )|, < C(m
AU

This estimate is an immediate consequence of (1.11) and the following lemma (see [14, Lemma
4.6]), which will be instrumental in several proofs below.

LEmMA 2.1. Ifo >d/p+2u|l/p—1/2],u > 0,0 < p < oo, then

J wy(y)dy
e Wiu(n;y)P/? (1 + nd(x,y))o»

< en W, (n; ) 7P/2, (2.2)

We now establish a matching lower bound estimate.

THEOREM 2.2. Let a be admissible and let |a(t)| > ¢, > 0 for t € [3/5,5/3]. Then for 0 <
p<ooandn =2

d

n 1-1/p
u\1

Here the constant ¢ > 0 depends only on d, i, p, and c,.

The proof of this theorem is given in §1.7.
The kernels L, (z,y) are in a sense Lip 1 functions in both variables with respect to the
distance d(,-) from (1.9). Let £,y € B% and ¢* > 0, n > 1. Then for all x,z € Be(c*n™!) and
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an arbitrary k, we have

ndtld(z, &
[ Ln(2,y) — Ln(§,y)| < ck (@) - (2.4)
VWu(niy) /We(n: 2) (1 + nd(y, 2))*
where ¢;, depends only on k, u, d, @, and ¢* (see [14, Proposition 4.7]).
We shall also need the following inequality from [14, Lemma 4.1]:
VI=TP = VT=yF| < V2d(e,y), oy e B, (2.5)
which yields

W(n;z) < 2"Wy(n;y)(1+ nd(z,y))*,  z.y € B%. (2.6)

2.2. Reproducing polynomial kernels and applications

To simplify our notation we introduce the following nonstandard ‘convolution’. For functions
®:B?x BY— C and f: B¢ — C, we write

© @)= [ B W)y (2.1
B
We denote by E,(f), the best approximation of f € L,(w,,) from II,,, that is,

En(f)p = inf 1] —gllp. (2.8)

LEMMA 2.3. Let L,, be the kernel from (1.8), with a admissible of type (a). Then
(i) L, xg =g for g € 11,,, that is, L,, is a reproducing kernel for I1,,, and
(i) for any f € Ly(w,), 1 < p < oo, we have L, x f € Iz,

ILn* fllp <cllfllp, and |[f = Ln* fllp < cEn(f)p- (2.9)

This lemma follows readily by the definition of L, (see also Definition 1.1) and (2.1) (see
[14, Proposition 4.8]).
Lemma 2.3(i) and (2.1) are instrumental in relating weighted norms of polynomials.

PropoSITION 2.4. ForO0<g<p<ocandgell,,n=>1,
lglly < en(@H2RWa=2D gl (2.10)
and for any v € R
W () g()llp < en® /e VPW, (ns )P~ ag () . (2.11)

The proof of this proposition is quite similar to the proof of [9, Proposition 2.6]; for
completeness it is given in §7.1.
2.3. Maximal operator

We denote by Be(r) the ball centred at ¢ € B? of radius r > 0 with respect to the distance
d(-,-) on BY, that is,

Be(r) = {z € B : d(z,€) < r}. (2.12)
It is straightforward to show that (see [14, Lemma 5.3])

|Be(r)] ~ ry/1 — [¢]? (2.13)
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and
m(Be(r)) = JB e e TR € 0B, (210

where 9B? is the boundary of B?, that is, the unit sphere in R
The maximal operator M, (¢ > 0) is defined by

1/t
Muf(w) = sup (ﬁbﬂy)m(y)dy)  wend, (2.15)

where the sup is over all the balls B C B¢ (with respect to d(-,-)) containing z.
It follows by (2.14) that the measure m(E) := [, w,(x)dz is a doubling measure on B¢,
that is, for € B?and 0 < r < 7

m(Be(2r)) < em(Bg(r)). (2.16)

Consequently, the general theory of maximal operators applies and the Fefferman—Stein vector-
valued maximal inequality is valid (see [16]). If 0 < p < 00,0 < ¢ < 00, and 0 < ¢t < min{p, ¢}
then for any sequence of functions {f,}, on B¢

00 1/q o 1/q
(Z Mtfy<->|q> <c (Z |fu(~)|q> : (2.17)
v=1

v=1

We need to estimate M,1p for an arbitrary ball B C B,

LEMMA 2.5. Let £ € B* and 0 < r < w. Then for x € B¢

d(e, —d/t d(e, —2u/t
(MtllBg(r))(x) ~ (1 + @) (1 + %) , (2.18)
and hence
A1 D) e <14 1)

Here the constants depend only on d, u, and t.

Proof. 1t is easy to see that

(M)/ e B,

(Milp,(ry)(z) = sup m(B)

where the sup is taken over all the balls B ¢ B? (with respect to d(-,-)) containing x. This
immediately leads to (M;1p,())(z) ~ 1 if d(z,§) < 2r, and hence (2.18) holds in this case.
Suppose that d(&,z) > 2r. Then evidently

m(Be(r)) >” t
m(Be(d(z,£)))
For the other direction, suppose that B, (r*) C B? is the smallest ball such that = € B, (r*) and

B.(r*) N Be(r) # 0. A simple application of the triangle inequality shows that Be(d(§, z)) C
B, (5r*). Thus using (2.16)

m(Bg(r)) 1/t m(Be(r)) v
(Ml ) () < (Wi”)) S C(Wi%é))) '

(ML )(2) > (
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Therefore, using (2.14)

m(Bg(T)) 1/t rd(r+d(§,6Bd))2H 1/t
(Milp,r)(x) ~ (W) - (d(xvf)d(d(w,f)+d(§,aBd))2u> ;

which implies (2.18) since d(§, ) > 2r. Estimate (2.19) is immediate from (2.18). U

2.4. Distributions on B¢

To define distributions on B¢, we shall use as test functions the set D := C'°°(B%) of all infinitely
continuously differentiable complex valued functions on B? such that

ollwe = > 10%¢)lc <00 fork=0,1,.... (2.20)
|| <k

We assume that the topology in D is defined by these norms.
Evidently all polynomials belong to D. More importantly, the space D of test functions ¢
can be completely characterized by their orthogonal polynomial expansions. Denote

Ni(0) = sup (n +1)*]| Proj,, ¢[|2. (2.21)

LEMMA 2.6. (a) ¢ € D if and only if || Proj,, ¢|l2 = O(n~*) for all k.
(b) For each ¢ € D, ¢ = -, Proj, ¢, where the convergence is in the topology of D.
(¢) The topology in D can be equivalently defined by the norms Ny (-), k =0,1,....

Proof. Let ¢ € D. Assume that Q,—1 € II,,_1 (n > 1) is the polynomial of best Lo(w,)-
approximation to ¢, that is, ||¢ — Qn_1ll2 = En—1(¢)2. Since P, (x,-) is orthogonal to IT,,_1,

| PI‘Ojn ¢(q")| = |<¢a Pn(xa )>| = |<¢ - Qn—17 Pn(xa )>| g En—1<¢)2pn(m7 J})l/Q.
By the Jackson type estimate from [20], for any k > 1,
En(9)2 < cxn”F[Dfll2 < en (D glloc < en™F Y [0¢lloe = en” [l war-
la|<2k

Here D, is the differential operator from (1.1). It is easy to see that

d—1
Pt 21 = (")

All of the above leads to
|| Proj,, o|l2 < Ckn_2k+(d_1)/2”¢||wgck, n>1, for any k > 1.

Therefore, for any m > 0

(d-1)
TR
In the other direction, by Markov’s inequality (see [8]) and (2.10), it follows that
1% Proj, ¢lloe < n*1°![[Proj, loc < en /244 Proj, .

Consequently, if || Proj, ¢[l2 = O(n™*) for all k, then 0%¢ = > - 0% Proj, ¢ for all multi-
indices a with the series converging uniformly and

Non(9) < cllllwar i k> 2+

I¢llwe < Y > n2lelt 2 Proj, ¢lly < cNm(9), m > 2k +d/2+ p+2.

|a| <k n=0

This completes the proof of the lemma. ]
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The space D' := D’'(B?) of distributions on B? is defined as the set of all continuous linear
functionals on D. The pairing of f € D" and ¢ € D will be denoted by ( f, ®) := f(¢), which will
be shown to be consistent with the inner product (f,g) := [ 5. f(2)g(z)w,(x) dz in La(w,).

We now extend the definition of the nonstandard convolutlon from (2.7) to distributions.

DEFINITION 2.7. Let f € D’ and assume that ® : B¢ x B¢+ C is such that ®(x,-) € D
for all z € B We define

(@ f)(x) = (f,@(,-)),

where on the right hand side, f acts on ®(z,y) as a function of y.
For later use we next record some simple properties of this ‘convolution’.

LemMma 2.8. (i) If f € D' and ®(-,-) € C°(B? x B%), then ® * f € D, and in particular
P, * f € V,,. We define Proj,, f := P, = f.
(ii) If f € D' and ®(-,-) € C>®(B? x B?), then
(@ f,0)=(f,2x¢), ¢€D.
(iii) Let ®(-,-),¥(-,-) € O®(B? x BY), and ®(x,y) = ®(y,z) and ¥(x,y) = ¥(y,z) for
x,y € B Then for any f € D' and x € B¢

U f() = ((a,), D(,-) * f.

The proof of this lemma is standard and will be omitted.
We next give the representation of distributions from D’ in terms of orthogonal polynomials
on B?.

LEMMA 2.9. (a) A linear functional f € D’ if and only if there exists a k > 0 such that

(£.0)] < cxNe(6) for all ¢ € D. (2.22)
Hence, for f € D’ there exists a k > 0 such that
| Proj,, fll2 = [[Pn * fll2 < cx(n+1)*, n=0,1,.... (2.23)

(b) Every f € D’ has the representation f = . Proj, f in distributional sense, that is,

oo oo

(f,¢) = _(Proj, f,¢) = > _(Proj, f,Proj,¢) forall ¢ €D, (2.24)

n=0 n=0

where the series converges absolutely.

Proof. (a) This statement follows immediately by the fact that the topology in D can be
defined by the norms N () defined in (2.21).
(b) Using Lemma 2.6(b) we obtain for ¢ € D,

N [e%s)
(f,6)= lim <f ZPTOJn >= Jim ) (f.Proj, ¢) = ) (Proj, f,Proj, ¢),
n=0 n=0

where the last equality is justified by using (2.23) and the rapid decay of || Proj,, ¢||2. O
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2.5. Cubature formula and subdivision of B%

For the construction of our building blocks (needlets), we shall utilize the positive cubature
formula given in [14]. This formula is based on almost equally distributed knots on B? with
respect to the distance d(-, ).

DEFINITION 2.10. We say that a set X. C B?, along with an associated partition R. of
B? consisting of measurable subsets of B¢, is a set of almost uniformly e-distributed points
on B% if

(i) B =Upger, R and the sets in R. do not overlap (R N Rg = 0 if Ry # Ry);

(ii) for each R € R. there is a unique £ € X, such that B¢(c*e) C R C Bg(e).

Hence #X. = #R. < ¢**c¢~%. Here the constant ¢* > 0, depending only on d, is fixed but
sufficiently small, such that the existence of sets of almost uniformly e-distributed points on
BY is guaranteed (see the next lemma).

LEMMA 2.11 ([14]). For a sufficiently small constant ¢* > 0, depending only on d, and an
arbitrary 0 < e < 7 there exists a set X. C B? of almost uniformly e-distributed points on B¢,
where the associated partition R. of B? consists of projections of spherical simplices.

An important element in the construction of needlets will be the cubature formula given in
[14, Corollary 5.10].

PROPOSITION 2.12. There exists a constant ¢® > 0 (depending only on d) and a sequence
{X;}52, of almost uniformly e;-distributed points on B? with €; := ¢°277, and there exist
positive coefficients {\¢ }¢ex; such that the cubature formula

| rew@ds~ 3 s (2.25)
B §EX;
is exact for all polynomials of degree at most 2712, In addition,

Ae ~ 2N, (7€) o m(Be(277)) (226)

with constants of equivalence depending only on p and d.

It follows from above that
m(Re) ~ 279W,(27;6) ~ Ae, €€ A, (2.27)

while

|Re| ~ 279%(\/1 — €2 +277), (€& (2.28)

3. Localized building blocks (needlets) on B?

We utilize the ideas from [9, 12] in constructing a pair of sequences of ‘analysis’ and ‘synthesis’
needlets on B?. Let @, b satisfy the conditions

6,66 [0, ), suppa,gc [1/2,2],

ja(t)], [b(t)| > ¢ >0, ifte[3/5,5/3],

o~ _—  ~

a(t)b(t) +a(2t)b(2t) =1, ifte[1/2,1].
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Hence,
da@ by =1, tel,c). (3.4)
v=0

It is easy to sce that if @ satisfies (3.1) and (3.2), then there exists a b satisfying (3.1) and (3.2)
such that (3.3) is valid (see, for example, [6]).
Let a, b satisfy (3.1)-(3.3). We define ®¢(z,y) = ¥o(x,y) :=1,

Q;(x,y) = Za(WL_I) Pu(z,y), j=1, (3.5)
v=0

Assume that X is the set of knots and A¢ are the coefficients of the cubature formula (2.25).
We define the jth level needlets by

pe(x) = N2®;(2,6) and  we(x) = N/ V;(2,6), €€ A (3.7)

Notice that for { € X, we have g¢(x) = a(1)P1(z, &) and Y¢(x) = 5(1)P1(x, €),but P1(-,£) =0
if and only if £ = 0. Therefore, to prevent ¢ = 0 and ¢ = 0 for £ € X}, we assume that 0 ¢ X7.

We set X := U;io X, where equal points from different levels &; are considered as distinct
elements of X, such that X can be used as an index set. We define the analysis and synthesis
needlet systems ® and ¥ by

P :={pecteex, V= {delecx. (3.8)
Estimate (1.11) yields the rapid decay of needlets, namely, for = € B¢
¢ 27
VW26 /W, (275 2)(1 + 27d(€, @)

[©;(&, )], [¥;(&, )| < Vk, (3.9)

and hence

Ck2jd/2

|pe ()], [e ()] < T DA ) Vk. (3.10)

Note that on account of (2.6) x in the term /W, (2/;z) in (3.10) can be replaced by &.
The needlets are Lip 1 functions in the following sense. Let { € &, j > 0, ¢* > 0,and w € B
Then for each z € B, (c*277)

k272D d(w, )

foe(a) = el oela) = vl € —mtes SR

Vk. (3.11)

This estimate follows readily from (2.4).
We shall need estimates of the norms of the needlets. By (2.1), (2.3), and since 0 ¢ X;, we
have for 0 < p < o0,

- 9Jd 1/2—1/p
lieelly ~ el ~ Il ~ (-rmg) €€ % (3.12)
Furthermore, there exist constants ¢*, ¢ > 0 such that
9jd 1/2
Iellnmeterz-s Wiz 2 o(fmgrg) + €64 (G1)
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The proof of (3.13) is given in §7. Notice that if @, b are real valued, then Lemma 7.1 below
yields

9id 1/2
wg(f)hl%(&)l?e(m) Ccex,

Our first step in implementing needlets is to establish needlet decompositions of D’ and
Lp(wp).

PROPOSITION 3.1. (a) For any f € D,

j=0
and
=Y (f,e)e inD'. (3.15)
fex

(b) For f e Ly(w,), 1 <p< oo, (3.14) and (3.15) hold in L,(w,). Moreover, if 1 < p < oo,
then the convergence in (3.14) and (3.15) is unconditional.

Proof. By Definition 2.7 and (3.5) we have, for f € D/,

s f= Z (2] 1)P « f (3.16)

and using Lemma 2.8 and that P, x P,,(-,y) =P,(-,y)

UsDxf= Z (2J 1) (2] 1>P % f. (3.17)

Then (3.14) follows from the above, (3.4), and Lemma 2.9.
Note that ¥;(z,y)®(y, z) belongs to Iyi+1_; as a function of y and, therefore, employing
the cubature formula from Proposition 2.12 we obtain

W%, 2) = JBd‘lf (@, 9)®(y, 2)wu(Y)dy = > AeW;(2,)B(E,2) = Y te(w)e(2)

EEX; §EX;

which leads to
Uy D% f =Y (f,0e)te

§EX;
Combining this with (3.14) yields (3.15).
The convergence of (3.14) and (3.15) in L,(w,) for f € L,(w,) follows in a similar fashion
(see also [9, Proposion 3.1]). The unconditional convergence in L,(w,), 1 < p < oo, follows by
Theorem 4.5 and Proposition 4.12 below. O

4. Weighted Triebel-Lizorkin spaces on B¢

Following the general idea of using spectral decompositions (see, for example, [15, 18]), we next
employ orthogonal polynomials to introduce weighted Triebel-Lizorkin spaces on B?. To this
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end, we define a sequence of kernels {®,} by

oo R v '
Po(z,y) =1 and @;(z,y) = Z()a(Qj_l)P,,(x,y), ji=1, (4.1)
where {P,(x,y)} are from (1.4) and (1.5) and @ obeys the conditions
a € C™[0,00), suppa C [1/2,2], (4.2)
[a(t)| >c>0 ifte(3/5,5/3]. (4.3)

DEFINITION 4.1. Let s,p e R, 0 <p < oo, and 0 < ¢ < oco. Then the weighted Triebel-
Lizorkin space F,P := F;P(w),) is defined as the set of all f € D" such that

1/q
oo

g = || [ S0 2wy @y« )] | || <0 (4.4)
j=0

with the usual modification when ¢ = oo

Observe that the above definition is independent of the choice of @ as long as @ satisfy (4.2)
and (4.3) (see Theorem 4.5 below).

PROPOSITION 4.2. For all s,p€R, 0 <p<oo, and 0 <q < oo, Fjf is a quasi-Banach
space which is continuously embedded in D’.

Proof.  The completeness of the space F¥ follows easily (see, for example, [18, p. 49]) by
the continuous embedding of F};/ in D', which we establish next.

Let {®;} be the kernels from the definition of F};f’ with @ obeying (4.2) and (4.3) that are the
same as (3.1) and (3.2). As already indicated there exists a function b satisfying (3.1) and (3.3).
We use this function to define {¥;} as in (3.6). Then by Proposition 3.1 f = Z;’;O U, %D f
in D’, and hence

j=0
We now employ (3.16) and (3.17) and the Cauchy—Schwarz inequality to obtain, for j > 2,

) 2
J

(W@ f o) = | Y a5 )b(5 ) (Proi, £ Proj, 0)

v=27—241
27 o
< Y (e[ ieri 13 Y (55| 1P, ol
v=27"241 v=2i-241
<2 * fH%%gnjfgzj | Proj, ¢l13.

Using inequality (2.10) we obtain
|®; * fll2 < cgj(d+2u)/p||q)j % fllp < ng((d+2u)/p+2u\p|/d—8)||2stH(2j; .)—p/dq)j * FO)lp-
From the above estimates we infer

() B f,0)] < 277 || fllpgp 2™ max [ Proj, fll < 27/ f]

21 2<y

FieNk(9)
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for k > (d+2p)/p + 2ulp|/d + 3/2 — s. A similar estimate trivially holds for j = 0, 1. Summing
up we obtain

[(f o) < el fllpeeNe(9),
which completes the proof. O

As a companion to F;?, we now introduce the sequence spaces f;7. Here we assume that

{X;}52 is a sequence of almost uniformly e;-distributed points on B? (gj := ¢°277) with
associated neighborhoods {R¢}¢cx;, given by Proposition 2.12. Just as in the definition of
needlets in §3, we set X' 1= [J,5 Aj.

DEFINITION 4.3. Suppose that s,p € R, 0 <p < oo, and 0 < ¢ < co. Then f7# is defined
as the space of all complex-valued sequences h := {h¢}eca such that

1/q

Wl gz == ([ { D2 299 D [hel W (273 €) /g, ()7 <00 (4.5)
7=0 £eX;
p

with the usual modification for ¢ = co. Recall that ﬂR& = m(Rg)*l/zlle.

In analogy to the classical case on R? we introduce ‘analysis’ and ‘synthesis’ operators by

Sp i f—{{fe)teex and Ty :{helecx — Y hetbe. (4.6)
fex

We next show that the operator T is well defined on f,/.

LEMMA 4.4. Let s,p€R, 0 <p<oo, and 0 < g < oo. Then for any he f3r, Tyh:=
E&e x hetpe converges in D'. Moreover, the operator Ty, : fyf — D' is continuous, that is, there
exist constants k > 0 and ¢ > 0 such that

[(Tyh, 8)] < cNi(8)|h]

he fr, ¢eD. (4.7)

sp
pq’ pq’

Proof.  Let h € f,f. Then by the definition of f7# it follows that
29 he| W, (27;.€) || Lr () < 1P|

Now, using (2.27),
1T rellp = m(Re) /P72~ 27IOWL (27, ]2 for € € X

Fik fOI‘fGXj,j>O.

and since 2721 < WH(2j,§) < 221 it follows that

lhe| < cQ*J‘(Ser(l/?*l/p))VV#(QJ’;g)p/dfl/p+1/2”h||f;§ < 62j7||h||f;§’ e Xy, (4.8)
where
s 1 1 p 1 1
=d|-— -+ |+ 2ul=——-+ =]
¥ |d p+2|+u|d p+2|

On the other hand, by Lemma 2.6, ¢ = Y ° Proj, ¢ in D for ¢ € D, and for § € X;

be(@) =A@, =07 Y B )Pul@,©), A~ 27 IWL(26).

_ \27-1
21 —2<p<2i
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Consequently,
\1/2 >V
<¢§7¢>_)\£ Z b<2j 1)Pr0.]y¢
2012 <27
and hence

(e, 8)] < 27942 W, (27,92 > || Proj, oo

212 <py<2i

Since Proj, ¢ € I1,,, by Proposition 2.4 || Proj, ¢|/ec < cv(@24)/2|| Proj,, ¢||o. Therefore,

(e, @) <2 Y || Proj, .

21 —2<py<2i

Combining this with (4.8) and using that #X; < ¢27¢, we obtain, for ¢ € D

D lhell(We, o) <D0 Ihell (e, ¢)
gex i=0¢ex,

<clbllpe > (#X)ZOTN" || Proj, ¢l (4.9)

Jj=0 2j*2<u<27

<clbllge Sup(l/+1) HPFOJV¢H222J R
7=0
< cllhl

F2e Nk (),

where k:=[y]+p+d+4 >~ + u+ d+ 3, which makes the series above convergent. Conse-
quently, the series Tyh = 3 . y hetbe converges in D’. We define Ty h via

(Tyh, @) =Y he(tbe,

fex

for all ¢ € D. Estimate (4.7) follows from (4.9). O

We now give our main result on weighted Triebel-Lizorkin spaces.

THEOREM 4.5. Let s,p € R, 0 <p < oo, and 0 < g < oc. The operators Sy, : F)l — f38
and Ty : [l — FjF are bounded and Ty, o S, = 1d on Fjf. Consequently, f € F,! if and only

if {{f, <P£>}£GX € f‘sﬂ Furthermore,

1/q

£z ~ 1L o) Mgz ~ || { D227 D [, ) Wi (275.6) 7 4 abe () )¢ - (4.10)
7=0 EGXJ'
P
In addition, the definition of F;f is independent of the particular selection of @ satistying (4.2)
and (4.3).

The proof of this theorem relies on several lemmas and its proofs are given in §7.2. In the
following, we assume that {®,} are from the definition of weighted Triebel-Lizorkin spaces,
while {¢¢ }eex and {¢¢ }ecx are needlet systems defined as in (3.7) with no connection between
the functions a@s from (4.1) and (3.5).
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LEMMA 4.6. For any k > 0 there exists a constant ¢ > 0 such that
2jd/2

VWL (27 2) (1 + 29d(z, €))k

and ®;jx e =0for € X, ifv>j+2o0rv<j—2 Here X, =0 ifv <0.

1D e ()] < e E€X, j-1<v<j+l, (411

LEMMA 4.7. Foranyt>0and ¢ € &}, j >0,
e ()], [e ()] < e(MLg,)(2), € BY, (4.12)

and

Lg, (2) < c(Mypg) (), e(Mype) (z), @ € B (4.13)

DEFINITION 4.8. For any set of complex numbers {h¢}ecx,; (j = 0) we define

* |hn|
hg = —_——— X; 4.14
= 2 Trmdngr S e

where o > 1 is a sufficiently large constant that will be selected later on.

LEMMA 4.9, Let P € Ily;, j > 0, and denote ag := max,er, |P(v)| for { € X;. There exists
an r > 1, depending only on o, j, and d such that if

bg::max{nelhn |P(z )|:77€Xj+T,RgﬂRn7é®}, Ee X

then
ag < cbg (4.15)
with constant independent of P, j, and &.

LEMMA 4.10. Assume that t >0, v € R, and let {b¢}ecx; (j = 0) be a set of complex
numbers. Also, let o in the definition (4.14) of b obey o > d + (d + 2p)/t + 2ul|y|. Then for
any § € X;

W, (275 €) 1R, () < eM, Z by W (27;m) 1R, (-) | (z), =€ Re. (4.16)

neEX;

Proof of Theorem 4.5. Choose 0 <t < min{p,q} and let o in Definition 4.8 obey o >
d+ (d+2w)/t + 2u|p|/d. Now, choose k > o + 2u|p|/d. Observe first that the right-hand side
equivalence in (4.10) follows immediately from Lemma 4.7 and the maximal inequality (2.17).

Let {®;} be a sequences of kernels as in the definition of weighted Triebel-Lizorkin spaces,
that is, ®; is defined by (4.1) with @ satisfying (4.2) and (4.3), the same as (3.1)-(3.2). As
already mentioned, there exists a function b satisfying (3.1) and (3.2) such that (3.3) holds.
Let ¥; be defined by (3.6) with this b. In addition, let {¢¢ }ecx and {1b¢ }ecx be the associated
needlet systems defined as in (3.7) using these @ and b.

Exactly in the same way, let {®;} and i\ll } be two sequences of kernels defined as above
using completely different functions @ and b. Also, assume that {@¢}, {¢§} are the associated
needlet systems, defined as in (3.5)—(3.7). As a result, we have two completely different systems
of kernels and associated needlet systems.
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Let us first prove the boundedness of the operator T~ Iph — Fpf, defined similarly as
in (4.6) with {¢¢} replaced by {wg} Here we assume that the space F;? is defined by {®;}.
Let h € f5¢ and denote f := Zg hete, which is well defined accordlng to Lemma 4.6. Using

Lemma 4. 6 we have, for z € B4,

@ f(@)] = D he®jsihe(a)| < > D |hel|@ # ()]

fex J—ISvsj+1 §eX,

. h |
S DD SR
J—1ISvj+1 X, 2” 1+2V E’ )

For n € X, denote T :={w € X;_1 UX; UXj41: Ry, N R, # 0}. Here X1 := (. First note
that #T',, < c. Secondly, for z € R,, and w € I';,, we have d(z,w) < ¢277 and using inequality
(2.6)

Wiu(252) 7P/ < W, (275 0) 01 < W, (27;:€) /(1 + 27d(€, w)) PPV
We use the above estimates to obtain, for z € R,,
W, (275 2)7#/ @+ f ()]

- el W, (29:6) =7/ ()
< 0id/2 Z Z Z e
J-1<r<ji+1 wel,NX, X, VWu(225w)(1 4 2vd(E, w))k—2ulel/d

<62ad/2zjf“T ¢ Y Hiin,
w

wely, wel’y,

where H,, := h,W,(27;w)~*/4. Here we used that k — 2u|p|/d > ¢ and (2.27). We insert the
above in (4.4) and use Lemma 4.10 (with v = 0) and the maximal inequality (2.17) to obtain

o T a\ /4
flege <ell | Do (27 >° > Hilr,()
7=0 neX; wely,
B P
o T a\ 14
<ell{ 2 2V X Hilr()
J=0 |  €ex;
) o~ 1/q (4.17)
e . ~
Sel[[ Do (M| D 29 |Helig, | (1)
J=0 | §EX;
P
o T a\ 1/a
<c Z 228j|H§|]~1R§(')
J=0 [£e;
P

where in the second inequality above we used that #I'), < c. Hence, the operator T i ol — FoF
is bounded.

Assume now that the space Fs? is defined in terms of {®;} in place of {®;}. Using this
definition we shall prove the boundedness of the operator S, : F;P — f)!.

Let f € F,f. Then ®; x f € IIy;. For £ € X, we define

e = e[ ¢ )l b = max { iy B /()] 0 € ar, RN Ry 201
x 3 z n
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where r > 1 is from Lemma 4.9. Then by the same lemma af ~ bf. Therefore, using (2.27),
| 0e)] = A2 (@5 % F(€)] < em(Re)?ae < em(Re)'?ag < em(Re)V/?b;.

From this, recalling that 1r, := m(R¢)~'/?1x,, we obtain

1/q
() gze = {[| Do27°0 D U(F 9e) W (275€) 7/ LR, ()]
j=0 £EX;
P
. 1/q
<c Z2jsq Z [bZW#(2-7; 5)_p/d135(')]q
Jj=0 §ed;
P
) o 1/ (4.18)
Sefl | 227 | M| D W@ e () | ()
j=0 §EX;
p
. - a\ /4
Sefl | 22277 | D beWi(259) ™ nc ()
=0 e,

P

Here for the second inequality above we used Lemma 4.10 and for the third one the maximal
inequality (2.17). B
Denote m,, := mingepr, |®; * f(x)| for n € &4, and

XjJﬂ«(f) = {w € Xj+r R, N R§ 7é @} for f S Xj.

Evidently #X;1,(£) < ¢(r,d). Further, for w,n € X;1,.(§) we have d(w,n) < ¢277, and hence

My . B
My < c(1 e dlw ) <emy, c=c(ro,d).
Therefore, for any 7 € X;j1(§), be = maxyecx, ., (¢) Mw < cmy), and hence
belp, < Z milg,. (4.19)

NEXj+r(€)
Clearly, W, (27; &) ~ W, (2777;n) for n € X;4,(£). This along with (4.19) leads to
bW (2956) /Mg, <c D mpWu(2t i) M1, (4.20)
77er+7‘(£)

Using this estimate in (4.18), we obtain

- q\ 1/q
e e < [ o200 | S0 muw, (247 im) /1, ()
=0 NEX; 1y
p
. - q\ 1/a
Sel | o2 M X0 mg W2 s, | ()
Jj=0 L NEXj4r

p
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- q\ 1/4q
<cll[ o2 D0 mgWa@ i) 1, ()

Jj=0 NEXj4r

p

- 1/q
e[ Do@FWL (27 )7 B, « f(-)]) =c||fllrse-

=0

p

Here, for the first inequality, we used that #X;4,(§) < ¢, for the second inequality we used
Lemma 4.10, and for third one the maximal inequality (2.17). We also used that

W71 m) ~ W, (2;2) ifx € Ry, n€ X,

Thus the boundedness of S, : F3f — f,! is established.

The identity Ty o S, = Id follows by Propos1t10n 3.1.

It remains to show that Fj7 is independent of the particular selection of a in the definition
of {@;}. Denote by [ - || psr (@) the F-norm defined by {®;}. Then by the above proof it follows

that

/]

rp@ <cl{Uh M e and {0 gz < el lpspca,

and hence

/]

Fee@) < A{(f, @)l < cll £

Fip(®)
Now the desired independence follows by interchanging the roles of {<I>j}7{<5j}, and their
complex conjugates. 0

In a sense, the spaces Fj,; are more natural than the spaces F;f with p # s since they embed
‘correctly’ with respect to the smoothness index s.

PROPOSITION 4.11. Let 0 <p <p; <00,0<q,q1 <00, and —o0 < s1 < s < oo. Then we
have the continuous embedding

1
=2 (4.21)

1
Fse C Foior if -
p d P1

S
P11 3

The proof of this embedding result uses the idea of the proof in the classical case on R"
given, for example, in [18, p. 129], but is more involved. We place it in §7.2.

Finally, we would like to link the weighted Triebel-Lizorkin spaces Ff to L,(w,) and
weighted potential space (generalized weighted Sobolev space) on B<.

We define the weighted potential space Hy := H;(wu)7 s>0,1<p< oo, on B as the set
of all f € D’ such that
Z(n +1)% Proj,, f

n=0

1f |1z = < 0, (4.22)

P
where Proj,, f := P, * f.
We have the following identification of certain weighted Triebel-Lizorkin spaces.

PRrROPOSITION 4.12. We have

F) ~Hs, s>0, 1<p< oo,
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and
FY ~ Ly(w,), 1<p< oo,

with equivalent norms. Consequently, for any f € Ly(w,), 1 <p < oo,

1/2

Il ~ ([ D2 D (4F el ())?

7=0 EGX]‘
p

The proof of this proposition uses the multipliers from [2, Theorem 5.2] and can be carried
out exactly as in the case of spherical harmonic expansions in [12, Proposition 4.3]. We omit it.

5. Weighted Besov spaces on B¢

For the definition of weighted Besov spaces on B?, we use the sequence of kernels {®;} defined
in (4.1) with @ obeying (4.2) and (4.3) (see [15, 18] for the general idea of using orthogonal or
spectral decompositions for introducing Besov spaces).

DEFINITION 5.1.  Let s,p € Rand 0 < p, ¢ < co. The weighted Besov space B;f := Byf(w,,)
is defined as the set of all f € D’ such that

1/q
oo

Iz = | 3 (291050 10)1,) ") < oo, (5.1)

Jj=0

where the ¢;,-norm is replaced by the sup-norm if ¢ = oc.

Observe that as in the case of weighted Triebel-Lizorkin spaces the above definition is
independent of the particular choice of @ obeying (4.2) and (4.3) (see Theorem 5.4). Also,
as for F,! the Besov space B;/ is a quasi-Banach space which is continuously embedded in D'.
We skip the details.

We next introduce the sequence spaces b associated to the weighted Besov spaces Byl
To this end, we assume that {X; };?’;0 is a sequence of almost uniformly e;-distributed points
on B¢ (g5 := c®277) with associated neighborhoods {R¢}eex,, given by Proposition 2.12. As
before we set X 1= J;54 &j.

DEFINITION 5.2. Let s,p € R and 0 < p,q < co. Then b,/ is defined to be the space of all
complex-valued sequences h := {h¢}¢cr such that
a/p\ /4

ee] ) 4 »
bie = Zzy(s—d/p+d/2)q Z (WM(Q];5)_p/d+1/p_1/2|h5\) (5.2)
j=0 EEX;

1A

is finite, with the usual modification for p = oo or ¢ = oc.

We shall employ again the analysis and synthesis operators S, and T, defined in (4.6). This
lemma guarantees that the operator Ty is well defined on byf.
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LemMA 5.3. Let s,p € R and 0 <p,q<oco. Then for any h € by, Tyh: =73 hete

g’
converges in D’. Moreover, the operator Ty, : bf)z — D’ is continuous.

The proof of this lemma is quite similar to the proof of Lemma 4.4 and will be omitted.
Our main result in this section is the following characterization of weighted Besov spaces.

THEOREM 5.4.  Let s,p € R and 0 < p,q < 0co. Then the operators S, : Byl — by and Ty,
by — Byt are bounded and Ty, o S, =1d on B . Consequently, for f € D’ We have /€ Bl
if and only if {(f, ¢) }eex € byl Moreover,

a/p\ Y1
£ llgg ~ KU e Hlugg ~ | 322597 | 3 (W@ 0~/ o)) . (53)
Jj=0 SEX;

In addition, the definition of B,/ is independent of the particular selection of a satisfying (4.2)
and (4.3).

For the proof of this theorem we shall utilize some of the lemmas from §4 as well as the
following additional lemma and its proof is given in §7.2.

LEMMA 5.5. Let 0 < p < oo and~ € R. Then for any P € Il5;,7 > 0,
1/p

PRLMCS )" max | P(x)|"m(Fe) < c|Wu(275)7P()lp. (5:4)
£eX;

Proof of Theorem 5.4. We first note that the right-hand side of (5.3) follows immediately
from (3.12). Just as in the proof of Theorem 4.5, we assume that {®;} are kernels defined
by (4.1), with @ satisfying (4.2) and (4.3). Next, suppose that {U;} are defined by (3.6) with
b obeying (3.1) and (3.3). Also, let {p¢}ecx and {1)¢}ecx be the associated needlet systems
defined as in (3.7). Further, assume that {fI) oA} {@e), {1/)5} is a second (completely
different) set of kernels and needlets.

Our first step is to prove the boundedness of the operator T~ by — Byl defined as in (4.6)
with {¢¢} replaced by {@/}5} we assume that B,/ is defined by {<I> }

Pick 0 <t <min{p,1} and k > 2ulp|/d+ p —|— (2 +d)/t. Suppose that h € by and let
f= dex hg{/}vg, which is well defined on account of Lemma 5.3. Similarly as in the proof
of Theorem 4.5, we use Lemmas 2.5 and 4.6, and (2.6) to obtain

Wu(@2) 05 f@) < DY |heWu(29:2) 7D x e ()]

J=ISvsg+l ed,

29412\, (27 ; ) —P/4
<c > ) kel :
J—1I<v<j+1 X, V 2J ‘r)(1+2jd(§v ))k

) 2J 6)” p/d—1/2
d/2
<o > 2l f' 1+2gd§ (€, z))F—2ulpl/d—n

J—1<v<j+1 gex,

<N N e[ Wu(27) 72 M (1, ) (),

J=ISvsg+l eX,
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where X_; := () and in the fourth inequality we used that k > 2ulp|/d + p+ (2 + d)/t. Now
employing the maximal inequality (2.17) we obtain

[Wu(27; )P0 5 ()]l < 279/ SN (he W (27 My (1R, ()
J-1<v<j+1EEX,

<@ NS el W2 ) g ()

J=ISrsi+lged,

p
1/p

< ¢294(1/2=1/p) Z Z |h£|pWM(2j;g)—(p/d—l/p+1/2)p
IIrEER,

Using this in Definition 5.1, we obtain || f|| psz < c[[{he}|ps2. Hence the operator TJ 2bsh — By
is bounded.

We next prove the boundedness of the operator S, : Byf — byf, assuming that the space
B! is defined in terms of {®;} in place of {®;}. Observe first that

[(f, )| ~ m(Re) V(@ % ()] ~ 2799 2W, (27121, % f(E)], €€ X
Since ®; * f € Il,;, Lemma 5.5 implies that

57 (W@ £ pe) ) < e B0 ST W (205 ) P, x £(€) ()

£EX; {eX;
< 2704220 W, (275 ) 7P 0B « f|IE.

This at once yields [[{(f,¥)}sze < cllfl B2

The identity T, o S, = Id follows by Proposition 3.1.

The independence of B,/ of the particular selection of @ in the definition of {®;} follows
from above exactly as in the Triebel-Lizorkin case (see the proof of Theorem 4.5). U

The parameter p in the definition of the Besov spaces B,/ allows to consider different scales
of spaces. A ‘classical’ choice of p would be p = 0. However, we maintain that most natural
are the spaces By (p = s). The main advantages of the spaces By: over By with p # s are
that, first, they embed ‘correctly’ with respect to the smoothness index s, and secondly, the
right smoothness spaces in nonlinear n-term weighted approximation from needles are defined
in terms of spaces B, (see §6 below).

PROPOSITION 5.6. Let 0 <p<p; <00,0<q<q1 <00,and —o0 < s1 < s < oo. Then we
have the continuous embedding

ss 518 oS 1 51 1
quCBpiqi Ifa—gzg—p—l (55)

Proof. With ®; from Definition 5.1 we have ®; * f € Ily;+1 and applying Proposition 2.4
we obtain

W3 (275 )75/ 1 5 f ()|, < 79 V/PTYPIW,(275) 790 5 ()|,
where we used that s/d — 1/p = s1/d — 1/p;. This leads immediately to (5.5). O

We finally want to link the weighted Besov spaces to best polynomial approximation in
L,(w,). Asin (2.8), let E,,(f), denote the best approximation of f € L,(w,) from II,,. Denote
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by A, the approximation space of all functions f € L,(w,) such that
1/q
oo

1 llag, = 1Fllp+ | D@7 ()] < oo (5.6)

Jj=0

PRrROPOSITION 5.7. Let s >0, 1<p<oo, and 0 < q<oo. Then f € B;g if and only if
[ € A;,. Moreover,

IfllB50 ~ £

A5, (5.7)

The proof of this proposition is similar to the proof [12, Proposition 5.3] and [9,
Proposition 6.2]. We omit it.

6. Application of weighted Besov spaces to nonlinear approximation

Let us consider a nonlinear n-term approximation for a needlet system {,},cx defined as in
(3.5)(3.8) with b =@, @ > 0. Thus ¢, = v, are real valued. Then by Proposition 3.1, for any
f e Ly(wy), 1 < p < oo,

F=Y (L ve)ve in Ly(w,).

fex
Let 3,, be the nonlinear set of all functions g of the form
9= act,
EeA
where A C X, #A < n, and A may vary with g. Denote by o, (f), the error of best L,(w,)-
approximation to f € L,(w,) from X, that is,

ou(F)p = inf 11F =l

We consider approximation in L,(w,), 0 < p < co. Suppose that s > 0 and let 1/7 :=s/d +
1/p. Denote briefly

B} :=B}3.
From Theorem 5.4 and (3.12) one derives the following representation of the norm in B?:
1/7
1 lse ~ | D0 I dedelly |- (6.1)

fex

The following embedding result shows the importance of the spaces B? in nonlinear
approximation from needlets.

PROPOSITION 6.1. If f € B?, then f can be identified as a function f € L,(w,) and

1Fllp < e | D 1 ve)eOIf| < ellf]

fex

B (6.2)

p

We now give the main result of this section.
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THEOREM 6.2 ([Jackson estimate]). If f € B2, then

ou(f)p <en™ | fllp:, n>1. (6.3)

The proof of Proposition 6.1 and Theorem 6.2 relies on the following lemma.

LEMMA 6.3. Let F = Eseyn age, where Y, C X and #Y,, < n. Suppose that ||agie||, <
A for ¢ € Y, where 0 < p < oo. Then ||F|, < cAn'/P.

Proof. This lemma is trivial when 0 <p < 1. Suppose that 1 <p <oco. Fix 0 <t <1
By Theorem 4.7, for any £ € X we have [¢¢(z)| < c(M,1g,)(z) for € B, and applying
the maximal inequality (2.17) we infer that

1Pl <c| Y Milaelng)|| <c| D laclin,
EE€EYn » £EY, »

From |jagie ||, < A, (3.12), and (2.27) it follows that |ag| < cAm(R¢)'/?71/? and hence

I1F|l, < || Y m(Re)™Pig| (6.4)

£EYn »

For £ € X denote by X¢ the set of all n € X such that R, N Re # 0 and £(n) < ¢(€), where
£(n), £(¢) are the levels of n, & in X (for example, ¢(§) = j if £ € Xj).
Let £ € Xj and n € Xe N X, (v < j). Since R, N Re # 0 it follows that d(£,n) < 27" (see
Definition 2.10). This combined with inequality (2.6) leads to
Wu(27:€) S Wu(275€) < 2"W, (275 m) (1 + 27d(€,m))* < W (275m).
Therefore, using (2.27) we obtain m(R¢)/m(R,) < c2~%~") and hence
> (m(Re)/m(Ry)P < e < oo, (6.5)
neXe
Define U(x) := min{m(R¢) : { € Y,z € Re} for x € E 1= Jge,, Re. By (6.5) it follows that
Z m(Rg)_l/p]le (z) < cU(x)"YP, zeE.
EEYn
We use this in (6.4) to obtain

1/p
1Ell, < U7l = ¢ (J v ‘%w)w(m)dx)
E
1/p
<cA Z m(Rg)flll‘ 1g, (v)wy(x)dw = cA(#Y)YP < cAnM/P.
£€EYn Be U

For the proof of Proposition 6.1 and Theorem 6.2 one proceeds exactly as in the proof of
[12, Proposition 6.1 and Theorem 6.2], using Lemma 6.3. We omit the further details.
It is an open problem to prove the companion to (6.3) Bernstein estimate:

gl

This estimate would allow to characterize the rates of nonlinear n-term approximation from
needlet systems in L,(w,) (1 < p < c0).

Bs < e/ gll, forgeX,, 1<p<oo. (6.6)
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7. Proofs

7.1. Proofs for §§2 and 3

Proof of Theorem 2.2. We shall first establish (2.3) for p = 2. From the definition of the
kernels P, (z,y) (see (1.4) and (1.5)) it follows that

JBd P’fl (ZE, y) Pm(:Z?, y)w“ (y) dy = 5n,mpn (ZC, I),

and hence

JB |Ly, (zy wy(y dny‘ ( )‘ Pi(z,x). (7.1)

Therefore, for p = 2 estimate (2.3) will follow by the following lemma. ([

LEMMA 7.1. For any € > 0

where ¢ > 0 depends only on ¢, p, and d.

Proof. Assume that x> 0. We shall utilize representation (1.5) of P, (z,y). The case u =0
is easier and will be omitted (in this case one uses representation (4.2) of P, (x,y) from [14]).

From (1.5) it is obvious that P, (z,z) depends only on |z|. For the rest of the proof, we
denote P,, 4(r) := P, (z,x), where r := |z|, and A, 4(r) := Z;Lt[fd"] P;.a(r). Summing up the
well-known recurrence relation [17, (4.7.29)]

A—1
M) = C)glw) = " 220N M @), where O () = Chy(a) =0,

we obtain

ONz) = Z wcf\—l‘(@.

A—1 n=2j
0<2j<n
Combining this with (1.5) we arrive at

by n—|—/\
Po.a(r) = b,fl Z Pr—2ja—2(r).
d—2 0<2j<n

Hence

n+[8(d—2)n]
> en? Z Pra—a(r) = chAn,d_z(r).
k=n
Here ¢ > 0 depends only on ¢, u, and d; we used that n > 1/e.
Evidently, the above estimate leads to (7.2) using induction on d, provided that we prove
(7.2) for d = 1 and d = 2. However, the case d = 1 is already established in [9, Proposition 2.4],
namely,

Apa(r) = ——

, AT (7.3)
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It remains to prove (7.2) in the case d = 2. The proof relies on the well-known identity

T(p)(n — 2k + )k + A —p)D(n —k+X)
Cal)= D, T(NT(A— wklT(n—k +p+ 1) Crnai(®) (7.4)

0<2k<n

(see [1, p. 59]) and the product formula of Gegenbauer polynomials [4, Vol I, Paragraph 3.15.1,

(20)):
W:b’f_l/QJ cH (5t+ux/1752\/17t2) )t du. (7.5)

Cr(1)
Using (7.4) (with A = p+ 1/2) along with (1.5) and then (7.5), we obtain
n+p+1/2 n — 2k + p [Ch_y (r)]?
Paa) =V = 2 cn O
p+1/ 0<2k<n H -2k (1)
_byn4p+1/2
T Z Ckn n— 2k1 ) (76)
b e 0<2k<n
where

S Tp+D(k+1/2)T(n—k+p+1/2)
BT T+ 12T/ (n — k + p+ D)k
Here we used that the Ls(w,)-normalized Gegenbauer polynomial CH can be written in
the form CH(x) = hﬁl/zC’#(x) with A, == (b))~ tu/(n + w)CH(1), which is a matter of simple
verification, and hence

n+ p [Ch(r)]

po Cr(l)
It is straightforward to verify that if 0 < k < n/2, then ¢y, ,, ~ (kn)~'/2, and hence Chon = €N
Therefore, from (7.6)

Pua(r) = [CH(r)]* = b}

1

n+[2en] n+[2en]

bl k+p+1/2
D Pra(r) =32 > —— D aProga(r)
by k=n pt1/2 0<2j<k
n+[2en]
>c Z Z Pr_2j,1(r) = cnlp1(r).
k=n 0<2j<k
This combined with (7.3) yields (7.2) for d = 2. O

We now continue with the proof of Theorem 2.2. Applying (7.2) with ¢ =2/3d yields
| Ln(x,)|l2 = enW,(n;z)~! for n > 2d. If 2 < n < 2d, then as in the proof of Lemma 7.1
it follows that

1L (@, )15/ = e(Po(@, @) + Posa(@,2)) > e(Ch(|a]) + Chyy(|2]) > ¢ > 0

for all z € B? where we used the fact that the polynomials C* and C* .1 have no common zeros.
Taking into account that W, (n;x) ~ 1 when n < 2d, the above leads again to || L,(x,-)||2 >
en®W,(n; z)~1. This completes the proof of estimate (2.3) for p = 2.

Now, one easily derives (2.3) for p # 2 from the same estimate for p = 2 and the upper bound
estimate (2.1). Indeed, for 2 < p < oo applying Holder’s inequality we obtain

W(n, ) gj | L (@, ) Pwya(y) dy < | Lo (@, Il Ln (2, )l
Bd

nd 1-1/p 1 1
< e[ Ln(, ')||p(m) (2_9 + v 1) ;
u\,

which implies (2.3). One proceeds similarly whenever p = co.
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If 0 < p < 2, using (2.3) for p =2 and (2.1) for p = oo, then we obtain

C’fld
—— < | |L 2 dy<| |Ln 4 dyl| L (2, )| 257
ey < | e P dy < | L)) dy e )1
n 2—p
< Ly (z,y)[? dy\ 7= .
o] e m ()

This again leads to (2.3). The proof of Theorem 2.2 is complete.

Proof of Proposition 2.4. Let g € II,,. Assume that 1 < ¢ < co and let L, be the kernel
from (1.8), with @ admissible of type (a). By Lemma 2.3, g = L, * g. We use this, Holder’s
inequality, (2.1), and that W, (n;z) > n~2* to obtain

1/q
n
lg(z)| < cllgllq (W (nw)) < Cn(d+2u)/q”g”q, z € BY,
u\1

and hence
lglloe < cnt 2179 g|ly, 1< g < oo, (7.7)

Let 0 < ¢ < 1. The above inequality with ¢ = 2 yields
lgl%e < enlt2) JBd 9P 9(W)|“wy(y)dy < en™*(|g]1 27 lg]|4-

Therefore, (7.7) holds for 0 < ¢ < 1 as well.
Let 0 < ¢ < p < o0. Using (7.7) we have

1/p
ol = ([ lat@P~*lg(o)tu, o) o)
< Cn(d+2u)(1/qfl/p)||g||((1pfq)/p||g||g/p - Cn(d+2u)(1/q71/p)Hqu.

Thus we have proved (2.10).
We next prove (2.11). Assume first that 1 < ¢ < co. Using again that g = L,, x g, Holder’s
inequality (1/q+1/¢’ = 1), and (1.11) we obtain for z € B,

Ly, )Wy (ny) 71 /eet/a

q 1/q'
oo < Iy o0l (| )y

c n* J w“(y) dy e ||W (n .)7+1/p—1/qg(.)||
W (n; )12 \Jga Wy(n;9)7/248(1 + nd(x,y))” e

where 3 = ¢'(v+ 1/p — 1/q). The last integral can be estimated by using (2.2), yielding

q»

nd/q F1/p—1/
lg(z)] < Cwnwu(m )T g () |-
Hence
W (5 )7 29 () [loo < en W (n; )72 gy, 1< g < oo (7.8)

Let 0 < ¢ < 1. Then by (7.8) with ¢ = 2 we have

Wi )29 (oo < en®|[Wi(n; )7 H/P71 29 () |2
< en® W ) PG T2 Wi (ns )7 FYP g ()] 22,

Therefore, (7.8) holds for 0 < ¢ < 1 as well.
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Let p < oo. Using (7.8), we have

1/p
W50l = (| 1900 ) 1,050 ) ) )

q 1/p
d(1/q—1/p) C\vL/p=1/q 0 \||1—a/p (W (n; 2)7g(x)|
<en W) sl ([ e ) do

= cnd(/a=1/P) |, (ng )T = g ().

Hence (2.11) holds for p < oo. If p = oo, then (2.11) follows from (7.8). O

Proof of (3.13). From (3.10) with & sufficiently large (k > d + 24 will do) and (3.12), we
infer forO<r <=«

0 <ec1 < [lpell2

: wu(y)
< Nl ell 2. (Be(rym(B (r))+02adJ _wy) »
€l Loo (Be(r)) £ B\Be(r) Wi(275y)(1 +27d(€, y))%*

J wy(y)
L+2ir)F ) ga W, (27;y)(1 4 27d(&, y))k
C2

142ip’

27

< [0l Low (Be (r)ym(Be (1)) + T dy

< el Lo (Be(ryym(Be(r)) +

where ¢y depends only on k, d, and pu. For the last inequality we used Lemma 2.1 with p = 2.
Let r := ¢*27J, where ¢* > 0 is selected such that ¢y /(1 + 277) = c3/(1 + ¢*) < ¢1/2. Then from
above

c 27d 1/2
oy = > :
leclimsirn > gy > Aw,@ig)

A similar estimate holds for ¢ as well. ]

7.2. Proofs for §§ 4 and 5

Proof of Lemma 4.6. Using the orthogonality of the subspaces V¢, we have P« e(x) =0
ifeeX, forv>j+2orv<yj—2.

Let £ € X, j —1 < v < j+ 1. From the localization of the kernels ®;, given in (3.9), and
the needlet localization from (3.10) it follows that for any k& > 0 there is a constant ¢ > 0 such
that

2j3d/2 J wu(y)
W, (2 2) Jpa Wu(2:y)(1 + 2d(z,y))* (1 + 27d(y, )"

|®; « Ye(z)| < g dy.

Denote

d(x,€)
2

Qg = {y e B :d(y, &) >

} and €, = {y€Bd:d(x,y)>d($’£)}.

2

Evidently, B¢ = Q¢ UL, and hence

278d/2 J wu(y)
W, (27;2) (1 + 21d(z,€))* Jo, Wu(275y) (1 + 27d(z,y))*
9j3d/2 J wu(y)
W, (295 2) (1 + 29d(x, €))% Ja, Wu(279;y)(1 + 29d(y, §))*
=:Jy + Js.

|5 * e ()] < ek

dy

dy
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We may assume that k& > d. Then employing Lemma 2.1 with p = 2, we obtain

wy(y) wy(y)
Jng W (27;y)(1 + 27d(x, y))k dy < L;d W, (275 y) (1 4 27d(x,y))

which yields

7 dy < 27

97d/2

VW (2 2)(1+ 20d(x, ))F

One similarly estimates Jo. This completes the proof of the lemma. ]

J1<C

Proof of Lemma 4.7. Estimate (4.12) follows readily from the localization of the needlets
(see (3.10)) and the lower bound estimate from (2.19) taking into account that Re C Bg(c®277)
for £ € &.

We now prove (4.13). By the lower bound estimate (3.13) it follows that there exists a
w € Be(c*277) such that

o) 2 e
ve(w)| 2 c—F————.
Wu(y 3 )
Also, by (3.11) it follows that for every z € B, (27/)
27(d/240) g(w, x)
W26
By (7.9)—(7.10) it follows that for a sufficiently small constant ¢ > 0
2jd/2
Wu(zj 5 5 )

(7.9)

|pe(w) — pe(z)| < c (7.10)

|pe ()] = lpe(w)] = lpe(w) — we(a)] = ¢ > clp, o) (z), @€ Bu(e27),

which yields
(Myge)(x) 2 e(Mid g, e2-5))(x) = clp,2-)(z) > g (z), x€ B,
where in the second inequality we used (2.19).

One similarly shows that M > cl Re- Ol

For the proof of Lemma 4.9 we need a couple of additional lemmas.

LEMMA 7.2. Let k> d and j > 0. Then

S .,
ggz;j A+ 2dw oy S *€ B, (7.11)
and for any £,n € B
> ! _ 1

(1 20d(&w)F (1 + 2d0g,w)F S “(T+ 2d(E m)F

wE X

(7.12)

Proof. Fix ¢ € X;. Evidently, 1 + 2/d(z,£) ~ 1+ 27d(x,y) for y € Re, and by (2.5)
|\/1_|£|2_\/1_|y|2|g\/id(fay)<027ja y€R§7

which implies that

[Re| ~2774(V1— [¢P +277) ~2794(/1 [y +277), y€ R
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We use the above to obtain

3 1 .. 3 LJ Ly
& T+ 2dw, ) < 22 [Rel Jn, T+ 20d(o,))F
< cdeJ 1 - dy < c.
L—[yl* +277)(1 + Yd(z, y))*

Here for the last inequality we used Lemma 2.1 with p = 2 and p = 1/2.
For the proof of (7.12), assume that £ # 7 and denote

X;(6) = {w eX;d(Eg,w) = @}, X;(n) = {w e X d(n,w) > 5

Then

1 1 1
L T oaE w0+ o) < T DaE ), 2o T Tl )

P S 3 -
(+2dEn) 4 [+ 2dEw)F

1 1 1
<C(1+2jd(€ﬂ7))’“< 2 A+ (. w)F 2 (1+2jd(§,w))’“)

weX; weEX;
1

L
(1+27d(&,m)*
where for the last inequality we used (7.11). O

LEMMA 7.3. Assume that P € Ily; (j > 0), £ € &;, and let 21,29 € B? and let d(x,, 1) <
279, v=1,2. Forany k >0

|Pa1) = Plaa)| < e2d(w1,3)
tex;

[P(6)]
(1+27d(n, )"

where ¢ > 0 depends only on d, k, p, and ¢.

Proof. Fix P € Ily; and assume that Lo, is the reproducing kernel from Lemma 2.3 with
n =27. Then, Ly; * P = P. Since Lo (x,-)P(-) € Ilyj+2, and the cubature formula (2.25) is
exact for all polynomials from Il,;+2 we have

P@)=| Lo )P@u)dy= 3 AL (#.9P©). o€ B
B §EX;

We use (2.4) to obtain, for z1, 2o € B with d(z,,n) <277, v =1,2,
Pla) = Plaa)| = || [Las(@1.0) = Las (a2, P, () d

<Y PellLai(@1,€) = Lai (w2, 6)|| P(€)]

£EX;

Td(zy, 2 Wu(2j§£) v [P()]
s z)gzgj (Wu(2j;n)> (L+27d(g,m)*

) [P(n)]
< 22 d(xy,x2) n;j (1+27d(E,n))k—2n
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Here we used that A¢ ~ 2779W,,(27;€) and for the last inequality we used (2.6). Taking into
account that & > 0 can be arbitrarily large, the result follows. O

Proof of Lemma 4.9. Let d¢ := max{|P(x1) — P(z2)| : 1 € Re,d(z1,22) <2777} Obvi-
ously a¢ < be + d¢. Now Lemma 7.3 yields

—r [P(n)] _
de < 2 TI;.W, £ €A

From the definition of df in (4.14) we infer that

. PG . 0] o
kLT Y X G mdwa e sdewy < 2 Trda oy <2

weX; nEX;

where for the second inequality we interchanged the order of summation and used Lemma 7.2.
Hence, az < b* + d* < bz + cQ’Taz with ¢ > 0 independent of r. By selecting r sufficiently large,
we obtain af < cb* ]

Proof of Lemma 4.10. We first prove Lemma 4.10 in the case p = 0. We fix { € &; and
define Sy := {n € X; : d(n,&) < ¢°277} and

Sy i={n € Xj : 279t < d(n,€) < 270t m > 1,

where ¢® is the constant from Proposition 2.12. By Definition 2.10 it follows that #5,, < c2™<.
Let us also set

B, = Be(c®(2™ +1)277), m >0.
Evidently, R,, C By, for n € S,, 0 < v < m. Moreover, if n € Sy, then
d(€,0B%) < d(&n) +d(n,0B%) < 2777 + d(n, 9B7).

Hence, using (2.14), we obtain

Cinmn 2 i 2
m(Bm) < 2md d(g, 6Bd) + 2 J+ " < C2md d('f'], aBd) + 2 it . < C2m(d+2u)
doBY 135 ) S doBh 127 ) S ‘

(7.13)
Set v := max{0,1 — 1/t} < 1. Using Holder’s inequality if ¢ > 1 and the ¢-triangle inequality
if 0 <t <1, we obtain

1/t
* |b | o —m(o—d~y) t
bEZZW €Y 2 Y byl ey 27T Y by

nex; m=0 neESm m=0 NESm

We now use (7.13) to obtain, for « € R,

t 1/t
pe=e >z (| S () e, ()| wao)do
m=0 B NESm
¢ 1/t

. 0o (o) 1 m(Bm) 1/t .
<ed gl |2 () i) ey

NESm
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—m(oc—d— 1
<o Y amlod- )JB S Jbulta, ()| waly)dy

m=0

<eM | 3 Pbulin, | @),

wEX);

where for the last inequality we used that o > d + (d 4+ 2u)/t.
Consider now the general case. Using (2.6) we have for £ € X

W,.(27;€)7|by| W, (27;0)7 by
T 2de )y < 2o (T3 20d(E, )2 <

W25 < S B

nex;

(W (2767
neX;
where we used that o > d + (d + 2u)/t + 2u|y|. Now (4.16) in the general case follows by the
same inequality in the case p = 0 established above. ]

Proof of Proposition 4.11. On account of Theorem 4.5, it suffices to show that under the
hypothesis of Proposition 4.11 we have the continuous embedding f,7 C f;l;!. Moreover, we
may assume that ¢ = oco and 0 < ¢; < 1.

Suppose that h € f35, and [|h]| s = 1. We need to show that

1

s s 1
porsn S € < 00, Where—l——:———7 0<p<p <o0,81 <s. (7.14)
141 P1 d P

1h

To simplify our notation we let

Qj(x38,p) =27 ) |he|W,u(273€) " g (2)wp(2)'/7.

cex;
Then
/@
Pl gz, = |lsup @;(55,p) and [0l ries o= || [ 32 Q5 C5s.p0)"
j=0 Lr(Bd) j=0
LP1(B%)
Here || - ||p»(pay stands for the LP-norm on B* with weight 1.
Denote Fy := {x € B*:27¢ < (1 — |z|>)'/2 < 27*1} and, also
/a1 P
Ne(h) == {[[ D @Q;(is1,p1)" :
j=¢
J Lot ()
N —1 1/’11 P1 »
Ne(h) :={[[ Y- Q;(;81,p1)" , and My = |jsup Q;(:;s,p)
=0 =0 Lr(Ey)
LP1(E,)
Our next aim is to show that
No(h) < eMy(h) and  Ny(h) < eMy(h), £=1,2,.... (7.15)

Assuming that the above estimates hold we obtain

1A

p
e S
poo

Tha < ¢y (Ne(h) + Ny(h)) < €Y My(h) < c|h
=1 =1

Therefore, (7.15) yields (7.14) and, hence, the claimed embedding result.
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To prove that NVy(h) < eMy(h), we first observe that if j > ¢ and Re N Ey # (), then

Wu( 2J 6) (\/1 — €2 +27 J) ~ 272 — 824 where § 1= 2%,

and wy(z) := (1 — [z[})#71/2 ~ §2#~1 for 2 € E,. We use these and the fact that 1p, :=
m(Re) Y21 g, , where m(Rg) ~ 2794W,(27;€) (see (2.27)), to obtain for j > ¢

1=|h 155 > ”Qj(';Svp)”LP(E[,lUEzUEHl)
1/p
> 2i(s—d/p+d/2) §2u(=s/d+1/p=1/2) Z |helP
EE€Xj,ReNE #0
Hence
\he| < ¢29(=s+d/p=d/2) §2u(s/d=1/P+1/2) *if ¢ € X, j >0, and Re N Ey # 0. (7.16)

Using that W, (27,&) ~ 6%* and w,,(z) ~ §**~1 we have for z € E; and k > ¢
q1

k
S Q@)™ <3 | 2t/ oD S i (2)

NM?T

Jj=t §€X;, ReNEy#D
Combining this with (7.16) we obtain
k k
ZQ;‘(DC;Shpl)ql < CZ 2i(s1=s+d/p)ar s—a1/pr ¢ ¢ okdar/p1s—ar/p1 (7.17)
j=t j=t

In a similar fashion one has for x € EFy and k > ¢ — 1

Z Qj(x;81,p1)" < c Z 9i(s1=s)a1 5(1/p— 1/p1)q1Q (2;5,p)"
j=k+1 j=k+1
< 2k(s1=s)a1 §(1/p=1/p1)@ sup Qj (z;5,p)0. (7.18)
j>k
Recall the well-known representation

o d
ey =] e € B 15@)] > 015

Hence
1/41
dt

M(h):p1J P\ Sz e By ZQg‘(l’;817P1)QI >t 7
0 =t

(2¢,)V/ 15— 1/P1

0
:le' +p1J ...2211+12.
0 (2¢c, )M/ a1 §—1/p1

To estimate I; we use (7.18) with k = ¢ — 1. We obtain
C(S_l/pl d

t
11<CJ tpl‘{x€Eg:cél/pfl/plsuij(x;s,p)>t}’—
0 >k t
cs—/P du
< 05(1/p—1/p1)plj uPt |{ x € By sup Qj(x;s,p) > -
0 i>k u
< c6(1/p=1/p1)p1 5=1/p(P1—P) JOO Pl xe By :sup Qj(x; 5,p) > u d_u
0 >k U

g CMg(h)
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Here in the second estimate we used the substitution ¢ = cud*/?~1/P1 and for the third we used
that uPt < cuP§—1/pPr—p)

We now estimate Io. For ¢ > (2¢,)/96~1/P1 we choose k >0 in (7.17) to be the largest
integer such that ¢, 2kda/prg—a/p t? /2. Suppose that k& > £. Then

1/q1

0 k
ze B Y Qj(wis,p)” >to CRa€E Y Qiw;s,p)” >
: o

ta
2
q1

— t
Udx e bp: ';lej(iU;Slypl)ql > 7 =: A1UA2.
j=

By (7.17) and the selection of k it follows that A; = (). Consequently, using (7.18) we have

dt

oo
[2 g CJ P
(2¢.)1/a15-1/m1

{x € Bp: 61771 sup Qs (s s, p) > CtQk(SIS)}
j>k

From the selection of k we have 254/P15=1/P1 ~ ¢ and a little algebra shows that

19— k(si=s)  yp1/pgl/p=1/p1

Therefore,
o / dt
Iy<c| t"|[{xz€E;:supQ(xz;s,p) > ctP/?
0 >k t
(o]
<CJ' u? {CBEE@ sup Q;(x; s, p) >u}‘——CMz( ),
0 j=0

where we used the substitution u = ¢/tP/?,

The case when k < £ is simpler. Then e 2tdar/prg—ar/p > t% /2, and hence 2td/p1§=1/p1 > .
One estimates Iy as above with k replaced by ¢. The result is again Is < cMy(h).

The above estimates for I; and I imply that Ny(h) < cMy(h).

To prove that Ny(h) < eM(h) we proceed quite as above. Note first that if Re N E, # 0,
£e X, j <, then

Wa3€) 1= (VI TGP 4275 270,
and w,,(v) == (1 — |z[?)#=1/2 ~ 2742=1) for x € E,. Hence for j < ¢

1=h

I3 2 ”Qj(v svp)”LP(Ez_lUEzzUEzH)
1/p

b

> 23(s=d/p+d/2)9—=2ju(—s/d+1/p—1/2) Z |helP
EEX;,ReNE#D

which implies that

|he| < I (=sFd/p=d/2g2in(=s/d+1/p=1/2) ©if ¢ € X, j < £,and Re N B, # 0.
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Therefore, for x € F; and k < ¢ we have

k q1

k
ZQj($§31,p1)ql < CZ 9d(s1+d/2)9—2jpu(—s1/d—1/2)9—L£(2n—1)1/p1 Z |h5|]11%5 (x)
=0 =0 €EX;
k
< CZQj(sl+d/2—S+d/P—d/2)q1 9=2ju(=s1/d=1/2+s/d=1/p+1/2)q1 9—£(2p=1)q1 /P

=0
(7.19)
k
< CZQj(d-‘r?M)QI/Pl 9—42p=1)q1/p1 < C*Qk(d+2u)q1/m 9—t2p—1)a1/p1
=0

Assuming that Re N Ey # 0, where € € X;, j < {, and z € Ey, we denote briefly by
U(s,p) i= Wiu(27:€) "/ wy, () /7.
It is readily seen that

Ul(sy,p1) = U(s, p)2~21(1/p=1/p1)g=t@u=1)(1/p=1/p1)

We use this to obtain for x € Ey and —1 < k </

14

¢
Z Qj(x;51,p1)" < ¢ Z 9dls1—=s=2p(1/p=1/p1)]a1 9t(2p—1)(1/p=1/p1)q1 sup Q; (; s, p) "
Jj=k+1 j=k+1 ji>k

< 2~ Fd+20)(1/p=1/p1)a1 gt (2u—1)(1/p=1/p1)nx sup Q, (3 5,p)%". (7.20)
>k

Denote briefly D := 2¢#=1)_ Just as for Ny(h) we have

/a1

00 (-1
~ dt
Ne(h)=p1 | " |Sz e Ep: ZQj(w;sl,pl)‘h >t "

0 0

(25*)1/‘11 p-i/r 00

:le' —|—p1J ...23114—[2.
0 (26*)1/41D*1/P1

As above we use (7.20) with £ = —1 to obtain

eD1/P1
.[1 < CJ thr

dt
{:r € By : cDY/P=1/m sup Q;(x; s,p) > t}‘
7=0 t

L. eD~ /P
< CD(;*H)ZHJ uP

{.TEE[ sup Q;(x; s, p) >uH—
j=0

< DG 5P p— 3 (p1—p) JOO uP

d
{xGEg sup Q;(x; s, p) >u}‘ :L

j=0
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For t > (2¢,)"/1D~V/P1 we select k>0 in (7.19) to be the largest integer such that
c, 2R dF2mar/pm p=a/p L ¢4 /2. Suppose that k < ¢. Then

/a1
k q1

¢
t
rze Ey: ZQj(x;sl,pl)‘“ >ty C erg:ZOQj(w;sl,pl)‘“>7
=

ta
U ZL’GE{Z -;162]‘(1’;81,])1)% > ? = A1 UAQ.
i=

y (7.19) and the selection of k it follows that A; = (). Consequently, using (7.20) we obtain

dt

e
I2<CJ th f

(2¢,) /a1 D=1/P1

{x SN D'/p=1/m sup Q;(z;s,p) > ctQk(d-‘rQlt)(l/P—l/m)}
>k

From the selection of k we have 26(d+21)(1/p=1/p1) D=1/P1 ¢ and a simple manipulation shows
that ¢2k(d+2m)(1/p=1/p1)  ¢p1/p D1/P=1/P1  Consequently,

o dt
IggcJ' Pz e Ey: supQJ(x s,p) > c'tP/P
0 i>k t
gcJ' u? {l‘EEg sup @, (x; s,p) >u}‘——c./\/lg( ).
0 720

The case when k > £ is trivial since in this case A; = Ay = () and hence I = 0.
The above estimates for I3 and Iy yield NVy(h) < eMy(h). Thus (7.15) is established. U

Proof of Lemma 5.5. For any § € X}, we denote a¢ := maxger, |P(z)],

me := min |P(z)|, and b :=max{ min |P(z)|:w € Xji,, R, N Re # 0},
€ R TERy,

where r > 1 is the constant from Lemma 4.9.
Choose 0 < ¢ < p. By Lemma 4.9 we have a; < cb;. We use this, Lemmas 4.10, and the
maximal inequality (2.17) to obtain

1/p
D Wl €)afm(Re) | = > Wu(2;€)ael, ()
fed; fed; »
> W@k ()| <M | Y Wal(2:6)belx, | () (7.21)
EEX; » EEX; »
<el[ D Wul:€)bellp ()
EEX; »
Now, exactly as in the proof of Theorem 4.5 (see (4.20)) we have
bW (2 ) T, < S myWL (2 in) 1, (7.22)

nEX;4r(8)
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where X, (§) :={w € X4, : R, N R¢ # 0}. Combining this with (7.21) and using that
#X;1r(§) < ¢, Lemmas 4.10, and the maximal inequality (2.17), we obtain

1/p

D Wa@i€)agm(Re) | <el D miWu(2 i) g, ()

§ed; NEXj4r »

SelMe | D mgWu @) 1k, | O llp <el Do myWa(2F5n) 1R, ()

NEX;jtr NEXjtr »

< o[ Pllp-

Here for the fourth inequality we used that W, (27%";n) ~ W,(2%;z) if z € R,), n € Xjy,. [
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