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Decomposition of weighted Triebel–Lizorkin and Besov spaces
on the ball

G. Kyriazis, P. Petrushev and Yuan Xu

Abstract

Weighted Triebel–Lizorkin and Besov spaces on the unit ball Bd in R
d with weights wμ(x) =

(1 − |x|2)μ−1/2, μ � 0, are introduced and explored. A decomposition scheme is developed in
terms of almost exponentially localized polynomial elements (needlets) {ϕξ}, {ψξ} and it is
shown that the membership of a distribution to the weighted Triebel–Lizorkin or Besov spaces
can be determined by the size of the needlet coefficients {〈f, ϕξ〉} in appropriate sequence spaces.

1. Introduction

Localized bases and frames allow to decompose functions and distributions in terms of building
blocks of simple nature and have numerous advantages over other means of representation. In
particular, they enable one to encode smoothness and other norms in terms of the coefficients
of the decompositions. Meyer’s wavelets [10] and the ϕ-transform of Frazier and Jawerth [5–7]
provide such building blocks for decomposition of Triebel–Lizorkin and Besov spaces in the
classical case on R

d.
The aim of this article is to develop similar tools for decomposition of weighted Triebel–

Lizorkin and Besov spaces on the unit ball Bd in R
d (d > 1) with weights

wμ(x) := (1 − |x|2)μ−1/2, μ � 0,

where |x| is the Euclidean norm of x ∈ Bd. These include Lp(Bd, wμ), the Hardy spaces
Hp(Bd, wμ), and weighted Sobolev spaces. For our purpose, we develop localized frames which
can be viewed as an analog of the ϕ-transform of Frazier and Jawerth on Bd.

For the construction of our frame elements, we shall use orthogonal polynomials in the
weighted space L2(wμ) := L2(Bd, wμ). Denote by Πn the space of all algebraic polynomials
of degree n in d variables and by Vn the subspace of all polynomials of degree n which are
orthogonal to lower-degree polynomials in L2(wμ). These are eigenspaces of the differential
operator

Dμ := −Δ + 〈x,∇〉2 + (2μ + d − 1)〈x,∇〉. (1.1)

More precisely (see, for example, [3]),

DμP = n(n + d + 2μ − 1)P for P ∈ Vn. (1.2)

We have the orthogonal polynomial decomposition

L2(wμ) =
∞⊕

n=0

Vn, Vn ⊂ Πn. (1.3)
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Note that dimVn =
(
n+d−1

n

) ∼ nd−1. As is shown in [19] the orthogonal projector Projn :
L2(wμ) �→ Vn can be written as

(Projn f)(x) =
∫
Bd

f(y)Pn(x, y)wμ(y)dy, (1.4)

where, for μ > 0, the kernel Pn(x, y) has the representation

Pn(x, y) = bμ
db

μ−(1/2)
1

n + λ

λ

∫1

−1

Cλ
n

(
〈x, y〉 + u

√
1 − |x|2

√
1 − |y|2

)
(1 − u2)μ−1du. (1.5)

Here 〈x, y〉 is the Euclidean inner product in R
d, Cλ

n is the nth degree Gegenbauer polynomial,

λ = μ +
d − 1

2
, (1.6)

and the constants bμ
d , b

μ−(1/2)
1 are defined by (bγ

d)−1 :=
∫

Bd(1 − |x|2)γ−1/2 dx. For a represen-
tation of Pn(x, y) in the limiting case μ = 0; see [19, (3.8)] or [14, (4.2)].

Evidently,

Kn(x, y) :=
n∑

j=0

Pj(x, y) (1.7)

is the kernel of the orthogonal projector of L2(wμ) onto the space
⊕n

ν=0 Vν .
A key role in this study will play the fact (established in [14]) that if the coefficients on the

right hand side in (1.7) are ‘smoothed out’ by sampling a compactly supported C∞ function,
then the resulting kernel has nearly exponential localization around the main diagonal y = x
in Bd × Bd. More precisely, let

Ln(x, y) :=
∞∑

j=0

â
( j

n

)
Pj(x, y), (1.8)

where the ‘smoothing’ function â is admissible in the sense of the following definition.

Definition 1.1. A function â ∈ C∞[0,∞) is called admissible of type (a) if supp â ⊂ [0, 2]
and â(t) = 1 on [0, 1], and of type (b) if supp â ⊂ [1/2, 2].

We introduce the distance

d(x, y) := arccos
{
〈x, y〉 +

√
1 − |x|2

√
1 − |y|2

}
on Bd (1.9)

and set

Wμ(n;x) :=
(√

1 − |x|2 + n−1
)2μ

, x ∈ Bd. (1.10)

One of our main results in [14, Theorem 4.2] asserts that for any k > 0 there exists a constant
ck > 0 depending only on k, d, μ, and â such that

|Ln(x, y)| � ck
nd√

Wμ(n;x)
√

Wμ(n; y)(1 + nd(x, y))k
, x, y ∈ Bd. (1.11)

The kernels Ln are our main ingredient in constructing analysis and synthesis needlet systems
{ϕξ}ξ∈X and {ψξ}ξ∈X here, indexed by a multilevel set X =

⋃∞
j=0 Xj (see § 3). This is a pair

of dual frames with elements that have nearly exponential localization on Bd and provide
representation of every distribution f on Bd:

f =
∑
ξ∈X

〈f, ϕξ〉ψξ. (1.12)
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The superb localization of the frame elements prompted us to term them needlets.
Our main interest lies with distributions in the weighted Triebel–Lizorkin (F -spaces)

and Besov spaces (B-spaces) on Bd. These spaces are naturally defined via orthogonal
decompositions (see [15, 18] for the general idea). To be specific, let

Φ0(x, y) := 1 and Φj(x, y) :=
∞∑

ν=0

â
( ν

2j−1

)
Pν(x, y), j � 1,

where P(·, ·) is from (1.5) and â is admissible of type (b) (see Definition 1.1) such that |â| > 0
on [3/5, 5/3].

The F -space F sρ
pq with s, ρ ∈ R, 0 < p < ∞, 0 < q � ∞, is defined (§ 4) as the space of all

distributions f on Bd such that

‖f‖F sρ
pq

:=

∥∥∥∥∥∥
( ∞∑

j=0

(2sjWμ(2j ; ·)−ρ/d|Φj ∗ f(·)|)q

)1/q
∥∥∥∥∥∥

Lp(wμ)

< ∞, (1.13)

where Φj ∗ f(x) := 〈f,Φ(x, ·)〉 (see Definition 2.7).
The corresponding scales of weighted Besov spaces Bsρ

pq with s, ρ ∈ R, 0 < p, q � ∞, are
defined (§ 5) via the (quasi-)norms

‖f‖Bsρ
pq

:=

⎛⎝ ∞∑
j=0

(
2sj‖Wμ(2j ; ·)−ρ/dΦj ∗ f(·)‖Lp(wμ)

)q

⎞⎠1/q

. (1.14)

Unlike in the classical case on R
d, we have introduced an additional parameter ρ, which

allows considering different scales of Triebel–Lizorkin and Besov spaces. To us most natural
are the spaces

F s
pq := F ss

pq and Bs
pq := Bss

pq, (1.15)

which embed correctly with respect to the smoothness parameter s (see § 4). A ‘classical’ choice
would be to consider the spaces F s0

pq and Bs0
pq , where the weight Wμ(2j ; ·) is excluded from (1.13)

and (1.14). The introduction of the parameter ρ enables us to treat these spaces simultaneously.
One of the main results of this paper is the characterization of the F -spaces in terms of the

size of the needlet coefficients in the decomposition (1.12), namely,

‖f‖F sρ
pq

∼

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2sjq
∑
ξ∈Xj

|〈f, ϕξ〉|Wμ(2j ; ξ)−ρ/d|ψξ(·)|q
⎞⎠1/q

∥∥∥∥∥∥∥
Lp(wμ)

.

Similarly for the Besov spaces Bsρ
pq we have the characterization

‖f‖Bsρ
pq

∼

⎛⎜⎝ ∞∑
j=0

2sjq

⎡⎣∑
ξ∈Xj

(
Wμ(2j ; ξ)−ρ/d‖〈f, ϕξ〉ψξ‖Lp(wμ)

)p

⎤⎦q/p
⎞⎟⎠

1/q

.

Further, the weighted Besov spaces are applied to nonlinear n-term approximation from
needlets on Bd.

This is a follow-up paper of [14], where the localization (1.11) is established and the
construction and basic properties of a single system of needlets are given. Our development
here is a part of a broader undertaking for needlet characterization of Triebel–Lizorkin and
Besov spaces on nonclassical domains, including the multidimensional unit sphere [11, 12],
ball, and cube (interval [9, 13]) with weights. The results in this paper generalize the results in
the univariate case from [9] (with α = β), where needlet characterizations of F - and B-spaces
on the interval are obtained.
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The organization of the paper is the following. In § 2 the needed results from [14] and some
background material are given, including localized polynomial kernels, the maximal operator,
distributions on Bd, and cubature formula on Bd. The definition and some basic properties of
needlets are given in § 3. In § 4 the weighted Triebel–Lizorlin space on Bd are introduced and
characterized via needlets, while the weighted Besov spaces are explored in § 5. In § 6 Besov
spaces are applied to nonlinear n-term approximation from needlets; § 7 contains the proofs of
various lemmas from previous sections.

Throughout the paper we use the following notation:

‖f‖p :=
(∫

Bd

|f(x)|pwμ(x)dx

)1/p

, 0 < p < ∞, ‖f‖∞ := ess sup
x∈Bd

|f(x)|.

For a measurable set E ⊂ Bd, |E| denotes the Lebesgue measure of E, m(E) :=
∫

E
wμ(x)dx,

�E is the characteristic function of E, and �̃E := m(E)−1/2
�E is the L2(wμ) normalized

characteristic function of E. Positive constants are denoted by c, c1, c∗, . . . and they may
vary at every occurrence; A ∼ B means c1A � B � c2A.

2. Preliminaries

2.1. Localized polynomial kernels on Bd

The polynomial kernels Ln(x, y) introduced in (1.8) will be our main vehicle in developing
needlet systems. Here we give some additional properties of these kernels.

We have

‖Ln(x, ·)‖p � c
( nd

Wμ(n;x)

)1−1/p

, x ∈ Bd, 0 < p � ∞. (2.1)

This estimate is an immediate consequence of (1.11) and the following lemma (see [14, Lemma
4.6]), which will be instrumental in several proofs below.

Lemma 2.1. If σ > d/p + 2μ|1/p − 1/2|, μ � 0, 0 < p < ∞, then
∫
Bd

wμ(y)dy

Wμ(n; y)p/2(1 + nd(x, y))σp
� c n−dWμ(n;x)1−p/2. (2.2)

We now establish a matching lower bound estimate.

Theorem 2.2. Let â be admissible and let |â(t)| � c∗ > 0 for t ∈ [3/5, 5/3]. Then for 0 <
p � ∞ and n � 2

‖Ln(x, ·)‖p � c
( nd

Wμ(n;x)

)1−1/p

, x ∈ Bd. (2.3)

Here the constant c > 0 depends only on d, μ, p, and c∗.

The proof of this theorem is given in § 1.7.
The kernels Ln(x, y) are in a sense Lip 1 functions in both variables with respect to the

distance d(·, ·) from (1.9). Let ξ, y ∈ Bd and c∗ > 0, n � 1. Then for all x, z ∈ Bξ(c∗n−1) and
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an arbitrary k, we have

|Ln(x, y) − Ln(ξ, y)| � ck
nd+1d(x, ξ)√

Wμ(n; y)
√

Wμ(n; z)(1 + nd(y, z))k
, (2.4)

where ck depends only on k, μ, d, â, and c∗ (see [14, Proposition 4.7]).
We shall also need the following inequality from [14, Lemma 4.1]:∣∣∣√1 − |x|2 −

√
1 − |y|2

∣∣∣ � √
2 d(x, y), x, y ∈ Bd, (2.5)

which yields

Wμ(n;x) � 2μWμ(n; y)(1 + nd(x, y))2μ, x, y ∈ Bd. (2.6)

2.2. Reproducing polynomial kernels and applications

To simplify our notation we introduce the following nonstandard ‘convolution’. For functions
Φ : Bd × Bd → C and f : Bd → C, we write

Φ ∗ f(x) :=
∫
Bd

Φ(x, y)f(y)wμ(y) dy. (2.7)

We denote by En(f)p the best approximation of f ∈ Lp(wμ) from Πn, that is,

En(f)p := inf
g∈Πn

‖f − g‖p. (2.8)

Lemma 2.3. Let Ln be the kernel from (1.8), with â admissible of type (a). Then
(i) Ln ∗ g = g for g ∈ Πn, that is, Ln is a reproducing kernel for Πn, and
(ii) for any f ∈ Lp(wμ), 1 � p � ∞, we have Ln ∗ f ∈ Π2n,

‖Ln ∗ f‖p � c‖f‖p, and ‖f − Ln ∗ f‖p � cEn(f)p. (2.9)

This lemma follows readily by the definition of Ln (see also Definition 1.1) and (2.1) (see
[14, Proposition 4.8]).

Lemma 2.3(i) and (2.1) are instrumental in relating weighted norms of polynomials.

Proposition 2.4. For 0 < q � p � ∞ and g ∈ Πn, n � 1,

‖g‖p � cn(d+2μ)(1/q−1/p)‖g‖q, (2.10)

and for any γ ∈ R

‖Wμ(n; ·)γg(·)‖p � cnd(1/q−1/p)‖Wμ(n; ·)γ+1/p−1/qg(·)‖q. (2.11)

The proof of this proposition is quite similar to the proof of [9, Proposition 2.6]; for
completeness it is given in § 7.1.

2.3. Maximal operator

We denote by Bξ(r) the ball centred at ξ ∈ Bd of radius r > 0 with respect to the distance
d(·, ·) on Bd, that is,

Bξ(r) = {x ∈ Bd : d(x, ξ) < r}. (2.12)

It is straightforward to show that (see [14, Lemma 5.3])

|Bξ(r)| ∼ rd
√

1 − |ξ|2 (2.13)
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and

m(Bξ(r)) :=
∫
Bξ(r)

wμ(x) dx ∼ rd(r +
√

1 − |ξ|2)2μ ∼ rd(r + d(ξ, ∂Bd))2μ, (2.14)

where ∂Bd is the boundary of Bd, that is, the unit sphere in R
d.

The maximal operator Mt (t > 0) is defined by

Mtf(x) := sup
B�x

(
1

m(B)

∫
B

|f(y)|twμ(y) dy

)1/t

, x ∈ Bd, (2.15)

where the sup is over all the balls B ⊂ Bd (with respect to d(·, ·)) containing x.
It follows by (2.14) that the measure m(E) :=

∫
E

wμ(x) dx is a doubling measure on Bd,
that is, for ξ ∈ Bd and 0 < r � π

m(Bξ(2r)) � cm(Bξ(r)). (2.16)

Consequently, the general theory of maximal operators applies and the Fefferman–Stein vector-
valued maximal inequality is valid (see [16]). If 0 < p < ∞, 0 < q � ∞, and 0 < t < min{p, q}
then for any sequence of functions {fν}ν on Bd∥∥∥∥∥∥

( ∞∑
ν=1

|Mtfν(·)|q
)1/q

∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥
( ∞∑

ν=1

|fν(·)|q
)1/q

∥∥∥∥∥∥
p

. (2.17)

We need to estimate Mt�B for an arbitrary ball B ⊂ Bd.

Lemma 2.5. Let ξ ∈ Bd and 0 < r � π. Then for x ∈ Bd

(Mt�Bξ(r))(x) ∼
(

1 +
d(ξ, x)

r

)−d/t(
1 +

d(ξ, x)
r + d(ξ, ∂Bd)

)−2μ/t

, (2.18)

and hence

c′
(
1 +

d(ξ, x)
r

)−(2μ+d)/t

� (Mt�Bξ(r))(x) � c
(
1 +

d(ξ, x)
r

)−d/t

. (2.19)

Here the constants depend only on d, μ, and t.

Proof. It is easy to see that

(Mt�Bξ(r))(x) = sup
B�x

(
m(B ∩ Bξ(r))

m(B)

)1/t

, x ∈ Bd,

where the sup is taken over all the balls B ⊂ Bd (with respect to d(·, ·)) containing x. This
immediately leads to (Mt�Bξ(r))(x) ∼ 1 if d(x, ξ) � 2r, and hence (2.18) holds in this case.

Suppose that d(ξ, x) > 2r. Then evidently

(Mt�Bξ(r))(x) �
(

m(Bξ(r))
m(Bξ(d(x, ξ)))

)1/t

.

For the other direction, suppose that Bz(r∗) ⊂ Bd is the smallest ball such that x ∈ Bz(r∗) and
Bz(r∗) ∩ Bξ(r) �= ∅. A simple application of the triangle inequality shows that Bξ(d(ξ, x)) ⊂
Bz(5r∗). Thus using (2.16)

(Mt�Bξ(r))(x) �
(

m(Bξ(r))
m(Bz(r∗))

)1/t

� c

(
m(Bξ(r))

m(Bξ(d(x, ξ))

)1/t

.
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Therefore, using (2.14)

(Mt�Bξ(r))(x) ∼
(

m(Bξ(r))
m(Bξ(d(x, ξ)))

)1/t

∼
(

rd(r + d(ξ, ∂Bd))2μ

d(x, ξ)d(d(x, ξ) + d(ξ, ∂Bd))2μ

)1/t

,

which implies (2.18) since d(ξ, x) > 2r. Estimate (2.19) is immediate from (2.18).

2.4. Distributions on Bd

To define distributions on Bd, we shall use as test functions the set D := C∞(Bd) of all infinitely
continuously differentiable complex valued functions on Bd such that

‖φ‖W k∞ :=
∑
|α|�k

‖∂αφ‖∞ < ∞ for k = 0, 1, . . . . (2.20)

We assume that the topology in D is defined by these norms.
Evidently all polynomials belong to D. More importantly, the space D of test functions φ

can be completely characterized by their orthogonal polynomial expansions. Denote

Nk(φ) := sup
n�0

(n + 1)k‖Projn φ‖2. (2.21)

Lemma 2.6. (a) φ ∈ D if and only if ‖Projn φ‖2 = O(n−k) for all k.
(b) For each φ ∈ D, φ =

∑∞
n=0 Projn φ, where the convergence is in the topology of D.

(c) The topology in D can be equivalently defined by the norms Nk(·), k = 0, 1, . . . .

Proof. Let φ ∈ D. Assume that Qn−1 ∈ Πn−1 (n � 1) is the polynomial of best L2(wμ)-
approximation to φ, that is, ‖φ − Qn−1‖2 = En−1(φ)2. Since Pn(x, ·) is orthogonal to Πn−1,

|Projn φ(x)| = |〈φ,Pn(x, ·)〉| = |〈φ − Qn−1,Pn(x, ·)〉| � En−1(φ)2Pn(x, x)1/2.

By the Jackson type estimate from [20], for any k � 1,

En(φ)2 � ckn−2k‖Dk
μφ‖2 � cn−2k‖Dk

μφ‖∞ � cn−2k
∑

|α|�2k

‖∂αφ‖∞ = cn−2k‖φ‖W 2k∞ .

Here Dμ is the differential operator from (1.1). It is easy to see that

‖Pn(x, x)1/2‖2
2 =

(
n + d − 1

n

)
∼ nd−1.

All of the above leads to

‖Projn φ‖2 � ckn−2k+(d−1)/2‖φ‖W 2k∞ , n � 1, for any k � 1.

Therefore, for any m � 0

Nm(φ) � c‖φ‖W 2k∞ if k � m

2
+

(d − 1)
4

.

In the other direction, by Markov’s inequality (see [8]) and (2.10), it follows that

‖∂α Projn φ‖∞ � n2|α|‖Projn φ‖∞ � cn2|α|+d/2+μ‖Projn φ‖2.

Consequently, if ‖Projn φ‖2 = O(n−k) for all k, then ∂αφ =
∑∞

n=0 ∂α Projn φ for all multi-
indices α with the series converging uniformly and

‖φ‖W k∞ � c
∑
|α|�k

∞∑
n=0

n2|α|+d/2+μ‖Projn φ‖2 � cNm(φ), m � 2k + d/2 + μ + 2.

This completes the proof of the lemma.
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The space D′ := D′(Bd) of distributions on Bd is defined as the set of all continuous linear
functionals on D. The pairing of f ∈ D′ and φ ∈ D will be denoted by 〈f, φ〉 := f(φ), which will
be shown to be consistent with the inner product 〈f, g〉 :=

∫
Bd f(x)g(x)wμ(x) dx in L2(wμ).

We now extend the definition of the nonstandard ‘convolution’ from (2.7) to distributions.

Definition 2.7. Let f ∈ D′ and assume that Φ : Bd × Bd �→ C is such that Φ(x, ·) ∈ D
for all x ∈ Bd. We define

(Φ ∗ f)(x) := 〈f,Φ(x, ·)〉,
where on the right hand side, f acts on Φ(x, y) as a function of y.

For later use we next record some simple properties of this ‘convolution’.

Lemma 2.8. (i) If f ∈ D′ and Φ(·, ·) ∈ C∞(Bd × Bd), then Φ ∗ f ∈ D, and in particular
Pn ∗ f ∈ Vn. We define Projn f := Pn ∗ f .

(ii) If f ∈ D′ and Φ(·, ·) ∈ C∞(Bd × Bd), then

〈Φ ∗ f, φ〉 = 〈f,Φ ∗ φ〉, φ ∈ D.

(iii) Let Φ(·, ·),Ψ(·, ·) ∈ C∞(Bd × Bd), and Φ(x, y) = Φ(y, x) and Ψ(x, y) = Ψ(y, x) for
x, y ∈ Bd. Then for any f ∈ D′ and x ∈ Bd

Ψ ∗ Φ ∗ f(x) = 〈Ψ(x, ·),Φ(·, ·)〉 ∗ f.

The proof of this lemma is standard and will be omitted.
We next give the representation of distributions from D′ in terms of orthogonal polynomials

on Bd.

Lemma 2.9. (a) A linear functional f ∈ D′ if and only if there exists a k � 0 such that

|〈f, φ〉| � ckNk(φ) for all φ ∈ D. (2.22)

Hence, for f ∈ D′ there exists a k � 0 such that

‖Projn f‖2 = ‖Pn ∗ f‖2 � ck(n + 1)k, n = 0, 1, . . . . (2.23)

(b) Every f ∈ D′ has the representation f =
∑∞

n=0 Projn f in distributional sense, that is,

〈f, φ〉 =
∞∑

n=0

〈Projn f, φ〉 =
∞∑

n=0

〈Projn f,Projn φ〉 for all φ ∈ D, (2.24)

where the series converges absolutely.

Proof. (a) This statement follows immediately by the fact that the topology in D can be
defined by the norms Nk(·) defined in (2.21).

(b) Using Lemma 2.6(b) we obtain for φ ∈ D,

〈f, φ〉 = lim
N→∞

〈
f,

N∑
n=0

Projn φ

〉
= lim

N→∞

N∑
n=0

〈f,Projn φ〉 =
∞∑

n=0

〈Projn f,Projn φ〉,

where the last equality is justified by using (2.23) and the rapid decay of ‖Projn φ‖2.
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2.5. Cubature formula and subdivision of Bd

For the construction of our building blocks (needlets), we shall utilize the positive cubature
formula given in [14]. This formula is based on almost equally distributed knots on Bd with
respect to the distance d(·, ·).

Definition 2.10. We say that a set Xε ⊂ Bd, along with an associated partition Rε of
Bd consisting of measurable subsets of Bd, is a set of almost uniformly ε-distributed points
on Bd if

(i) Bd =
⋃

R∈Rε
R and the sets in Rε do not overlap (R◦

1 ∩ R◦
2 = ∅ if R1 �= R2);

(ii) for each R ∈ Rε there is a unique ξ ∈ Xε such that Bξ(c∗ε) ⊂ R ⊂ Bξ(ε).
Hence #Xε = #Rε � c∗∗ε−d. Here the constant c∗ > 0, depending only on d, is fixed but
sufficiently small, such that the existence of sets of almost uniformly ε-distributed points on
Bd is guaranteed (see the next lemma).

Lemma 2.11 ([14]). For a sufficiently small constant c∗ > 0, depending only on d, and an
arbitrary 0 < ε � π there exists a set Xε ⊂ Bd of almost uniformly ε-distributed points on Bd,
where the associated partition Rε of Bd consists of projections of spherical simplices.

An important element in the construction of needlets will be the cubature formula given in
[14, Corollary 5.10].

Proposition 2.12. There exists a constant c	 > 0 (depending only on d) and a sequence
{Xj}∞j=0 of almost uniformly εj-distributed points on Bd with εj := c	2−j , and there exist
positive coefficients {λξ}ξ∈Xj

such that the cubature formula∫
Bd

f(x)wμ(x) dx ∼
∑
ξ∈Xj

λξf(ξ) (2.25)

is exact for all polynomials of degree at most 2j+2. In addition,

λξ ∼ 2−jdWμ(2j ; ξ) ∼ m(Bξ(2−j)) (2.26)

with constants of equivalence depending only on μ and d.

It follows from above that

m(Rξ) ∼ 2−jdWμ(2j ; ξ) ∼ λξ, ξ ∈ Xj , (2.27)

while
|Rξ| ∼ 2−jd(

√
1 − |ξ|2 + 2−j), ξ ∈ Xj . (2.28)

3. Localized building blocks (needlets) on Bd

We utilize the ideas from [9, 12] in constructing a pair of sequences of ‘analysis’ and ‘synthesis’
needlets on Bd. Let â, b̂ satisfy the conditions

â, b̂ ∈ C∞[0,∞), supp â, b̂ ⊂ [1/2, 2], (3.1)

|â(t)|, |̂b(t)| > c > 0, if t ∈ [3/5, 5/3], (3.2)

â(t) b̂(t) + â(2t) b̂(2t) = 1, if t ∈ [1/2, 1]. (3.3)
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Hence,
∞∑

ν=0

â(2−νt) b̂(2−νt) = 1, t ∈ [1,∞). (3.4)

It is easy to see that if â satisfies (3.1) and (3.2), then there exists a b̂ satisfying (3.1) and (3.2)
such that (3.3) is valid (see, for example, [6]).

Let â, b̂ satisfy (3.1)–(3.3). We define Φ0(x, y) = Ψ0(x, y) := 1,

Φj(x, y) :=
∞∑

ν=0

â
( ν

2j−1

)
Pν(x, y), j � 1, (3.5)

Ψj(x, y) :=
∞∑

ν=0

b̂
( ν

2j−1

)
Pν(x, y), j � 1. (3.6)

Assume that Xj is the set of knots and λξ are the coefficients of the cubature formula (2.25).
We define the jth level needlets by

ϕξ(x) := λ
1/2
ξ Φj(x, ξ) and ψξ(x) := λ

1/2
ξ Ψj(x, ξ), ξ ∈ Xj . (3.7)

Notice that for ξ ∈ X1, we have ϕξ(x) = â(1)P1(x, ξ) and ψξ(x) = b̂(1)P1(x, ξ), but P1(· , ξ) ≡ 0
if and only if ξ = 0. Therefore, to prevent ϕξ ≡ 0 and ψξ ≡ 0 for ξ ∈ X1, we assume that 0 /∈ X1.

We set X :=
⋃∞

j=0 Xj , where equal points from different levels Xj are considered as distinct
elements of X , such that X can be used as an index set. We define the analysis and synthesis
needlet systems Φ and Ψ by

Φ := {ϕξ}ξ∈X , Ψ := {ψξ}ξ∈X . (3.8)

Estimate (1.11) yields the rapid decay of needlets, namely, for x ∈ Bd

|Φj(ξ, x)|, |Ψj(ξ, x)| � ck2jd√
Wμ(2j ; ξ)

√
Wμ(2j ;x)(1 + 2jd(ξ, x))k

∀k, (3.9)

and hence

|ϕξ(x)|, |ψξ(x)| � ck2jd/2√
Wμ(2j ;x)(1 + 2jd(ξ, x))k

∀k. (3.10)

Note that on account of (2.6) x in the term
√

Wμ(2j ;x) in (3.10) can be replaced by ξ.
The needlets are Lip 1 functions in the following sense. Let ξ ∈ Xj , j � 0, c∗ > 0, and ω ∈ Bd.

Then for each x ∈ Bω(c∗2−j)

|ϕξ(x) − ϕξ(ω)|, |ψξ(x) − ψξ(ω)| � ck2j(d/2+1)d(ω, x)√
Wμ(2j ; ξ)(1 + 2jd(ξ, ω))k

∀k. (3.11)

This estimate follows readily from (2.4).
We shall need estimates of the norms of the needlets. By (2.1), (2.3), and since 0 /∈ X1, we

have for 0 < p � ∞,

‖ϕξ‖p ∼ ‖ψξ‖p ∼ ‖�̃Rξ
‖p ∼

( 2jd

Wμ(2j ; ξ)

)1/2−1/p

, ξ ∈ Xj . (3.12)

Furthermore, there exist constants c∗, c > 0 such that

‖ϕξ‖L∞(Bξ(c∗2−j)), ‖ψξ‖L∞(Bξ(c∗2−j)) � c
( 2jd

Wμ(2j ; ξ)

)1/2

, ξ ∈ Xj . (3.13)
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The proof of (3.13) is given in § 7. Notice that if â, b̂ are real valued, then Lemma 7.1 below
yields

|ϕξ(ξ)|, |ψξ(ξ)| � c

(
2jd

Wμ(2j ; ξ)

)1/2

, ξ ∈ Xj .

Our first step in implementing needlets is to establish needlet decompositions of D′ and
Lp(wμ).

Proposition 3.1. (a) For any f ∈ D′,

f =
∞∑

j=0

Ψj ∗ Φj ∗ f in D′ (3.14)

and

f =
∑
ξ∈X

〈f, ϕξ〉ψξ in D′. (3.15)

(b) For f ∈ Lp(wμ), 1 � p � ∞, (3.14) and (3.15) hold in Lp(wμ). Moreover, if 1 < p < ∞,
then the convergence in (3.14) and (3.15) is unconditional.

Proof. By Definition 2.7 and (3.5) we have, for f ∈ D′,

Φ ∗ f =
2j∑

ν=0

â
( ν

2j−1

)
Pν ∗ f (3.16)

and using Lemma 2.8 and that Pν ∗ Pν(·, y) = Pν(·, y)

Ψ ∗ Φ ∗ f =
2j∑

ν=0

â
( ν

2j−1

)
b̂
( ν

2j−1

)
Pν ∗ f. (3.17)

Then (3.14) follows from the above, (3.4), and Lemma 2.9.
Note that Ψj(x, y)Φ(y, z) belongs to Π2j+1−1 as a function of y and, therefore, employing

the cubature formula from Proposition 2.12 we obtain

Ψj ∗ Φj(·, z) =
∫
Bd

Ψj(x, y)Φ(y, z)wμ(y)dy =
∑
ξ∈Xj

λξΨj(x, ξ)Φ(ξ, z) =
∑
ξ∈Xj

ψξ(x)ϕξ(z),

which leads to

Ψj ∗ Φj ∗ f =
∑
ξ∈Xj

〈f, ϕξ〉ψξ.

Combining this with (3.14) yields (3.15).
The convergence of (3.14) and (3.15) in Lp(wμ) for f ∈ Lp(wμ) follows in a similar fashion

(see also [9, Proposion 3.1]). The unconditional convergence in Lp(wμ), 1 < p < ∞, follows by
Theorem 4.5 and Proposition 4.12 below.

4. Weighted Triebel–Lizorkin spaces on Bd

Following the general idea of using spectral decompositions (see, for example, [15, 18]), we next
employ orthogonal polynomials to introduce weighted Triebel–Lizorkin spaces on Bd. To this
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end, we define a sequence of kernels {Φj} by

Φ0(x, y) := 1 and Φj(x, y) :=
∞∑

ν=0

â
( ν

2j−1

)
Pν(x, y), j � 1, (4.1)

where {Pν(x, y)} are from (1.4) and (1.5) and â obeys the conditions

â ∈ C∞[0,∞), supp â ⊂ [1/2, 2], (4.2)
|â(t)| > c > 0 if t ∈ [3/5, 5/3]. (4.3)

Definition 4.1. Let s, ρ ∈ R, 0 < p < ∞, and 0 < q � ∞. Then the weighted Triebel–
Lizorkin space F sρ

pq := F sρ
pq (wμ) is defined as the set of all f ∈ D′ such that

‖f‖F sρ
pq

:=

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

[
2sjWμ(2j ; ·)−ρ/d|Φj ∗ f(·)|

]q⎞⎠1/q
∥∥∥∥∥∥∥

p

< ∞ (4.4)

with the usual modification when q = ∞.

Observe that the above definition is independent of the choice of â as long as â satisfy (4.2)
and (4.3) (see Theorem 4.5 below).

Proposition 4.2. For all s, ρ ∈ R, 0 < p < ∞, and 0 < q � ∞, F sρ
pq is a quasi-Banach

space which is continuously embedded in D′.

Proof. The completeness of the space F sρ
pq follows easily (see, for example, [18, p. 49]) by

the continuous embedding of F sρ
pq in D′, which we establish next.

Let {Φj} be the kernels from the definition of F sρ
pq with â obeying (4.2) and (4.3) that are the

same as (3.1) and (3.2). As already indicated there exists a function b̂ satisfying (3.1) and (3.3).
We use this function to define {Ψj} as in (3.6). Then by Proposition 3.1 f =

∑∞
j=0 Ψj ∗ Φj ∗ f

in D′, and hence

〈f, φ〉 =
∞∑

j=0

〈Ψj ∗ Φj ∗ f, φ〉, φ ∈ D.

We now employ (3.16) and (3.17) and the Cauchy–Schwarz inequality to obtain, for j � 2,

|〈Ψj ∗ Φj ∗ f, φ〉|2 =

∣∣∣∣∣∣
2j∑

ν=2j−2+1

â
( ν

2j−1

)
b̂
( ν

2j−1

)
〈Projν f,Projν φ〉

∣∣∣∣∣∣
2

�
2j∑

ν=2j−2+1

∣∣∣â( ν

2j−1

)∣∣∣2‖Projν f‖2
2

2j∑
ν=2j−2+1

∣∣∣̂b( ν

2j−1

)∣∣∣2‖Projν φ‖2
2

� 2j‖Φj ∗ f‖2
2 max

2j−2<ν�2j
‖Projν φ‖2

2.

Using inequality (2.10) we obtain

‖Φj ∗ f‖2 � c2j(d+2μ)/p‖Φj ∗ f‖p � c2j((d+2μ)/p+2μ|ρ|/d−s)‖2sjWμ(2j ; ·)−ρ/dΦj ∗ f(·)‖p.

From the above estimates we infer

|〈Ψj ∗ Φj ∗ f, φ〉| � c2−j‖f‖F sρ
pq

2jk max
2j−2<ν�2j

‖Projν f‖2 � c2−j‖f‖F sρ
pq
Nk(φ)
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for k � (d + 2μ)/p + 2μ|ρ|/d + 3/2 − s. A similar estimate trivially holds for j = 0, 1. Summing
up we obtain

|〈f, φ〉| � c‖f‖F sρ
pq
Nk(φ),

which completes the proof.

As a companion to F sρ
pq , we now introduce the sequence spaces fsρ

pq . Here we assume that
{Xj}∞j=0 is a sequence of almost uniformly εj-distributed points on Bd (εj := c	2−j) with
associated neighborhoods {Rξ}ξ∈Xj

, given by Proposition 2.12. Just as in the definition of
needlets in § 3, we set X :=

⋃
j�0 Xj .

Definition 4.3. Suppose that s, ρ ∈ R, 0 < p < ∞, and 0 < q � ∞. Then fsρ
pq is defined

as the space of all complex-valued sequences h := {hξ}ξ∈X such that

‖h‖fsρ
pq

:=

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2sjq
∑
ξ∈Xj

[|hξ|Wμ(2j ; ξ)−ρ/d
�̃Rξ

(·)]q
⎞⎠1/q

∥∥∥∥∥∥∥
p

< ∞ (4.5)

with the usual modification for q = ∞. Recall that �̃Rξ
:= m(Rξ)−1/2

�Rξ
.

In analogy to the classical case on R
d we introduce ‘analysis’ and ‘synthesis’ operators by

Sϕ : f −→ {〈f, ϕξ〉}ξ∈X and Tψ : {hξ}ξ∈X −→
∑
ξ∈X

hξψξ. (4.6)

We next show that the operator Tψ is well defined on fsρ
pq .

Lemma 4.4. Let s, ρ ∈ R, 0 < p < ∞, and 0 < q � ∞. Then for any h ∈ fsρ
pq , Tψh :=∑

ξ∈X hξψξ converges in D′. Moreover, the operator Tψ : fsρ
pq → D′ is continuous, that is, there

exist constants k > 0 and c > 0 such that

|〈Tψh, φ〉| � cNk(φ)‖h‖fsρ
pq

, h ∈ fsρ
pq , φ ∈ D. (4.7)

Proof. Let h ∈ fsρ
pq . Then by the definition of fsρ

pq it follows that

2js|hξ|Wμ(2j ; ξ)−ρ/d‖�̃Rξ
(·)‖p � ‖h‖fsρ

pq
for ξ ∈ Xj , j � 0.

Now, using (2.27),

‖�̃Rξ
‖p = m(Rξ)1/p−1/2 ∼ [2−jdWμ(2j , ξ)]1/p−1/2 for ξ ∈ Xj

and since 2−2μj � Wμ(2j , ξ) � 22μ it follows that

|hξ| � c2−j(s+d(1/2−1/p))Wμ(2j ; ξ)ρ/d−1/p+1/2‖h‖fsρ
pq

� c2jγ‖h‖fsρ
pq

, ξ ∈ Xj , (4.8)

where

γ := d| s
d
− 1

p
+

1
2
| + 2μ|ρ

d
− 1

p
+

1
2
|.

On the other hand, by Lemma 2.6, φ =
∑∞

n=0 Projn φ in D for φ ∈ D, and for ξ ∈ Xj

ψξ(x) := λ
1/2
ξ Ψj(x, ξ) = λ

1/2
ξ

∑
2j−2<ν<2j

b̂
( ν

2j−1

)
Pν(x, ξ), λξ ∼ 2−jdWμ(2j , ξ).
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Consequently,

〈ψξ, φ〉 = λ
1/2
ξ

∑
2j−2<ν<2j

b̂
( ν

2j−1

)
Projν φ

and hence

|〈ψξ, φ〉| � c2−jd/2Wμ(2j , ξ)1/2
∑

2j−2<ν<2j

‖Projν φ‖∞.

Since Projν φ ∈ Πν , by Proposition 2.4 ‖Projν φ‖∞ � cν(d+2μ)/2‖Projν φ‖2. Therefore,

|〈ψξ, φ〉| � c2jμ
∑

2j−2<ν<2j

‖Projν φ‖2.

Combining this with (4.8) and using that #Xj � c2jd, we obtain, for φ ∈ D
∑
ξ∈X

|hξ||〈ψξ, φ〉| �
∞∑

j=0

∑
ξ∈Xj

|hξ||〈ψξ, φ〉|

� c‖h‖fsρ
pq

∞∑
j=0

(#Xj)2j(γ+μ)
∑

2j−2<ν<2j

‖Projν φ‖2 (4.9)

� c‖h‖fsρ
pq

sup
ν�0

(ν + 1)k‖Projν φ‖2

∞∑
j=0

2j(γ+μ+d+1−k)

� c‖h‖fsρ
pq
Nk(φ),

where k := [γ] + μ + d + 4 > γ + μ + d + 3, which makes the series above convergent. Conse-
quently, the series Tψh =

∑
ξ∈X hξψξ converges in D′. We define Tψh via

〈Tψh, φ〉 :=
∑
ξ∈X

hξ〈ψξ, φ〉

for all φ ∈ D. Estimate (4.7) follows from (4.9).

We now give our main result on weighted Triebel–Lizorkin spaces.

Theorem 4.5. Let s, ρ ∈ R, 0 < p < ∞, and 0 < q � ∞. The operators Sϕ : F sρ
pq → fsρ

pq

and Tψ : fsρ
pq → F sρ

pq are bounded and Tψ ◦ Sϕ = Id on F sρ
pq . Consequently, f ∈ F sρ

pq if and only
if {〈f, ϕξ〉}ξ∈X ∈ fsρ

pq . Furthermore,

‖f‖F sρ
pq

∼ ‖{〈f, ϕξ〉}‖fsρ
pq

∼

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2sjq
∑
ξ∈Xj

[|〈f, ϕξ〉|Wμ(2j ; ξ)−ρ/d|ψξ(·)|]q
⎞⎠1/q

∥∥∥∥∥∥∥
p

. (4.10)

In addition, the definition of F sρ
pq is independent of the particular selection of â satisfying (4.2)

and (4.3).

The proof of this theorem relies on several lemmas and its proofs are given in § 7.2. In the
following, we assume that {Φj} are from the definition of weighted Triebel–Lizorkin spaces,
while {ϕξ}ξ∈X and {ψξ}ξ∈X are needlet systems defined as in (3.7) with no connection between
the functions âs from (4.1) and (3.5).
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Lemma 4.6. For any k > 0 there exists a constant ck > 0 such that

|Φj ∗ ψξ(x)| � ck
2jd/2√

Wμ(2j ;x)(1 + 2jd(x, ξ))k
, ξ ∈ Xν , j − 1 � ν � j + 1, (4.11)

and Φj ∗ ψξ ≡ 0 for ξ ∈ Xν if ν � j + 2 or ν � j − 2. Here Xν := ∅ if ν < 0.

Lemma 4.7. For any t > 0 and ξ ∈ Xj , j � 0,

|ϕξ(x)|, |ψξ(x)| � c(Mt�̃Rξ
)(x), x ∈ Bd, (4.12)

and

�̃Rξ
(x) � c(Mtϕξ)(x), c(Mtψξ)(x), x ∈ Bd. (4.13)

Definition 4.8. For any set of complex numbers {hξ}ξ∈Xj
(j � 0) we define

h∗
ξ :=

∑
η∈Xj

|hη|
(1 + 2jd(η, ξ))σ

, ξ ∈ Xj , (4.14)

where σ > 1 is a sufficiently large constant that will be selected later on.

Lemma 4.9. Let P ∈ Π2j , j � 0, and denote aξ := maxx∈Rξ
|P (x)| for ξ ∈ Xj . There exists

an r � 1, depending only on σ, μ, and d such that if

bξ := max
{

min
x∈Rη

|P (x)| : η ∈ Xj+r, Rξ ∩ Rη �= ∅
}

, ξ ∈ Xj ,

then

a∗
ξ � cb∗ξ (4.15)

with constant independent of P , j, and ξ.

Lemma 4.10. Assume that t > 0, γ ∈ R, and let {bξ}ξ∈Xj
(j � 0) be a set of complex

numbers. Also, let σ in the definition (4.14) of b∗ξ obey σ > d + (d + 2μ)/t + 2μ|γ|. Then for
any ξ ∈ Xj

b∗ξWμ(2j ; ξ)γ
�Rξ

(x) � cMt

⎛⎝∑
η∈Xj

|bη|Wμ(2j ; η)γ
�Rη

(·)
⎞⎠ (x), x ∈ Rξ. (4.16)

Proof of Theorem 4.5. Choose 0 < t < min{p, q} and let σ in Definition 4.8 obey σ >
d + (d + 2μ)/t + 2μ|ρ|/d. Now, choose k � σ + 2μ|ρ|/d. Observe first that the right-hand side
equivalence in (4.10) follows immediately from Lemma 4.7 and the maximal inequality (2.17).

Let {Φj} be a sequences of kernels as in the definition of weighted Triebel–Lizorkin spaces,
that is, Φj is defined by (4.1) with â satisfying (4.2) and (4.3), the same as (3.1)–(3.2). As
already mentioned, there exists a function b̂ satisfying (3.1) and (3.2) such that (3.3) holds.
Let Ψj be defined by (3.6) with this b̂. In addition, let {ϕξ}ξ∈X and {ψξ}ξ∈X be the associated
needlet systems defined as in (3.7) using these â and b̂.

Exactly in the same way, let {Φ̃j} and {Ψ̃j} be two sequences of kernels defined as above
using completely different functions â and b̂. Also, assume that {ϕ̃ξ}, {ψ̃ξ} are the associated
needlet systems, defined as in (3.5)–(3.7). As a result, we have two completely different systems
of kernels and associated needlet systems.
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Let us first prove the boundedness of the operator T
ψ̃

: fsρ
pq → F sρ

pq , defined similarly as
in (4.6) with {ψξ} replaced by {ψ̃ξ}. Here we assume that the space F sρ

pq is defined by {Φj}.
Let h ∈ fsρ

pq and denote f :=
∑

ξ hξψ̃ξ, which is well defined according to Lemma 4.6. Using
Lemma 4.6 we have, for x ∈ Bd,

|Φj ∗ f(x)| =

∣∣∣∣∣∣
∑
ξ∈X

hξΦj ∗ ψ̃ξ(x)

∣∣∣∣∣∣ �
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ||Φj ∗ ψ̃ξ(x)|

� c2jd/2
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ|√
Wμ(2ν ;x)(1 + 2νd(ξ, x))k

.

For η ∈ Xj , denote Γη := {w ∈ Xj−1 ∪ Xj ∪ Xj+1 : Rw ∩ Rη �= ∅}. Here X−1 := ∅. First note
that #Γη � c. Secondly, for x ∈ Rη and w ∈ Γη, we have d(x,w) � c2−j and using inequality
(2.6)

Wμ(2j ;x)−ρ/d � cWμ(2j ;w)−ρ/d � cWμ(2j ; ξ)−ρ/d(1 + 2jd(ξ, ω))2μ|ρ|/d.

We use the above estimates to obtain, for x ∈ Rη,

Wμ(2j ;x)−ρ/d|Φj ∗ f(x)|

� c2jd/2
∑

j−1�ν�j+1

∑
ω∈Γη∩Xν

∑
ξ∈Xν

|hξ|Wμ(2j ; ξ)−ρ/d
�Rω

(x)√
Wμ(2ν ;ω)(1 + 2νd(ξ, ω))k−2μ|ρ|/d

� c2jd/2
∑

ω∈Γη

H∗
ω�Rω

(x)√
Wμ(2j ;ω)

� c
∑

ω∈Γη

H∗
ω�̃Rω

(x),

where Hω := hωWμ(2j ;ω)−ρ/d. Here we used that k − 2μ|ρ|/d � σ and (2.27). We insert the
above in (4.4) and use Lemma 4.10 (with γ = 0) and the maximal inequality (2.17) to obtain

‖f‖F sρ
pq

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

⎡⎣2sj
∑

η∈Xj

∑
ω∈Γη

H∗
ω�̃Rω

(·)
⎤⎦q⎞⎠1/q

∥∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

⎡⎣2sj
∑
ξ∈Xj

H∗
ξ �̃Rξ

(·)
⎤⎦q⎞⎠1/q

∥∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

⎡⎣Mt

⎛⎝∑
ξ∈Xj

2sj |Hξ|�̃Rξ

⎞⎠ (·)
⎤⎦q⎞⎠1/q

∥∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

⎡⎣∑
ξ∈Xj

2sj |Hξ|�̃Rξ
(·)
⎤⎦q⎞⎠1/q

∥∥∥∥∥∥∥
p

� c‖{hξ}‖fsρ
pq

,

(4.17)

where in the second inequality above we used that #Γη � c. Hence, the operator T
ψ̃

: fsρ
pq → F sρ

pq

is bounded.
Assume now that the space F sρ

pq is defined in terms of {Φj} in place of {Φj}. Using this
definition we shall prove the boundedness of the operator Sϕ : F sρ

pq → fsρ
pq .

Let f ∈ F sρ
pq . Then Φj ∗ f ∈ Π2j . For ξ ∈ Xj , we define

aξ := max
x∈Rξ

|Φj ∗ f(x)|, bξ := max
{

min
x∈Rη

|Φj ∗ f(x)| : η ∈ Xj+r, Rξ ∩ Rη �= ∅
}

,
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where r � 1 is from Lemma 4.9. Then by the same lemma a∗
ξ ∼ b∗ξ . Therefore, using (2.27),

|〈f, ϕξ〉| = λ
1/2
ξ |Φj ∗ f(ξ)| � cm(Rξ)1/2aξ � cm(Rξ)1/2a∗

ξ � cm(Rξ)1/2b∗ξ .

From this, recalling that �̃Rξ
:= m(Rξ)−1/2

�Rξ
, we obtain

‖{〈f, ϕξ〉}‖fsρ
pq

=

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2jsq
∑
ξ∈Xj

[|〈f, ϕξ〉|Wμ(2j ; ξ)−ρ/d
�̃Rξ

(·)]q
⎞⎠1/q

∥∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2jsq
∑
ξ∈Xj

[b∗ξWμ(2j ; ξ)−ρ/d
�Rξ

(·)]q
⎞⎠1/q

∥∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2jsq

⎡⎣Mt

⎛⎝∑
ξ∈Xj

bξWμ(2j ; ξ)−ρ/d
�Rξ

(·)
⎞⎠ (·)

⎤⎦q⎞⎠1/q
∥∥∥∥∥∥∥

p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2jsq

⎡⎣∑
ξ∈Xj

bξWμ(2j ; ξ)−ρ/d
�Rξ

(·)
⎤⎦q⎞⎠1/q

∥∥∥∥∥∥∥
p

.

(4.18)

Here for the second inequality above we used Lemma 4.10 and for the third one the maximal
inequality (2.17).

Denote mη := minx∈Rη
|Φj ∗ f(x)| for η ∈ Xj+r and

Xj+r(ξ) := {w ∈ Xj+r : Rw ∩ Rξ �= ∅} for ξ ∈ Xj .

Evidently #Xj+r(ξ) � c(r, d). Further, for w, η ∈ Xj+r(ξ) we have d(w, η) � c2−j , and hence

mw � c
mw

(1 + 2j+rd(w, η))σ
� cm∗

η, c = c(r, σ, d).

Therefore, for any η ∈ Xj+r(ξ), bξ = maxw∈Xj+r(ξ) mw � cm∗
η, and hence

bξ�Rξ
�

∑
η∈Xj+r(ξ)

m∗
η�Rη

. (4.19)

Clearly, Wμ(2j ; ξ) ∼ Wμ(2j+r; η) for η ∈ Xj+r(ξ). This along with (4.19) leads to

bξWμ(2j ; ξ)−ρ/d
�Rξ

� c
∑

η∈Xj+r(ξ)

m∗
ηWμ(2j+r; η)−ρ/d

�Rη
. (4.20)

Using this estimate in (4.18), we obtain

‖{〈f, ϕξ〉}‖fsρ
pq

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2jsq

⎛⎝ ∑
η∈Xj+r

m∗
ηWμ(2j+r; η)−ρ/d

�Rη
(·)
⎞⎠q⎞⎠1/q

∥∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

2jsq

⎡⎣Mt

⎛⎝ ∑
η∈Xj+r

mηWμ(2j+r; η)−ρ/d
�Rη

⎞⎠ (·)
⎤⎦q⎞⎠1/q

∥∥∥∥∥∥∥
p
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� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

⎛⎝2js
∑

η∈Xj+r

mηWμ(2j+r; η)−ρ/d
�Rη

(·)
⎞⎠q⎞⎠1/q

∥∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

(2jsWμ(2j ; ·)−ρ/d|Φj ∗ f(·)|)q

⎞⎠1/q
∥∥∥∥∥∥∥

p

= c‖f‖F sρ
pq

.

Here, for the first inequality, we used that #Xj+r(ξ) � c, for the second inequality we used
Lemma 4.10, and for third one the maximal inequality (2.17). We also used that

Wμ(2j+r; η) ∼ Wμ(2j ;x) if x ∈ Rη, η ∈ Xj+r.

Thus the boundedness of Sϕ : F sρ
pq → fsρ

pq is established.
The identity Tψ ◦ Sϕ = Id follows by Proposition 3.1.
It remains to show that F sρ

pq is independent of the particular selection of â in the definition
of {Φj}. Denote by ‖ · ‖F sρ

pq (Φ) the F-norm defined by {Φj}. Then by the above proof it follows
that

‖f‖F sρ
pq (Φ) � c‖{〈f, ϕ̃ξ〉}‖fsρ

pq
and ‖{〈f, ϕξ〉}‖fsρ

pq
� c‖f‖F sρ

pq (Φ),

and hence

‖f‖F sρ
pq (Φ) � c‖{〈f, ϕ̃ξ〉}‖fsρ

pq
� c‖f‖

F sρ
pq (Φ̃)

.

Now the desired independence follows by interchanging the roles of {Φj},{Φ̃j}, and their
complex conjugates.

In a sense, the spaces F ss
pq are more natural than the spaces F sρ

pq with ρ �= s since they embed
‘correctly’ with respect to the smoothness index s.

Proposition 4.11. Let 0 < p < p1 < ∞, 0 < q, q1 � ∞, and −∞ < s1 < s < ∞. Then we
have the continuous embedding

F ss
pq ⊂ F s1s1

p1q1
if

s

d
− 1

p
=

s1

d
− 1

p1
. (4.21)

The proof of this embedding result uses the idea of the proof in the classical case on R
n

given, for example, in [18, p. 129], but is more involved. We place it in § 7.2.
Finally, we would like to link the weighted Triebel–Lizorkin spaces F sρ

pq to Lp(wμ) and
weighted potential space (generalized weighted Sobolev space) on Bd.

We define the weighted potential space Hs
p := Hs

p(wμ), s > 0, 1 � p � ∞, on Bd as the set
of all f ∈ D′ such that

‖f‖Hs
p

:=

∥∥∥∥∥
∞∑

n=0

(n + 1)s Projn f

∥∥∥∥∥
p

< ∞, (4.22)

where Projn f := Pn ∗ f .
We have the following identification of certain weighted Triebel–Lizorkin spaces.

Proposition 4.12. We have

F s0
p2 ∼ Hs

p , s > 0, 1 < p < ∞,
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and

F 00
p2 ∼ Lp(wμ), 1 < p < ∞,

with equivalent norms. Consequently, for any f ∈ Lp(wμ), 1 < p < ∞,

‖f‖p ∼

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=0

∑
ξ∈Xj

(|〈f, ϕξ〉||ψξ(·)|)2
⎞⎠1/2

∥∥∥∥∥∥∥
p

.

The proof of this proposition uses the multipliers from [2, Theorem 5.2] and can be carried
out exactly as in the case of spherical harmonic expansions in [12, Proposition 4.3]. We omit it.

5. Weighted Besov spaces on Bd

For the definition of weighted Besov spaces on Bd, we use the sequence of kernels {Φj} defined
in (4.1) with â obeying (4.2) and (4.3) (see [15, 18] for the general idea of using orthogonal or
spectral decompositions for introducing Besov spaces).

Definition 5.1. Let s, ρ ∈ R and 0 < p, q � ∞. The weighted Besov space Bsρ
pq := Bsρ

pq(wμ)
is defined as the set of all f ∈ D′ such that

‖f‖Bsρ
pq

:=

⎛⎝ ∞∑
j=0

(
2sj‖Wμ(2j ; ·)−ρ/dΦj ∗ f(·)‖p

)q

⎞⎠1/q

< ∞, (5.1)

where the �q-norm is replaced by the sup-norm if q = ∞.

Observe that as in the case of weighted Triebel–Lizorkin spaces the above definition is
independent of the particular choice of â obeying (4.2) and (4.3) (see Theorem 5.4). Also,
as for F sρ

pq the Besov space Bsρ
pq is a quasi-Banach space which is continuously embedded in D′.

We skip the details.
We next introduce the sequence spaces bsρ

pq associated to the weighted Besov spaces Bsρ
pq .

To this end, we assume that {Xj}∞j=0 is a sequence of almost uniformly εj-distributed points
on Bd (εj := c	2−j) with associated neighborhoods {Rξ}ξ∈Xj

, given by Proposition 2.12. As
before we set X :=

⋃
j�0 Xj .

Definition 5.2. Let s, ρ ∈ R and 0 < p, q � ∞. Then bsρ
pq is defined to be the space of all

complex-valued sequences h := {hξ}ξ∈X such that

‖h‖bsρ
pq

:=

⎛⎜⎝ ∞∑
j=0

2j(s−d/p+d/2)q

⎡⎣∑
ξ∈Xj

(
Wμ(2j ; ξ)−ρ/d+1/p−1/2|hξ|

)p

⎤⎦q/p
⎞⎟⎠

1/q

(5.2)

is finite, with the usual modification for p = ∞ or q = ∞.

We shall employ again the analysis and synthesis operators Sϕ and Tψ defined in (4.6). This
lemma guarantees that the operator Tψ is well defined on bsρ

pq.
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Lemma 5.3. Let s, ρ ∈ R and 0 < p, q � ∞. Then for any h ∈ bsρ
pq, Tψh :=

∑
ξ∈X hξψξ

converges in D′. Moreover, the operator Tψ : bsρ
pq → D′ is continuous.

The proof of this lemma is quite similar to the proof of Lemma 4.4 and will be omitted.
Our main result in this section is the following characterization of weighted Besov spaces.

Theorem 5.4. Let s, ρ ∈ R and 0 < p, q � ∞. Then the operators Sϕ : Bsρ
pq → bsρ

pq and Tψ :
bsρ
pq → Bsρ

pq are bounded and Tψ ◦ Sϕ = Id on Bsρ
pq . Consequently, for f ∈ D′ we have f ∈ Bsρ

pq

if and only if {〈f, ϕξ〉}ξ∈X ∈ bsρ
pq. Moreover,

‖f‖Bsρ
pq

∼ ‖{〈f, ϕξ〉}‖bsρ
pq

∼

⎛⎜⎝ ∞∑
j=0

2sjq

⎡⎣∑
ξ∈Xj

(
Wμ(2j ; ξ)−ρ/d‖〈f, ϕξ〉ψξ‖p

)p

⎤⎦q/p
⎞⎟⎠

1/q

. (5.3)

In addition, the definition of Bsρ
pq is independent of the particular selection of â satisfying (4.2)

and (4.3).

For the proof of this theorem we shall utilize some of the lemmas from § 4 as well as the
following additional lemma and its proof is given in § 7.2.

Lemma 5.5. Let 0 < p � ∞ and γ ∈ R. Then for any P ∈ Π2j , j � 0,⎛⎝∑
ξ∈Xj

Wμ(2j ; ξ)γ max
x∈Rξ

|P (x)|pm(Rξ)

⎞⎠1/p

� c‖Wμ(2j ; ·)γP (·)‖p. (5.4)

Proof of Theorem 5.4. We first note that the right-hand side of (5.3) follows immediately
from (3.12). Just as in the proof of Theorem 4.5, we assume that {Φj} are kernels defined
by (4.1), with â satisfying (4.2) and (4.3). Next, suppose that {Ψj} are defined by (3.6) with
b̂ obeying (3.1) and (3.3). Also, let {ϕξ}ξ∈X and {ψξ}ξ∈X be the associated needlet systems
defined as in (3.7). Further, assume that {Φ̃j}, {Ψ̃j}, {ϕ̃ξ}, {ψ̃ξ} is a second (completely
different) set of kernels and needlets.

Our first step is to prove the boundedness of the operator T
ψ̃

: bsρ
pq → Bsρ

pq defined as in (4.6)
with {ψξ} replaced by {ψ̃ξ}; we assume that Bsρ

pq is defined by {Φj}.
Pick 0 < t < min{p, 1} and k � 2μ|ρ|/d + μ + (2μ + d)/t. Suppose that h ∈ bsρ

pq and let
f :=

∑
ξ∈X hξψ̃ξ, which is well defined on account of Lemma 5.3. Similarly as in the proof

of Theorem 4.5, we use Lemmas 2.5 and 4.6, and (2.6) to obtain

Wμ(2j ;x)−ρ/d|Φj ∗ f(x)| � c
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ|Wμ(2j ;x)−ρ/d|Φj ∗ ψ̃ξ(x)|

� c
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ| 2jd/2Wμ(2j ;x)−ρ/d√
Wμ(2j ;x)(1 + 2jd(ξ, x))k

� c2jd/2
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ| Wμ(2j ; ξ)−ρ/d−1/2

(1 + 2jd(ξ, x))k−2μ|ρ|/d−μ

� c2jd/2
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ|Wμ(2j ; ξ)−ρ/d−1/2Mt(�Rξ
)(x),
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where X−1 := ∅ and in the fourth inequality we used that k � 2μ|ρ|/d + μ + (2μ + d)/t. Now
employing the maximal inequality (2.17) we obtain

‖Wμ(2j ; ·)−ρ/dΦj ∗ f(·)‖p � c2jd/2

∥∥∥∥∥∥
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ|Wμ(2j ; ξ)−ρ/d−1/2Mt(�Rξ
)(·)
∥∥∥∥∥∥

p

� c2jd/2

∥∥∥∥∥∥
∑

j−1�ν�j+1

∑
ξ∈Xν

|hξ|Wμ(2j ; ξ)−ρ/d−1/2
�Rξ

(·)
∥∥∥∥∥∥

p

� c2jd(1/2−1/p)

⎛⎝ ∑
j−1�ν�j+1

∑
ξ∈Xν

|hξ|pWμ(2j ; ξ)−(ρ/d−1/p+1/2)p

⎞⎠1/p

.

Using this in Definition 5.1, we obtain ‖f‖Bsρ
pq

� c‖{hξ}‖bsρ
pq

. Hence the operator T
ψ̃

: bsρ
pq → Bsρ

pq

is bounded.
We next prove the boundedness of the operator Sϕ : Bsρ

pq → bsρ
pq, assuming that the space

Bsρ
pq is defined in terms of {Φj} in place of {Φj}. Observe first that

|〈f, ϕξ〉| ∼ m(Rξ)1/2|Φj ∗ f(ξ)| ∼ 2−jd/2Wμ(2j ; ξ)1/2|Φj ∗ f(ξ)|, ξ ∈ Xj .

Since Φj ∗ f ∈ Π2j , Lemma 5.5 implies that∑
ξ∈Xj

(
Wμ(2j ; ξ)−ρ/d+1/p−1/2|〈f, ϕξ〉|

)p

� c2−jd(p/2−1)
∑
ξ∈Xj

Wμ(2j ; ξ)−ρp/d|Φj ∗ f(ξ)|pm(Rξ)

� c2−jd(p/2−1)‖Wμ(2j ; ξ)−ρ/dΦj ∗ f‖p
p.

This at once yields ‖{〈f, ϕ〉}‖bsρ
pq

� c‖f‖Bsρ
pq

.
The identity Tψ ◦ Sϕ = Id follows by Proposition 3.1.
The independence of Bsρ

pq of the particular selection of â in the definition of {Φj} follows
from above exactly as in the Triebel–Lizorkin case (see the proof of Theorem 4.5).

The parameter ρ in the definition of the Besov spaces Bsρ
pq allows to consider different scales

of spaces. A ‘classical’ choice of ρ would be ρ = 0. However, we maintain that most natural
are the spaces Bss

pq (ρ = s). The main advantages of the spaces Bss
pq over Bsρ

pq with ρ �= s are
that, first, they embed ‘correctly’ with respect to the smoothness index s, and secondly, the
right smoothness spaces in nonlinear n-term weighted approximation from needles are defined
in terms of spaces Bss

pq (see § 6 below).

Proposition 5.6. Let 0 < p � p1 � ∞, 0 < q � q1 � ∞, and −∞ < s1 � s < ∞. Then we
have the continuous embedding

Bss
pq ⊂ Bs1s1

p1q1
if

s

d
− 1

p
=

s1

d
− 1

p1
. (5.5)

Proof. With Φj from Definition 5.1 we have Φj ∗ f ∈ Π2j+1 and applying Proposition 2.4
we obtain

‖Wμ(2j ; ·)−s1/dΦj ∗ f(·)‖p1 � c2jd(1/p−1/p1)‖Wμ(2j ; ·)−s/dΦj ∗ f(·)‖p,

where we used that s/d − 1/p = s1/d − 1/p1. This leads immediately to (5.5).

We finally want to link the weighted Besov spaces to best polynomial approximation in
Lp(wμ). As in (2.8), let En(f)p denote the best approximation of f ∈ Lp(wμ) from Πn. Denote
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by As
pq the approximation space of all functions f ∈ Lp(wμ) such that

‖f‖As
pq

:= ‖f‖p +

⎛⎝ ∞∑
j=0

(2sjE2j (f)p)q

⎞⎠1/q

< ∞. (5.6)

Proposition 5.7. Let s > 0, 1 � p � ∞, and 0 < q � ∞. Then f ∈ Bs0
pq if and only if

f ∈ As
pq. Moreover,

‖f‖Bs0
pq

∼ ‖f‖As
pq

. (5.7)

The proof of this proposition is similar to the proof [12, Proposition 5.3] and [9,
Proposition 6.2]. We omit it.

6. Application of weighted Besov spaces to nonlinear approximation

Let us consider a nonlinear n-term approximation for a needlet system {ψη}η∈X defined as in
(3.5)–(3.8) with b̂ = â, â � 0. Thus ϕη = ψη are real valued. Then by Proposition 3.1, for any
f ∈ Lp(wμ), 1 � p � ∞,

f =
∑
ξ∈X

〈f, ψξ〉ψξ in Lp(wμ).

Let Σn be the nonlinear set of all functions g of the form

g =
∑
ξ∈Λ

aξψξ,

where Λ ⊂ X , #Λ � n, and Λ may vary with g. Denote by σn(f)p the error of best Lp(wμ)-
approximation to f ∈ Lp(wμ) from Σn, that is,

σn(f)p := inf
g∈Σn

‖f − g‖p.

We consider approximation in Lp(wμ), 0 < p < ∞. Suppose that s > 0 and let 1/τ := s/d +
1/p. Denote briefly

Bs
τ := Bss

ττ .

From Theorem 5.4 and (3.12) one derives the following representation of the norm in Bs
τ :

‖f‖Bs
τ
∼
⎛⎝∑

ξ∈X
‖〈f, ψξ〉ψξ‖τ

p

⎞⎠1/τ

. (6.1)

The following embedding result shows the importance of the spaces Bs
τ in nonlinear

approximation from needlets.

Proposition 6.1. If f ∈ Bs
τ , then f can be identified as a function f ∈ Lp(wμ) and

‖f‖p � c

∥∥∥∥∥∥
∑
ξ∈X

|〈f, ψξ〉ψξ(·)|
∥∥∥∥∥∥

p

� c‖f‖Bs
τ
. (6.2)

We now give the main result of this section.
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Theorem 6.2 ([Jackson estimate]). If f ∈ Bs
τ , then

σn(f)p � cn−s/d‖f‖Bs
τ
, n � 1. (6.3)

The proof of Proposition 6.1 and Theorem 6.2 relies on the following lemma.

Lemma 6.3. Let F =
∑

ξ∈Yn
aξψξ, where Yn ⊂ X and #Yn � n. Suppose that ‖aξψξ‖p �

A for ξ ∈ Yn, where 0 < p < ∞. Then ‖F‖p � cAn1/p.

Proof. This lemma is trivial when 0 < p � 1. Suppose that 1 < p < ∞. Fix 0 < t < 1.
By Theorem 4.7, for any ξ ∈ X we have |ψξ(x)| � c(Mt�̃Rξ

)(x) for x ∈ Bd, and applying
the maximal inequality (2.17) we infer that

‖F‖p � c

∥∥∥∥∥∥
∑

ξ∈Yn

Mt(aξ�̃Rξ
)

∥∥∥∥∥∥
p

� c

∥∥∥∥∥∥
∑

ξ∈Yn

|aξ|�̃Rξ

∥∥∥∥∥∥
p

.

From ‖aξψξ‖p � A, (3.12), and (2.27) it follows that |aξ| � cAm(Rξ)1/2−1/p, and hence

‖F‖p � c

∥∥∥∥∥∥
∑

ξ∈Yn

m(Rξ)−1/p
�Rξ

∥∥∥∥∥∥
p

. (6.4)

For ξ ∈ X denote by Xξ the set of all η ∈ X such that Rη ∩ Rξ �= ∅ and �(η) � �(ξ), where
�(η), �(ξ) are the levels of η, ξ in X (for example, �(ξ) = j if ξ ∈ Xj).

Let ξ ∈ Xj and η ∈ Xξ ∩ Xν (ν � j). Since Rη ∩ Rξ �= ∅ it follows that d(ξ, η) � c2−ν (see
Definition 2.10). This combined with inequality (2.6) leads to

Wμ(2j ; ξ) � Wμ(2ν ; ξ) � 2μWμ(2ν ; η)(1 + 2νd(ξ, η))2μ � cWμ(2ν ; η).

Therefore, using (2.27) we obtain m(Rξ)/m(Rη) � c2−d(j−ν) and hence∑
η∈Xξ

(m(Rξ)/m(Rη))1/p � c < ∞. (6.5)

Define U(x) := min{m(Rξ) : ξ ∈ Yn, x ∈ Rξ} for x ∈ E :=
⋃

ξ∈Yn
Rξ. By (6.5) it follows that∑

ξ∈Yn

m(Rξ)−1/p
�Rξ

(x) � cU(x)−1/p, x ∈ E.

We use this in (6.4) to obtain

‖F‖p � c‖U−1/p‖p = c

(∫
E

U−1(x)wμ(x)dx

)1/p

� cA

⎛⎝∑
ξ∈Yn

m(Rξ)−1

∫
Bd

�Rξ
(x)wμ(x)dx

⎞⎠1/p

= cA(#Yn)1/p � cAn1/p.

For the proof of Proposition 6.1 and Theorem 6.2 one proceeds exactly as in the proof of
[12, Proposition 6.1 and Theorem 6.2], using Lemma 6.3. We omit the further details.

It is an open problem to prove the companion to (6.3) Bernstein estimate:

‖g‖Bs
τ

� cns/d‖g‖p for g ∈ Σn, 1 < p < ∞. (6.6)

This estimate would allow to characterize the rates of nonlinear n-term approximation from
needlet systems in Lp(wμ) (1 < p < ∞).
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7. Proofs

7.1. Proofs for §§ 2 and 3

Proof of Theorem 2.2. We shall first establish (2.3) for p = 2. From the definition of the
kernels Pn(x, y) (see (1.4) and (1.5)) it follows that∫

Bd

Pn(x, y)Pm(x, y)wμ(y) dy = δn,mPn(x, x),

and hence ∫
Bd

|Ln(x, y)|2wμ(y)dy =
2n∑

k=0

∣∣∣â(k

n

)∣∣∣2Pk(x, x). (7.1)

Therefore, for p = 2 estimate (2.3) will follow by the following lemma.

Lemma 7.1. For any ε > 0
n+[εdn]∑

j=n

Pj(x, x) � cnd

Wμ(n;x)
, x ∈ Bd, n � 1/ε, (7.2)

where c > 0 depends only on ε, μ, and d.

Proof. Assume that μ > 0. We shall utilize representation (1.5) of Pn(x, y). The case μ = 0
is easier and will be omitted (in this case one uses representation (4.2) of Pn(x, y) from [14]).

From (1.5) it is obvious that Pn(x, x) depends only on |x|. For the rest of the proof, we
denote Pn,d(r) := Pn(x, x), where r := |x|, and Λn,d(r) :=

∑n+[εdn]
j=n Pj,d(r). Summing up the

well-known recurrence relation [17, (4.7.29)]

Cλ
n(x) − Cλ

n−2(x) =
n + λ − 1

λ − 1
Cλ−1

n (x), where Cλ
−1(x) = Cλ

−2(x) := 0,

we obtain

Cλ
n(x) =

∑
0�2j�n

n − 2j + λ − 1
λ − 1

Cλ−1
n−2j(x).

Combining this with (1.5) we arrive at

Pn,d(r) =
bμ
d

bμ
d−2

n + λ

λ

∑
0�2j�n

Pn−2j,d−2(r).

Hence

Λn,d(r) =
n+[εdn]∑

k=n

Pk,d(r) =
bμ
d

bμ
d−2

n+[εdn]∑
k=n

k + λ

λ

∑
0�2j�k

Pk−2j,d−2(r)

� c n2

n+[ε(d−2)n]∑
k=n

Pk,d−2(r) = c n2Λn,d−2(r).

Here c > 0 depends only on ε, μ, and d; we used that n � 1/ε.
Evidently, the above estimate leads to (7.2) using induction on d, provided that we prove

(7.2) for d = 1 and d = 2. However, the case d = 1 is already established in [9, Proposition 2.4],
namely,

Λn,1(r) � cn

Wμ(n; r)
. (7.3)
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It remains to prove (7.2) in the case d = 2. The proof relies on the well-known identity

Cλ
n(x) =

∑
0�2k�n

Γ(μ)(n − 2k + μ)Γ(k + λ − μ)Γ(n − k + λ)
Γ(λ)Γ(λ − μ)k!Γ(n − k + μ + 1)

Cμ
n−2k(x) (7.4)

(see [1, p. 59]) and the product formula of Gegenbauer polynomials [4, Vol I, Paragraph 3.15.1,
(20)]:

Cμ
n(s)Cμ

n(t)
Cμ

n(1)
= b

μ−1/2
1

∫1

−1

Cμ
n

(
st + u

√
1 − s2

√
1 − t2

)
(1 − u2)μ−1 du. (7.5)

Using (7.4) (with λ = μ + 1/2) along with (1.5) and then (7.5), we obtain

Pn,2(r) = bμ
2

n + μ + 1/2
μ + 1/2

∑
0�2k�n

ck,n
n − 2k + μ

μ

[Cμ
n−2k(r)]2

Cμ
n−2k(1)

=
bμ
2

bμ
1

n + μ + 1/2
μ + 1/2

∑
0�2k�n

ck,nPn−2k,1(r), (7.6)

where

ck,n =
Γ(μ + 1)Γ(k + 1/2)Γ(n − k + μ + 1/2)
Γ(μ + 1/2)Γ(1/2)Γ(n − k + μ + 1)k!

.

Here we used that the L2(wμ)-normalized Gegenbauer polynomial C̃μ
n can be written in

the form C̃μ
n(x) = h

−1/2
n Cμ

n(x) with hn := (bμ
1 )−1μ/(n + μ)Cμ

n(1), which is a matter of simple
verification, and hence

Pn,1(r) = [C̃μ
n(r)]2 = bμ

1

n + μ

μ

[Cμ
n(r)]2

Cμ
n(1)

.

It is straightforward to verify that if 0 � k � n/2, then ck,n ∼ (kn)−1/2, and hence ck,n � cn−1.
Therefore, from (7.6)

Λn,2(r) =
n+[2εn]∑

k=n

Pk,2(r) =
bμ
2

bμ
1

n+[2εn]∑
k=n

k + μ + 1/2
μ + 1/2

∑
0�2j�k

cj,kPk−2j,1(r)

� c

n+[2εn]∑
k=n

∑
0�2j�k

Pk−2j,1(r) � c nΛn,1(r).

This combined with (7.3) yields (7.2) for d = 2.

We now continue with the proof of Theorem 2.2. Applying (7.2) with ε = 2/3d yields
‖Ln(x, ·)‖2 � cndWμ(n;x)−1 for n � 2d. If 2 � n < 2d, then as in the proof of Lemma 7.1
it follows that

‖Ln(x, ·)‖1/2
2 � c(Pn(x, x) + Pn+1(x, x)) � c(Cμ

n(|x|) + Cμ
n+1(|x|)) > c > 0

for all x ∈ Bd, where we used the fact that the polynomials Cμ
n and Cμ

n+1 have no common zeros.
Taking into account that Wμ(n;x) ∼ 1 when n � 2d, the above leads again to ‖Ln(x, ·)‖2 �
cndWμ(n;x)−1. This completes the proof of estimate (2.3) for p = 2.

Now, one easily derives (2.3) for p �= 2 from the same estimate for p = 2 and the upper bound
estimate (2.1). Indeed, for 2 < p < ∞ applying Hölder’s inequality we obtain

cnd

Wμ(n, x)
�

∫
Bd

|Ln(x, y)|2wμ(y) dy � ‖Ln(x, ·)‖p‖Ln(x, ·)‖p′

� c1‖Ln(x, ·)‖p

( nd

Wμ(n, x)

)1−1/p′ (
1
p

+
1
p′

= 1
)

,

which implies (2.3). One proceeds similarly whenever p = ∞.
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If 0 < p < 2, using (2.3) for p = 2 and (2.1) for p = ∞, then we obtain

cnd

Wμ(n, x)
�

∫
Bd

|Ln(x, y)|2wμ(y) dy �
∫
Bd

|Ln(x, y)|pwμ(y) dy‖Ln(x, ·)‖2−p
∞

� c1

∫
Bd

|Ln(x, y)|pwμ(y) dy
( nd

Wμ(n, x)

)2−p

.

This again leads to (2.3). The proof of Theorem 2.2 is complete.

Proof of Proposition 2.4. Let g ∈ Πn. Assume that 1 < q < ∞ and let Ln be the kernel
from (1.8), with â admissible of type (a). By Lemma 2.3, g = Ln ∗ g. We use this, Hölder’s
inequality, (2.1), and that Wμ(n;x) � n−2μ to obtain

|g(x)| � c‖g‖q

(
nd

Wμ(n;x)

)1/q

� cn(d+2μ)/q‖g‖q, x ∈ Bd,

and hence

‖g‖∞ � cn(d+2μ)/q‖g‖q, 1 < q � ∞. (7.7)

Let 0 < q � 1. The above inequality with q = 2 yields

‖g‖2
∞ � cn(d+2μ)

∫
Bd

|g(y)|2−q|g(y)|qwμ(y)dy � cnd+2μ‖g‖2−q
∞ ‖g‖q

q.

Therefore, (7.7) holds for 0 < q � 1 as well.
Let 0 < q < p < ∞. Using (7.7) we have

‖g‖p =
(∫

Bd

|g(x)|p−q|g(x)|qwμ(x) dx

)1/p

� cn(d+2μ)(1/q−1/p)‖g‖(p−q)/p
q ‖g‖q/p

q = cn(d+2μ)(1/q−1/p)‖g‖q.

Thus we have proved (2.10).
We next prove (2.11). Assume first that 1 < q < ∞. Using again that g = Ln ∗ g, Hölder’s

inequality (1/q + 1/q′ = 1), and (1.11) we obtain for x ∈ Bd,

|g(x)| � ‖Wμ(n; ·)γ+1/p−1/qg(·)‖q

(∫
Bd

∣∣∣Ln(x, y)Wμ(n; y)−γ−1/p+1/q
∣∣∣q′

wμ(y) dy

)1/q′

� c
nd

Wμ(n;x)1/2

(∫
Bd

wμ(y) dy

Wμ(n; y)q′/2+β(1 + nd(x, y))σ

)1/q′

‖Wμ(n; ·)γ+1/p−1/qg(·)‖q,

where β = q′(γ + 1/p − 1/q). The last integral can be estimated by using (2.2), yielding

|g(x)| � c
nd/q

Wμ(n;x)γ+1/p
‖Wμ(n; ·)γ+1/p−1/qg(·)‖q.

Hence

‖Wμ(n; ·)γ+1/pg(·)‖∞ � cnd/q‖Wμ(n; ·)γ+1/p−1/qg(·)‖q, 1 < q � ∞. (7.8)

Let 0 < q � 1. Then by (7.8) with q = 2 we have

‖Wμ(n; ·)γ+1/pg(·)‖∞ � cnd/2‖Wμ(n; ·)γ+1/p−1/2g(·)‖2

� cnd/2‖Wμ(n; ·)γ+1/pg(·)‖1−q/2
∞ ‖Wμ(n; ·)γ+1/p−1/qg(·)‖q/2

q .

Therefore, (7.8) holds for 0 < q � 1 as well.
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Let p < ∞. Using (7.8), we have

‖Wμ(n; ·)γg(·)‖p =
(∫

Bd

|Wμ(n;x)γg(x)|p−q |Wμ(n;x)γg(x)|q wμ(x) dx

)1/p

� cnd(1/q−1/p)‖Wμ(n; ·)γ+1/p−1/qg(·)‖1−q/p
q

(∫
Bd

|Wμ(n;x)γg(x)|q
Wμ(n;x)(p−q)/p

wμ(x) dx

)1/p

= cnd(1/q−1/p)‖Wμ(n; ·)γ+1/p−1/qg(·)‖q.

Hence (2.11) holds for p < ∞. If p = ∞, then (2.11) follows from (7.8).

Proof of (3.13). From (3.10) with k sufficiently large (k > d + 2μ will do) and (3.12), we
infer for 0 < r � π

0 < c1 � ‖ϕξ‖2

� ‖ϕξ‖L∞(Bξ(r))m(Bξ(r)) + c2jd

∫
Bd\Bξ(r)

wμ(y)
Wμ(2j ; y)(1 + 2jd(ξ, y))2k

dy

� ‖ϕξ‖L∞(Bξ(r))m(Bξ(r)) + c
2jd

(1 + 2jr)k

∫
Bd

wμ(y)
Wμ(2j ; y)(1 + 2jd(ξ, y))k

dy

� ‖ϕξ‖L∞(Bξ(r))m(Bξ(r)) +
c2

1 + 2jr
,

where c2 depends only on k, d, and μ. For the last inequality we used Lemma 2.1 with p = 2.
Let r := c∗2−j , where c∗ > 0 is selected such that c2/(1 + 2jr) = c2/(1 + c∗) < c1/2. Then from
above

‖ϕξ‖L∞(Bξ(c∗2−j)) � c

m(Bξ(c∗2−j))
� c
( 2jd

Wμ(2j ; ξ)

)1/2

.

A similar estimate holds for ψξ as well.

7.2. Proofs for §§ 4 and 5

Proof of Lemma 4.6. Using the orthogonality of the subspaces Vd
n, we have Φj ∗ ψξ(x) = 0

if ξ ∈ Xν for ν � j + 2 or ν � j − 2.
Let ξ ∈ Xν , j − 1 � ν � j + 1. From the localization of the kernels Φj , given in (3.9), and

the needlet localization from (3.10) it follows that for any k > 0 there is a constant ck > 0 such
that

|Φj ∗ ψξ(x)| � ck
2j3d/2√
Wμ(2j ;x)

∫
Bd

wμ(y)
Wμ(2j ; y)(1 + 2jd(x, y))k(1 + 2jd(y, ξ))k

dy.

Denote

Ωξ :=
{

y ∈ Bd : d(y, ξ) � d(x, ξ)
2

}
and Ωx :=

{
y ∈ Bd : d(x, y) � d(x, ξ)

2

}
.

Evidently, Bd = Ωξ ∪ Ωx and hence

|Φj ∗ ψξ(x)| � ck
2j3d/2√

Wμ(2j ;x)(1 + 2jd(x, ξ))k

∫
Ωξ

wμ(y)
Wμ(2j ; y)(1 + 2jd(x, y))k

dy

+ ck
2j3d/2√

Wμ(2j ;x)(1 + 2jd(x, ξ))k

∫
Ωx

wμ(y)
Wμ(2j ; y)(1 + 2jd(y, ξ))k

dy

=: J1 + J2.
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We may assume that k > d. Then employing Lemma 2.1 with p = 2, we obtain∫
Ωξ

wμ(y)
Wμ(2j ; y)(1 + 2jd(x, y))k

dy �
∫
Bd

wμ(y)
Wμ(2j ; y)(1 + 2jd(x, y))k

dy � c2−jd,

which yields

J1 � c
2jd/2√

Wμ(2j ;x)(1 + 2jd(x, ξ))k
.

One similarly estimates J2. This completes the proof of the lemma.

Proof of Lemma 4.7. Estimate (4.12) follows readily from the localization of the needlets
(see (3.10)) and the lower bound estimate from (2.19) taking into account that Rξ ⊂ Bξ(c	2−j)
for ξ ∈ Xj .

We now prove (4.13). By the lower bound estimate (3.13) it follows that there exists a
ω ∈ Bξ(c∗2−j) such that

|ϕξ(ω)| � c
2jd/2√

Wμ(2j ; ξ)
. (7.9)

Also, by (3.11) it follows that for every x ∈ Bω(2−j)

|ϕξ(ω) − ϕξ(x)| � c
2j(d/2+1)d(ω, x)√

Wμ(2j ; ξ)
. (7.10)

By (7.9)–(7.10) it follows that for a sufficiently small constant ĉ > 0

|ϕξ(x)| � |ϕξ(ω)| − |ϕξ(ω) − ϕξ(x)| � c
2jd/2√

Wμ(2j ; ξ)
� c�̃Bω(ĉ2−j)(x), x ∈ Bω(ĉ2−j),

which yields

(Mtϕξ)(x) � c(Mt�̃Bω(ĉ2−j))(x) � c�̃Bξ(2−j)(x) � c�̃Rξ
(x), x ∈ Bd,

where in the second inequality we used (2.19).
One similarly shows that Mtψξ � c�̃Rξ

.

For the proof of Lemma 4.9 we need a couple of additional lemmas.

Lemma 7.2. Let k > d and j � 0. Then∑
ξ∈Xj

1
(1 + 2jd(x, ξ))k

� c, x ∈ Bd, (7.11)

and for any ξ, η ∈ Bd∑
w∈Xj

1
(1 + 2jd(ξ, w))k(1 + 2jd(η, w))k

� c
1

(1 + 2jd(ξ, η))k
. (7.12)

Proof. Fix ξ ∈ Xj . Evidently, 1 + 2jd(x, ξ) ∼ 1 + 2jd(x, y) for y ∈ Rξ, and by (2.5)

|
√

1 − |ξ|2 −
√

1 − |y|2| �
√

2 d(ξ, y) � c2−j , y ∈ Rξ,

which implies that

|Rξ| ∼ 2−jd(
√

1 − |ξ|2 + 2−j) ∼ 2−jd(
√

1 − |y|2 + 2−j), y ∈ Rξ.
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We use the above to obtain∑
ξ∈Xj

1
(1 + 2jd(x, ξ))k

� c
∑
ξ∈Xj

1
|Rξ|

∫
Rξ

1
(1 + 2jd(x, y))k

dy

� c2jd

∫
Bd

1
(
√

1 − |y|2 + 2−j)(1 + 2jd(x, y))k
dy � c.

Here for the last inequality we used Lemma 2.1 with p = 2 and μ = 1/2.
For the proof of (7.12), assume that ξ �= η and denote

Xj(ξ) :=
{

w ∈ Xj : d(ξ, w) � d(ξ, η)
2

}
, Xj(η) :=

{
w ∈ Xj : d(η, w) � d(ξ, η)

2

}
.

Then ∑
w∈Xj

1
(1 + 2jd(ξ, w))k(1 + 2jd(η, w))k

� c
1

(1 + 2jd(ξ, η))k

∑
w∈Xj(ξ)

1
(1 + 2jd(η, w))k

+ c
1

(1 + 2jd(ξ, η))k

∑
w∈Xj(η)

1
(1 + 2jd(ξ, w))k

� c
1

(1 + 2jd(ξ, η))k

( ∑
w∈Xj

1
(1 + 2jd(η, w))k

+
∑

w∈Xj

1
(1 + 2jd(ξ, w))k

)
� c

1
(1 + 2jd(ξ, η))k

,

where for the last inequality we used (7.11).

Lemma 7.3. Assume that P ∈ Π2j (j � 0), ξ ∈ Xj , and let x1, x2 ∈ Bd and let d(xν , η) �
c̃2−j , ν = 1, 2. For any k > 0

|P (x1) − P (x2)| � c2jd(x1, x2)
∑
ξ∈Xj

|P (ξ)|
(1 + 2jd(η, ξ))k

,

where c > 0 depends only on d, k, μ, and c̃.

Proof. Fix P ∈ Π2j and assume that L2j is the reproducing kernel from Lemma 2.3 with
n = 2j . Then, L2j ∗ P = P . Since L2j (x, ·)P (·) ∈ Π2j+2 , and the cubature formula (2.25) is
exact for all polynomials from Π2j+2 we have

P (x) =
∫
Bd

L2j (x, y)P (y)wμ(y) dy =
∑
ξ∈Xj

λξL2j (x, ξ)P (ξ), x ∈ Bd.

We use (2.4) to obtain, for x1, x2 ∈ Bd with d(xν , η) � c̃2−j , ν = 1, 2,

|P (x1) − P (x2)| =
∣∣∣ ∫

Bd

[L2j (x1, y) − L2j (x2, y)]P (y)wμ(y) dy
∣∣∣

�
∑
ξ∈Xj

|λξ||L2j (x1, ξ) − L2j (x2, ξ)||P (ξ)|

� c2jd(x1, x2)
∑
ξ∈Xj

(
Wμ(2j ; ξ)
Wμ(2j ; η)

)1/2 |P (η)|
(1 + 2jd(ξ, η))k

� c2jd(x1, x2)
∑

η∈Xj

|P (η)|
(1 + 2jd(ξ, η))k−2μ

.
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Here we used that λξ ∼ 2−jdWμ(2j ; ξ) and for the last inequality we used (2.6). Taking into
account that k > 0 can be arbitrarily large, the result follows.

Proof of Lemma 4.9. Let dξ := max{|P (x1) − P (x2)| : x1 ∈ Rξ, d(x1, x2) � 2−j−r}. Obvi-
ously aξ � bξ + dξ. Now Lemma 7.3 yields

dξ � c2−r
∑

η∈Xj

|P (η)|
(1 + 2jd(ξ, η))k

, ξ ∈ Xj .

From the definition of d∗ξ in (4.14) we infer that

d∗ξ � c2−r
∑

w∈Xj

∑
η∈Xj

|P (η)|
(1 + 2jd(w, η))k(1 + 2jd(ξ, w))k

� c2−r
∑

η∈Xj

|P (η)|
(1 + 2jd(η, ξ))k

� c2−ra∗
ξ ,

where for the second inequality we interchanged the order of summation and used Lemma 7.2.
Hence, a∗

ξ � b∗ξ + d∗ξ � b∗ξ + c2−ra∗
ξ with c > 0 independent of r. By selecting r sufficiently large,

we obtain a∗
ξ � cb∗ξ .

Proof of Lemma 4.10. We first prove Lemma 4.10 in the case ρ = 0. We fix ξ ∈ Xj and
define S0 := {η ∈ Xj : d(η, ξ) � c	2−j} and

Sm := {η ∈ Xj : c	2−j+m−1 < d(η, ξ) � c	2−j+m}, m � 1,

where c	 is the constant from Proposition 2.12. By Definition 2.10 it follows that #Sm � c2md.
Let us also set

Bm := Bξ(c	(2m + 1)2−j), m � 0.

Evidently, Rη ⊂ Bm for η ∈ Sν , 0 � ν � m. Moreover, if η ∈ Sm, then

d(ξ, ∂Bd) � d(ξ, η) + d(η, ∂Bd) � c	2−j+m + d(η, ∂Bd).

Hence, using (2.14), we obtain

m(Bm)
m(Rη)

� 2md

(
d(ξ, ∂Bd) + 2−j+m

d(η, ∂Bd) + 2−j

)2μ

� c2md

(
d(η, ∂Bd) + 2−j+m

d(η, ∂Bd) + 2−j

)2μ

� c2m(d+2μ).

(7.13)
Set γ := max{0, 1 − 1/t} < 1. Using Hölder’s inequality if t > 1 and the t-triangle inequality

if 0 < t � 1, we obtain

b∗ξ =
∑

η∈Xj

|bη|
(1 + 2jd(η, ξ))σ

� c
∑
m�0

2−mσ
∑

η∈Sm

|bη| � c
∑
m�0

2−m(σ−dγ)

⎛⎝∑
η∈Sm

|bη|t
⎞⎠1/t

.

We now use (7.13) to obtain, for x ∈ Rξ,

b∗ξ = c
∞∑

m=0

2−m(σ−d)

⎛⎝∫
Bd

⎡⎣ ∑
η∈Sm

|bη|m(Rη)−1/t
�Rη

(y)

⎤⎦t

wμ(y) dx

⎞⎠1/t

� c

∞∑
m=0

2−m(σ−d)

⎛⎝ 1
m(Bm)

∫
Bm

⎡⎣ ∑
η∈Sm

(
m(Bm)
m(Rη)

)1/t

|bη|�Rη
(y)

⎤⎦t

wμ(y) dy

⎞⎠1/t
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� c
∑
m�0

2−m(σ−d−(d+2μ)/t)

⎛⎝ 1
m(Bm)

∫
Bm

⎡⎣ ∑
η∈Sm

|bη|�Rη
(y)

⎤⎦t

wμ(y) dy

⎞⎠1/t

� cMt

⎛⎝∑
w∈Xj

|bw|�Rω

⎞⎠ (x),

where for the last inequality we used that σ > d + (d + 2μ)/t.
Consider now the general case. Using (2.6) we have for ξ ∈ Xj

Wμ(2j ; ξ)γb∗ξ �
∑

η∈Xj

Wμ(2j ; ξ)γ |bη|
(1 + 2jd(ξ, η))σ

� c
∑

η∈Xj

Wμ(2j ; η)γ |bη|
(1 + 2jd(ξ, η))σ−2μ|γ| � c

(
Wμ(2j ; ξ)γ |bξ|

)∗
,

where we used that σ > d + (d + 2μ)/t + 2μ|γ|. Now (4.16) in the general case follows by the
same inequality in the case ρ = 0 established above.

Proof of Proposition 4.11. On account of Theorem 4.5, it suffices to show that under the
hypothesis of Proposition 4.11 we have the continuous embedding fss

pq ⊂ fs1s1
p1q1

. Moreover, we
may assume that q = ∞ and 0 < q1 < 1.

Suppose that h ∈ fss
p∞ and ‖h‖fss

p∞ = 1. We need to show that

‖h‖f
s1s1
p1q1

� c < ∞, where
s1

d
− 1

p1
=

s

d
− 1

p
, 0 < p < p1 < ∞, s1 < s. (7.14)

To simplify our notation we let

Qj(x; s, p) := 2js
∑
ξ∈Xj

|hξ|Wμ(2j ; ξ)−s/d
�̃Rξ

(x)wμ(x)1/p.

Then

‖h‖fss
p∞ :=

∥∥∥∥sup
j�0

Qj(·; s, p)
∥∥∥∥

Lp(Bd)

and ‖h‖f
s1s1
p1q1

:=

∥∥∥∥∥∥∥
⎛⎝∑

j�0

Qj(·; s1, p1)q1

⎞⎠1/q1
∥∥∥∥∥∥∥

Lp1 (Bd)

.

Here ‖ · ‖Lp(Bd) stands for the Lp-norm on Bd with weight 1.
Denote E� := {x ∈ Bd : 2−� < (1 − |x|2)1/2 � 2−�+1} and, also

N�(h) :=

∥∥∥∥∥∥∥
⎛⎝ ∞∑

j=�

Qj(·; s1, p1)q1

⎞⎠1/q1
∥∥∥∥∥∥∥

p1

Lp1 (E	)

,

Ñ�(h) :=

∥∥∥∥∥∥∥
⎛⎝�−1∑

j=0

Qj(·; s1, p1)q1

⎞⎠1/q1
∥∥∥∥∥∥∥

p1

Lp1 (E	)

, and M� :=
∥∥∥∥sup

j�0
Qj(·; s, p)

∥∥∥∥p

Lp(E	)

.

Our next aim is to show that

N�(h) � cM�(h) and Ñ�(h) � cM�(h), � = 1, 2, . . . . (7.15)

Assuming that the above estimates hold we obtain

‖h‖p1

f
s1s1
p1q1

� c

∞∑
�=1

(N�(h) + Ñ�(h)) � c

∞∑
�=1

M�(h) � c‖h‖p
fss

p∞
� c.

Therefore, (7.15) yields (7.14) and, hence, the claimed embedding result.



508 G. KYRIAZIS, P. PETRUSHEV AND YUAN XU

To prove that N�(h) � cM�(h), we first observe that if j � � and Rξ ∩ E� �= ∅, then

Wμ(2j ; ξ) :=
(√

1 − |ξ|2 + 2−j
)2μ

∼ 2−2μ� = δ2μ, where δ := 2−�,

and wμ(x) := (1 − |x|2)μ−1/2 ∼ δ2μ−1 for x ∈ E�. We use these and the fact that �̃Rξ
:=

m(Rξ)−1/2
�Rξ

, where m(Rξ) ∼ 2−jdWμ(2j ; ξ) (see (2.27)), to obtain for j � �

1 = ‖h‖fss
p∞ � ‖Qj(·; s, p)‖Lp(E	−1∪E	∪E	+1)

� c2j(s−d/p+d/2)δ2μ(−s/d+1/p−1/2)

⎛⎝ ∑
ξ∈Xj ,Rξ∩E	 �=∅

|hξ|p
⎞⎠1/p

.

Hence

|hξ| � c2j(−s+d/p−d/2)δ2μ(s/d−1/p+1/2), if ξ ∈ Xj , j � �, and Rξ ∩ E� �= ∅. (7.16)

Using that Wμ(2j , ξ) ∼ δ2μ and wμ(x) ∼ δ2μ−1 we have for x ∈ E� and k � �

k∑
j=�

Qj(x; s1, p1)q1 � c

k∑
j=�

⎛⎝2j(s1+d/2)δ2μ(−s1/d+1/p1−1/2)−1/p1
∑

ξ∈Xj ,Rξ∩E	 �=∅
|hξ|�Rξ

(x)

⎞⎠q1

.

Combining this with (7.16) we obtain
k∑

j=�

Qj(x; s1, p1)q1 � c

k∑
j=�

2j(s1−s+d/p)q1δ−q1/p1 � c∗2kdq1/p1δ−q1/p1 . (7.17)

In a similar fashion one has for x ∈ E� and k � � − 1
∞∑

j=k+1

Qj(x; s1, p1)q1 � c

∞∑
j=k+1

2j(s1−s)q1δ(1/p−1/p1)q1Qj(x; s, p)q1

� c2k(s1−s)q1δ(1/p−1/p1)q1 sup
j>k

Qj(x; s, p)q1 . (7.18)

Recall the well-known representation

‖f‖p
Lp(E) = p

∫∞

0

tp|{x ∈ E : |f(x)| > t}|dt

t
.

Hence

N�(h) = p1

∫∞

0

tp1

∣∣∣∣∣∣∣
⎧⎪⎨⎪⎩x ∈ E� :

⎛⎝ ∞∑
j=�

Qj(x; s1, p1)q1

⎞⎠1/q1

> t

⎫⎪⎬⎪⎭
∣∣∣∣∣∣∣
dt

t

= p1

∫ (2c∗)1/q1δ−1/p1

0

. . . + p1

∫∞

(2c∗)1/q1δ−1/p1

. . . =: I1 + I2.

To estimate I1 we use (7.18) with k = � − 1. We obtain

I1 � c

∫ cδ−1/p1

0

tp1

∣∣∣{x ∈ E� : cδ1/p−1/p1 sup
j>k

Qj(x; s, p) > t
}∣∣∣dt

t

� cδ(1/p−1/p1)p1

∫ cδ−1/p

0

up1

∣∣∣∣∣
{

x ∈ E� : sup
j>k

Qj(x; s, p) > u

}∣∣∣∣∣ du

u

� cδ(1/p−1/p1)p1δ−1/p(p1−p)

∫∞

0

up

∣∣∣∣∣
{

x ∈ E� : sup
j>k

Qj(x; s, p) > u

}∣∣∣∣∣ du

u

� cM�(h).
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Here in the second estimate we used the substitution t = cuδ1/p−1/p1 and for the third we used
that up1 � cupδ−1/p(p1−p).

We now estimate I2. For t > (2c∗)1/q1δ−1/p1 we choose k � 0 in (7.17) to be the largest
integer such that c∗2kdq1/p1δ−q1/p1 � tq1/2. Suppose that k � �. Then⎧⎪⎨⎪⎩x ∈ E� :

⎛⎝ ∞∑
j=�

Qj(x; s1, p1)q1

⎞⎠1/q1

> t

⎫⎪⎬⎪⎭ ⊂
⎧⎨⎩x ∈ E� :

k∑
j=�

Qj(x; s1, p1)q1 >
tq1

2

⎫⎬⎭
∪
⎧⎨⎩x ∈ E� :

∞∑
j=k+1

Qj(x; s1, p1)q1 >
tq1

2

⎫⎬⎭ =: A1 ∪ A2.

By (7.17) and the selection of k it follows that A1 = ∅. Consequently, using (7.18) we have

I2 � c

∫∞

(2c∗)1/q1δ−1/p1

tp1

∣∣∣∣∣
{

x ∈ E� : δ1/p−1/p1 sup
j>k

Qj(x; s, p) > ct2−k(s1−s)

}∣∣∣∣∣ dt

t
.

From the selection of k we have 2kd/p1δ−1/p1 ∼ t and a little algebra shows that

t2−k(s1−s) ∼ tp1/pδ1/p−1/p1 .

Therefore,

I2 � c

∫∞

0

tp1

∣∣∣∣∣
{

x ∈ E� : sup
j>k

Qj(x; s, p) > c′tp1/p

}∣∣∣∣∣ dt

t

� c

∫∞

0

up

∣∣∣∣{x ∈ E� : sup
j�0

Qj(x; s, p) > u

}∣∣∣∣ du

u
= cM�(h),

where we used the substitution u = c′tp1/p.
The case when k < � is simpler. Then c∗2�dq1/p1δ−q1/p1 � tq1/2, and hence 2�d/p1δ−1/p1 � ct.

One estimates I2 as above with k replaced by �. The result is again I2 � cM�(h).
The above estimates for I1 and I2 imply that N�(h) � cM�(h).
To prove that Ñ�(h) � cM�(h) we proceed quite as above. Note first that if Rξ ∩ E� �= ∅,

ξ ∈ Xj , j < �, then

Wμ(2j ; ξ) := (
√

1 − |ξ|2 + 2−j)2μ ∼ 2−2jμ,

and wμ(x) := (1 − |x|2)μ−1/2 ∼ 2−�(2μ−1) for x ∈ E�. Hence for j < �

1 = ‖h‖fss
p∞ � ‖Qj(·; s, p)‖Lp(E	−1∪E	∪E	+1)

� c2j(s−d/p+d/2)2−2jμ(−s/d+1/p−1/2)

⎛⎝ ∑
ξ∈Xj ,Rξ∩E	 �=∅

|hξ|p
⎞⎠1/p

,

which implies that

|hξ| � c2j(−s+d/p−d/2)22jμ(−s/d+1/p−1/2), if ξ ∈ Xj , j < �, and Rξ ∩ E� �= ∅.
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Therefore, for x ∈ E� and k < � we have

k∑
j=0

Qj(x; s1, p1)q1 � c

k∑
j=0

⎛⎝2j(s1+d/2)2−2jμ(−s1/d−1/2)2−�(2μ−1)1/p1
∑
ξ∈Xj

|hξ|�Rξ
(x)

⎞⎠q1

� c

k∑
j=0

2j(s1+d/2−s+d/p−d/2)q12−2jμ(−s1/d−1/2+s/d−1/p+1/2)q12−�(2μ−1)q1/p1

(7.19)

� c
k∑

j=0

2j(d+2μ)q1/p12−�(2μ−1)q1/p1 � c∗2k(d+2μ)q1/p12−�(2μ−1)q1/p1 .

Assuming that Rξ ∩ E� �= ∅, where ξ ∈ Xj , j < �, and x ∈ E�, we denote briefly by

U(s, p) := Wμ(2j ; ξ)−s/dwμ(x)1/p.

It is readily seen that

U(s1, p1) = U(s, p)2−2jμ(1/p−1/p1)2−�(2μ−1)(1/p−1/p1).

We use this to obtain for x ∈ E� and −1 � k < �

�∑
j=k+1

Qj(x; s1, p1)q1 � c
�∑

j=k+1

2j[s1−s−2μ(1/p−1/p1)]q12�(2μ−1)(1/p−1/p1)q1 sup
j>k

Qj(x; s, p)q1

� c2−k(d+2μ)(1/p−1/p1)q12�(2μ−1)(1/p−1/p1)q1 sup
j>k

Qj(x; s, p)q1 . (7.20)

Denote briefly D := 2�(2μ−1). Just as for N�(h) we have

Ñ�(h) = p1

∫∞

0

tp1

∣∣∣∣∣∣∣
⎧⎪⎨⎪⎩x ∈ E� :

⎛⎝�−1∑
j=0

Qj(x; s1, p1)q1

⎞⎠1/q1

> t

⎫⎪⎬⎪⎭
∣∣∣∣∣∣∣
dt

t

= p1

∫ (2c∗)1/q1D−1/p1

0

. . . + p1

∫∞

(2c∗)1/q1D−1/p1

. . . =: I1 + I2.

As above we use (7.20) with k = −1 to obtain

I1 � c

∫ cD−1/p1

0

tp1

∣∣∣∣{x ∈ E� : cD1/p−1/p1 sup
j�0

Qj(x; s, p) > t

}∣∣∣∣ dt

t

� cD( 1
p− 1

p1
)p1

∫ cD−1/p

0

up1

∣∣∣∣{x ∈ E� : sup
j�0

Qj(x; s, p) > u

}∣∣∣∣ du

u

� cD( 1
p− 1

p1
)p1D− 1

p (p1−p)

∫∞

0

up

∣∣∣∣{x ∈ E� : sup
j�0

Qj(x; s, p) > u

}∣∣∣∣ du

u

� cM�(h).
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For t > (2c∗)1/q1D−1/p1 we select k � 0 in (7.19) to be the largest integer such that
c∗2k(d+2μ)q1/p1D−q1/p1 � tq1/2. Suppose that k < �. Then⎧⎪⎨⎪⎩x ∈ E� :

⎛⎝ �∑
j=0

Qj(x; s1, p1)q1

⎞⎠1/q1

> t

⎫⎪⎬⎪⎭ ⊂
⎧⎨⎩x ∈ E� :

k∑
j=0

Qj(x; s1, p1)q1 >
tq1

2

⎫⎬⎭
∪
⎧⎨⎩x ∈ E� :

�∑
j=k+1

Qj(x; s1, p1)q1 >
tq1

2

⎫⎬⎭ =: A1 ∪ A2.

By (7.19) and the selection of k it follows that A1 = ∅. Consequently, using (7.20) we obtain

I2 � c

∫∞

(2c∗)1/q1D−1/p1

tp1

∣∣∣∣∣
{

x ∈ E� : D1/p−1/p1 sup
j>k

Qj(x; s, p) > ct2k(d+2μ)(1/p−1/p1)

}∣∣∣∣∣ dt

t
.

From the selection of k we have 2k(d+2μ)(1/p−1/p1)D−1/p1 ∼ t and a simple manipulation shows
that t2k(d+2μ)(1/p−1/p1) ∼ tp1/pD1/p−1/p1 . Consequently,

I2 � c

∫∞

0

tp1

∣∣∣∣∣
{

x ∈ E� : sup
j>k

Qj(x; s, p) > c′tp1/p

}∣∣∣∣∣ dt

t

� c

∫∞

0

up

∣∣∣∣{x ∈ E� : sup
j�0

Qj(x; s, p) > u

}∣∣∣∣ du

u
= cM�(h).

The case when k � � is trivial since in this case A1 = A2 = ∅ and hence I2 = 0.
The above estimates for I1 and I2 yield Ñ�(h) � cM�(h). Thus (7.15) is established.

Proof of Lemma 5.5. For any ξ ∈ Xj , we denote aξ := maxx∈Rξ
|P (x)|,

mξ := min
x∈Rξ

|P (x)|, and bξ := max{ min
x∈Rw

|P (x)| : w ∈ Xj+r, Rw ∩ Rξ �= ∅},

where r � 1 is the constant from Lemma 4.9.
Choose 0 < t < p. By Lemma 4.9 we have a∗

ξ � cb∗ξ . We use this, Lemmas 4.10, and the
maximal inequality (2.17) to obtain⎛⎝∑

ξ∈Xj

Wμ(2j ; ξ)γap
ξm(Rξ)

⎞⎠1/p

=

∥∥∥∥∥∥
∑
ξ∈Xj

Wμ(2j ; ξ)γaξ�Rξ
(·)
∥∥∥∥∥∥

p

� c

∥∥∥∥∥∥
∑
ξ∈Xj

Wμ(2j ; ξ)γb∗ξ�Rξ
(·)
∥∥∥∥∥∥

p

� c

∥∥∥∥∥∥Mt

⎛⎝∑
ξ∈Xj

Wμ(2j ; ξ)γbξ�Rξ

⎞⎠ (·)
∥∥∥∥∥∥

p

� c

∥∥∥∥∥∥
∑
ξ∈Xj

Wμ(2j ; ξ)γbξ�Rξ
(·)
∥∥∥∥∥∥

p

.

(7.21)

Now, exactly as in the proof of Theorem 4.5 (see (4.20)) we have

bξWμ(2j ; ξ)γ
�Rξ

�
∑

η∈Xj+r(ξ)

m∗
ηWμ(2j+r; η)γ

�Rη
, (7.22)
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where Xj+r(ξ) := {w ∈ Xj+r : Rw ∩ Rξ �= ∅}. Combining this with (7.21) and using that
#Xj+r(ξ) � c, Lemmas 4.10, and the maximal inequality (2.17), we obtain

⎛⎝∑
ξ∈Xj

Wμ(2j ; ξ)γap
ξm(Rξ)

⎞⎠1/p

� c

∥∥∥∥∥∥
∑

η∈Xj+r

m∗
ηWμ(2j+r; η)γ

�Rη
(·)
∥∥∥∥∥∥

p

� c

∥∥∥∥∥∥Mt

⎛⎝ ∑
η∈Xj+r

mηWμ(2j+r; η)γ
�Rη

⎞⎠ (·) ‖p � c‖
∑

η∈Xj+r

mηWμ(2j+r; η)γ
�Rη

(·)
∥∥∥∥∥∥

p

� c‖P‖p.

Here for the fourth inequality we used that Wμ(2j+r; η) ∼ Wμ(2j ;x) if x ∈ Rη, η ∈ Xj+r.
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