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Rational bases for spaces of holomorphic functions in the disc

G. Kyriazis and P. Petrushev

Abstract

A new method for construction of bases for general distribution spaces is developed. This method
allows the freedom to prescribe the nature and properties of the basis elements. The method
is deployed to the construction of bases consisting of rational functions of uniformly bounded
degrees for Besov and Triebel–Lizorkin spaces of holomorphic functions in the unit disc. In turn,
this is utilized to give a new proof of Pekarski’s direct estimate for rational approximation of
holomorphic functions in Hp.

1. Introduction

The main purpose of this paper is to construct bases for spaces of holomorphic functions in the
unit disc D in C consisting of rational functions of uniformly bounded degrees. Such a basis
will be of the form

R = {RQ : Q ∈ Q},
where the index set Q consists of dyadic subintervals of [0, 1], quite like Meyer’s two hump basis
for Hp(D) constructed out of periodic wavelets [10]. Each element RQ of R will be a rational
function of degree at most K that is fixed. Targeted spaces are the Hardy spaces Hp(D) and the
more general Besov spaces Bs

p,q and Triebel–Lizorkin spaces F s
p,q of holomorphic functions inD.

The primary motivation for this undertaking lies in the theory of rational approximation of
holomorphic functions in D. Pekarskii [15, 16] proved remarkable direct and inverse estimates
for rational approximation in Hp(D) which involve Besov spaces and allowed him to completely
characterize the rates of rational approximation in Hp(D). We refer the reader to [14] for
in-depth discussion and analysis of these results. The construction of a rational basis as
described above will enable us to give another proof of Pekarskii’s direct estimate and shed
some additional light on rational approximation of holomorphic functions.

To achieve our goal of constructing rational bases for spaces of holomorphic functions, we
first develop a general method for construction of bases by ‘small perturbation’ of ‘nice’
existing bases. The idea is to approximate the elements of an existing basis, say, {GQ}
by the elements of the new basis {RQ} following two simple principles: localization and
approximation. The localization of the new basis is measured in terms of the size of the inner
products 〈GQ, RP 〉, while the approximation is measured by the size of the inner products
〈GQ −RQ, GP 〉. Technically, it boils down to constructing {RQ} so that the operator with
matrix (〈GQ −RQ, GP 〉)Q,P∈Q has sufficiently small norms on �2(Q) and on the sequence
‘smoothness’ space of interest (for example, Besov or Triebel–Lizorkin sequence space). This
method is rooted in our previous work on bases [6, 7, 17] where bases were constructed for
Besov and Triebel–Lizorkin spaces on Rn. In [8], this method was developed for construction of
frames in a general setting and applied to the construction of frames of small shrinking support
on the sphere.
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In our specific implementation of the method here, we approximate Meyer’s two hump
wavelet basis functions, denoted by {GQ}, by appropriate rational functions {RQ} of uniformly
bounded degrees on T = ∂D. The key observation is that the H2 projection of the 1-periodized
version of a rational function of the form 1/(1 + x2)n on R or its shifts extends to a rational
function on D with poles outside D. This allows us to mediate between rational functions
with poles outside D and rational functions on R and achieve the needed localization and
approximation properties of the new system.

An important background component of our development is the identification of the Besov
and Triebel–Lizorkin spaces Bs

p,q and F s
p,q of holomorphic functions in D as spaces of

distributions on the unit circle T , obtained by Oswald [12]. We further improve on this result
by obtaining a characterization of these Besov and Triebel–Lizorkin spaces in terms of Meyer’s
two hump wavelet basis [10], quite in the spirit of the wavelet characterization of Besov and
Triebel–Lizorkin spaces on R (see, for example, [5, 10]).

Our main result asserts that under some conditions on the parameters of our rational basis
R, it can be used for decomposition of the Besov and Triebel–Lizorkin spaces Bs

p,q and F s
p,q

of holomorphic functions in D. As an application of this result, we prove a direct estimate
for n-term approximation from our rational basis for Hp which involves certain Besov spaces
and as a consequence we obtain another proof of Pekarskii’s direct theorem [16] for rational
approximation in Hp.

The paper is organized as follows. In § 2, we review Besov and Triebel–Lizorkin spaces
of holomorphic functions in D and their identification as spaces of distributions on T from
[12]. In § 3, we give the definition of Meyer’s two hump wavelet basis for Hp and use it for
decomposition of Besov and Triebel–Lizorkin spaces on T . In § 4, we develop our general method
for construction of bases. In § 5, we construct our rational basis and show that it can be used
for decomposition of Besov and Triebel–Lizorkin spaces. In § 6, we prove a direct estimate for
n-term approximation from our rational basis in Hp and as a consequence we prove Pekarskii’s
direct estimate from [16].

Notation. We shall use the notation T := {z ∈ C : |z| = 1} and T := R/Z; |x− y| =
minn∈Z |x− y + n| will denote the distance on T or on R when dealing with 1-periodic functions.
Positive constants will be denoted by c, c1, c′, . . . and they may vary at every occurrence. Also,
a ∼ b means c1a � b � c2a.

2. Spaces of holomorphic functions in the unit disc

2.1. Definition of Besov and Triebel–Lizorkin spaces

Here, we review Besov and Triebel–Lizorkin spaces of holomorphic functions in the unit disc
D in C. We refer the reader to [13, 19, 20] for the theory of the classical Besov and Triebel–
Lizorkin spaces on Rn and Tn. We begin with some notation. We let A = A(D) denote the set
of all holomorphic functions in D and for f ∈ A(D) we shall denote

‖f(r·)‖Lp :=

(∫
|z|=1

|f(rz)|p| dz|
)1/p

=
(

2π
∫1

0

|f(re2πit)|p dt
)1/p

, 0 < p <∞

and
‖f(r·)‖L∞ := sup

|z|=1

|f(rz)|.

The Hardy space Hp, 0 < p � ∞ (see, for example, [22]) is defined as the set of all f ∈ A(D)
such that

‖f‖Hp := lim
r→1−

‖f(r·)‖Lp <∞.
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For a function f ∈ A(D) with Taylor series expansion f(z) =
∑

n�0 f̂(n)zn, we set

Jβf(z) :=
∑
n�0

(n+ 1)β f̂(n)zn, β ∈ R.

For β > 0, this is called the Weyl derivative of f of order β.

Definition 2.1. (a) Let s ∈ R and 0 < p, q � ∞. The Besov space (B-space ) Bs
pq :=

Bs
pq(A) is defined as the set of all functions f ∈ A(D) with finite semi-norm

‖f‖Bs
pq

:=
(∫1

0

(1 − r)(β−s)q−1‖Jβf(r·)‖q
Lp dr

)1/q

if q �= ∞

and

‖f‖Bs
p∞ := sup

0<r<1
(1 − r)β−s‖Jβf(r·)‖Lp if q = ∞.

(b) Let s ∈ R, 0 < p <∞, and 0 < q � ∞. The Triebel–Lizorkin space (F -space ) F s
pq =

F s
pq(A) is defined as the set of all f ∈ A(D) with finite quasi-norm

‖f‖F s
pq

:=

∥∥∥∥∥
(∫1

0

(1 − r)(β−s)q−1|Jβf(r·)|q dr
)1/q

∥∥∥∥∥
Lp

if q �= ∞

and

‖f‖F s
p∞ :=

∥∥∥∥ sup
0<r<1

(1 − r)β−s|Jβf(r·)|
∥∥∥∥

Lp

.

In the definition of all of the above quasi-norms, β := s+ 1.

Observe that in the above definition, it suffices to require β > s. For such a selection of β, the
respective quasi-norms are equivalent. For this and other properties of the B- and F -spaces,
we refer the reader to [2, 12].

It will be important for our further developments that the Besov and Triebel–Lizorkin spaces
of holomorphic functions defined above can be identified as spaces of distributions on the unit
circle T = {z : |z| = 1}, which should be viewed as their boundary values.

We denote by D+ the class of test functions φ : T → C of the form

φ(e2πix) =
∑
n�0

φ̂(n) e2πinx, x ∈ [0, 1), with φ̂(n) :=
∫1

0

φ(e2πix) e−2πinx dx,

such that

Pr(φ) := sup
n�0

(n+ 1)r|φ̂(n)| <∞ for all r � 0. (2.1)

The locally convex topology in D+ is defined by the norms Pr, r = 0, 1, . . . . The space of
distributions D′

+ is defined as the set of all bounded linear functionals on D+. The pairing
of f ∈ D′

+ and φ ∈ D+ will be denoted by 〈f, φ〉 := f(φ̄), which is consistent with the inner
product 〈f, g〉 =

∫1

0
f(e2πix)g(e2πix) dx on T .

The above definition readily implies that for any f ∈ D′
+ there exists r � 0 such that

|〈f, φ〉| � crPr(φ) for all φ ∈ D+, which yields

|f̂(n)| � cr(n+ 1)r, n � 0, where f̂(n) := 〈f, e2πinx〉. (2.2)
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This in turn leads to the conclusion that for any f ∈ D′
+,

f =
∑
n�0

f̂(n) e2πinx in D′
+. (2.3)

Therefore, for any f ∈ D′
+ there is a holomorphic function f ∈ A(D) (the extension of f) such

that

f(z) =
∑
n�0

f̂(n)zn, |z| < 1. (2.4)

Conversely, for any function f ∈ A(D) with at most polynomially growing Taylor coefficients
(like in (2.2)), there is a unique distribution f ∈ D′

+ with the same Fourier series coefficients.
New convention. To simplify our notation, from now on we shall use the notation φ(x) and

f(x) instead of φ(e2πix) and f(e2πix), and consider the functions defined on R and 1-periodic,
that is, defined on T := R/Z. For instance, the class of test functions D+ will consist of all
functions φ : T → C of the form

φ(x) =
∑
n�0

φ̂(n)e2πinx with φ̂(n) :=
∫1

0

φ(x) e−2πinx dx,

such that Pr(φ) <∞ for all r � 0, where the norms Pr are defined in (2.1). It is easy to see
that the topology on D+ can be equivalently defined by the semi-norms

Nr(φ) := ‖φ(r)‖L∞ , r = 0, 1, . . . .

By (2.3), it follows that for f ∈ D′
+ and φ ∈ D+,

〈f, φ〉 =
∑
n�0

f̂(n)φ̂(n),

where the series converges absolutely.
As already indicated in § 1, when dealing with 1-periodic functions on R we shall use the

distance |x− y| = minn∈Z |x− y + n| on R or T.
As usual for φ ∈ D+ and x ∈ R, we denote by τx the translation operator τxφ(·) := φ(· − x)

and we set φ̃(·) := φ(−·). These definitions extend by duality to D′
+. In particular, for f ∈ D′

+

and φ ∈ D+ we define the convolution of f with φ by f ∗ φ(x) := f(τx(φ̃)). It is easily seen
that f ∗ φ ∈ D+ and

f ∗ φ(x) =
∑
n�0

f̂(n)φ̂(n) e2πinx. (2.5)

2.2. Equivalent definition of Besov and Triebel–Lizorkin spaces

Here, we give an equivalent definition for the B- and F -spaces, introduced by Definition 2.1,
in terms of distributions on T. We shall essentially follow the development of these spaces in
[12]. Let ϕ̂ ∈ C∞[0,∞) satisfy

supp ϕ̂ ⊂ [0, 2], ϕ̂ � 0, ϕ̂(t) = 1 if t ∈ [0, 1]. (2.6)

Set ϕ̂1(t) := ϕ̂(t) − ϕ̂(2t) and note that supp ϕ̂1 ⊂ [12 , 2].
Let the trigonometric polynomials Φj be defined by

Φ0(x) := 1 and Φj(x) :=
∞∑

ν=0

ϕ̂1(2−j+1ν) e2πiνx, j � 1. (2.7)
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Definition 2.2. (a) Let s ∈ R and 0 < p, q � ∞. The Besov space Bs
pq = Bs

pq(D′
+) is

defined as the set of all f ∈ D′
+ such that

‖f‖Bs
pq

:=

⎛
⎝ ∞∑

j=0

(2sj‖Φj ∗ f‖Lp
)q

⎞
⎠

1/q

<∞, (2.8)

with the usual modification when q = ∞.

(b) Let s ∈ R, 0 < p <∞, and 0 < q � ∞. The Triebel–Lizorkin space F s
pq = F s

pq(D′
+) is

defined as the set of all f ∈ D′
+ such that

‖f‖F s
pq

:=

∥∥∥∥∥∥∥
⎛
⎝ ∞∑

j=0

(2sj |Φj ∗ f(·)|)q

⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

<∞, (2.9)

with the usual modification when q = ∞.

One of the main results in [12] asserts that Definitions 2.1 and 2.2 essentially define the
same spaces.

Theorem 2.3 [12]. With the identification from (2.3)–(2.4), the Besov spaces from
Definitions 2.1 and 2.2 are the same with equivalent norms. The same is true for the
Triebel–Lizorkin spaces from Definitions 2.1 and 2.2.

Several remarks are in order.

(1) The spaces Bs
pq and F s

pq are in general quasi-Banach spaces and Banach spaces if p, q � 1.
(2) In the definition of the Besov and Triebel–Lizorkin norms above, ϕ̂1 can be replaced by

any ϕ̂1 ∈ C∞[0,∞) with the properties that supp ϕ̂1 ⊂ [δ,K] and

|ϕ̂1(t)| � c > 0 for δ + ε � t � K − ε,

where 0 < δ < 1, K > 1, ε > 0, and 2(δ + ε) � K − ε. The resulting norms are equivalent.
(3) The spaces Bs

pq and F s
pq are continuously embedded in D′

+, that is, for any f ∈ Bs
pq there

exists k � 0 such that |〈f, φ〉| � c‖f‖Bs
pq
Pk(φ) for all φ ∈ D+, and the same holds for F s

pq.
(4) The Hardy space Hp can be identified as F 0

p2 with equivalent norms when 0 < p <∞.

2.3. Additional background material

The maximal operator Mt, 0 < t <∞ is defined by

Mtf(x) := sup
I�x

(
1
|I|

∫
I

|f(y)|t dy
)1/t

, (2.10)

where the sup is over all intervals I of length |I| � 1.
The Fefferman–Stein (see [18]) vector-valued maximal inequality will play a prominent role:

if 0 < p <∞, 0 < q � ∞, and 0 < t < min{p, q}, then for any sequence of functions {fν}∞ν=1

on T, ∥∥∥∥∥∥
( ∞∑

ν=1

|Mtfν(·)|q
)1/q

∥∥∥∥∥∥
Lp

� c

∥∥∥∥∥∥
( ∞∑

ν=1

|fν(·)|q
)1/q

∥∥∥∥∥∥
Lp

. (2.11)

An estimate on (Mt1I)(x) will be needed for an arbitrary interval I ⊂ R of length |I| < 1,
where 1I is the 1-periodic extension of the characteristic function on I.
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Lemma 2.4. For any interval I = [a, b] of length b− a < 1,

(Mt1I)(x) ∼ (1 + |I|−1|x− a|)−1/t, (2.12)

where |x− a| := minn∈Z |x− a+ n|.

This lemma is trivial and the proof will be omitted.

2.4. Localization of trigonometric polynomials

The nearly exponential localization of trigonometric polynomials with coefficients obtained
from sampling of smooth compactly supported cutoff functions will be needed.

Lemma 2.5. Given ϕ̂ ∈ C∞(R) with supp ϕ̂ ⊂ [c, d] and n � 1, we write

Φ(x) :=
∑
ν∈Z

ϕ̂(ν/n) e2πiνx. (2.13)

Then for any r � 0 and σ > 0, there exists a constant c > 0 such that

|Φ(r)
n (x)| � cnr+1(1 + n|x|)−σ, |x| � 1

2 . (2.14)

This lemma is well known and follows by the fact that ϕ, the inverse Fourier transform of the
function ϕ̂ above, belongs to the Schwartz class S(R) of rapidly decaying C∞ functions on R.
For the proof, one just applies the Poisson summation formula as in the proof of Lemma 5.9.
We omit the details.

3. Decomposition of B- and F-spaces via the two hump basis

3.1. Two hump wavelet basis

We next introduce wavelets with two humps following closely Meyer’s construction from [10].
As in [10], given f ∈ L1(R) we denote by f̂ its Fourier transform, defined by

f̂(ξ) :=
∫

R

f(x) e−ixξ dx. (3.1)

Let Ψ := {2j/2ψ(2jx− k), j, k ∈ Z} be Meyer’s orthonormal wavelet basis for L2(R). We recall
that ψ is a real-valued function with the properties

ψ ∈ S(R) with supp ψ̂ ⊂
{
ξ :

2π
3

� |ξ| � 8π
3

}
, (3.2)

ψ(1 − x) = ψ(x), (3.3)∑
j∈Z

|ψ̂(ξ2−j)|2 = 1, ξ �= 0. (3.4)

From (3.3), it follows that ψ(x+ 1
2 ) is even. It is convenient to write

ψ̂(ξ) = ω(ξ) e−iξ/2,

where ω(ξ) = ̂ψ(· + 1
2 )(ξ) is also real valued and even.

Set

gj,k(x) := 2j/2
∑
�∈Z

ψ(2j(x+ �) − k), 0 � k < 2j , j � 0.
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It is not hard to see that the family {1} ∪ {gj,k : 0 � k < 2j , j � 0} is an orthonormal basis
for L2(T). These are the 1-periodic Meyer’s wavelets [10]. Then gj,k(x) + gj,k(−x) is even and
noting that gj,k(−x) = gj,k(1 − x) = gj,k∗(x) with k∗ = 2j − k − 1 we conclude that the family

G := {1} ∪ {gj,k + gj,k∗ : 0 � k < 2j−1, j � 0}
is an orthogonal basis for the subspace of even functions in L2(T).

Following Bochkarev’s idea from [1], Meyer constructed a basis for H2 by projecting the
elements of G onto H2. More precisely, using the Poisson summation formula it readily follows
that

gj,k(x) = 2−j/2
∑
ν∈Z

ψ̂(2πν2−j) e2πiν(x−k2−j).

Set

Gj,k(x) := 2−j/2
∑
ν�0

ψ̂(2πν2−j) (e2πiν(x−k2−j) + e2πiν(x−k∗2−j))

= 2−j/2
∑
ν�0

ω(2νπ2−j) cos
(

2νπ
2j

(
k +

1
2

))
e2πiνx, (3.5)

for 0 � k < 2j−1, j � 0. This is the orthogonal projection of gj,k + gj,k∗ onto H2(T). Note
G0,0(x) = −e2πix. In addition, let G−1,0(x) := 1. Then the family

{Gj,k : 0 � k < 2j−1, j � −1}
is an orthonormal basis for H2. Furthermore, as is shown in [10] this is an unconditional basis
for Hp for 0 < p <∞ and a Schauder basis for the algebra of holomorphic functions in the
open unit disc which are continuous on the closed unit disc.

We next introduce more compact and convenient notation. Let

Qjk := [k/2j , (k + 1)/2j), k = 0, . . . , 2j−1 − 1, j � 1, (3.6)

and if Q = Qj,k, then we let xQ := k/2j denote the left end of Q and �(Q) := 2−j is its length.
Also, if Q = Qjk, then we set Q∗ = Qjk∗ , where k∗ := 2j − k − 1.

We define for j � 1,

Qj := {Qjk : 0 � k < 2j−1}, Q∗
j := {Qjk∗ : 0 � k < 2j−1} = {Q∗ : Q ∈ Qj},

Vj := Qj ∪Q∗
j , and we also set Q0 = Q−1 := {[0, 1]}, Q∗

0 = Q∗
−1 := ∅. Note that Qj ∩Q∗

j = ∅.
Finally, we define

Q :=
⋃

j�−1

Qj and V :=
⋃

j�−1

Vj . (3.7)

In what follows, we shall identify any pair of indices (j, k) with the respective dyadic interval
Qjk = [k/2j , k + 1/2j). Then we can write

G = {GQ : Q ∈ Q}. (3.8)

Observe that by Lemma 2.5 it readily follows that the basis elements GQ have a two hump
nearly exponential localization: for any σ > 0, there exists a constant cσ > 0 such that for any
Q ∈ Q,

|GQ(x)| � cσ�(Q)−1/2

((
1 +

|x− xQ|
�(Q)

)−σ

+
(

1 +
|x− xQ∗ |
�(Q)

)−σ
)
. (3.9)
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It is also not hard to estimate the norms of GQ. Indeed, ‖GQ‖L2 = 1 by construction. This
and (3.9) lead to

‖GQ‖Lp ∼ �(Q)−1/2+1/p for 0 < p � ∞; (3.10)

see, for example, the proof of Proposition 5.12.
We next show that G is a decomposition system for D+ and D′

+.

Proposition 3.1. For any φ ∈ D+,

φ =
∑
Q∈Q

〈φ,GQ〉GQ in D+, (3.11)

and, hence, for any f ∈ D′
+

f =
∑
Q∈Q

〈f,GQ〉GQ in D′
+. (3.12)

Proof. Since G is a basis for H2 to prove (3.11), it suffices to show that the series in (3.11)
converges in the topology of D+.

Let r � 0 and choose � > r + 1. Using (2.1) and (3.5), if Q = Qjk, 0 � k < 2j−1, j � 0, then
we obtain

|〈φ,GQ〉| � 2−j/2
∑

2j/3<ν<2j+2/3

|ψ̂(2πν2−j)||φ̂(ν)|

� 2−j/2‖ψ̂‖∞P�(φ)
∑

2j/3<ν<2j+2/3

(ν + 1)−� � c2−j(�−1/2)P�(φ),

and evidently |ĜQ(n)| � 2−j/2+1|ψ̂(2πn2−j)|. Hence,∑
Q∈Qj

|〈φ,GQ〉||ĜQ(n)| � c2−j(�−1)|ψ̂(2πn2−j)|P�(φ).

From this and (3.2), we infer

(n+ 1)r
∑

Q∈Qj

|〈φ,GQ〉||ĜQ(n)| � c2−j(�−r−1)|ψ̂(2πn2−j)|P�(φ), n � 0.

Further, we use again (3.2) to obtain

sup
n�0

(n+ 1)r
∑
j�N

∑
Q∈Qj

|〈φ,GQ〉||ĜQ(n)| � cP�(φ) sup
n�0

∑
j�N

2−j(�−r−1)|ψ̂(2πn2−j)|

� cP�(φ)2−N(�−r−1) −→ 0 as N −→ ∞,

which readily implies the convergence in D+ of the series in (3.11).

3.2. Main assertion

In order to show that G is a basis for Besov and Triebel–Lizorkin spaces, we need to introduce
their sequence counterparts.

Definition 3.2. (a) Given s ∈ R and 0 < p, q � ∞, the space bspq := bspq(Q) is defined as
the set of all complex-valued sequences h := {hQ}Q∈Q such that

‖h‖bs
pq

:=

⎛
⎜⎝ ∞∑

j=−1

2j(s−1/p+1/2)q

⎛
⎝ ∑

Q∈Qj

|hQ|p
⎞
⎠

q/p
⎞
⎟⎠

1/q

<∞, (3.13)

with the usual modification for q = ∞.
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(b) Given s ∈ R, 0 < p <∞, and 0 < q � ∞, the space fs
pq := fs

pq(Q) is defined as the space
of all complex-valued sequences h := {hQ}Q∈Q such that

‖h‖fs
pq

:=

∥∥∥∥∥∥∥
⎛
⎝ ∞∑

j=−1

2sjq
∑

Q∈Qj

[|hQ|1̃Q(·)]q
⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

<∞, (3.14)

with the usual modification for q = ∞. Here 1̃Q := �(Q)−1/21Q.

We next use the above sequence spaces to establish the claimed decomposition result.

Theorem 3.3. (a) Let s ∈ R, 0 < p, q � ∞. Then any f ∈ Bs
pq has a unique representation

f =
∑
Q∈Q

cQ(f)GQ where cQ(f) := 〈f,GQ〉, (3.15)

and the convergence is in the distributional sense; the convergence is unconditional in the
quasi-norm of Bs

pq if p, q �= ∞. Moreover,

‖f‖Bs
pq

∼ ‖(cQ(f))Q‖bs
pq(Q). (3.16)

(b) Let s ∈ R, 0 < p <∞, 0 < q � ∞. Then any f ∈ F s
pq has a unique representation

f =
∑
Q∈Q

cQ(f)GQ where cQ(f) := 〈f,GQ〉, (3.17)

and the convergence is in the distributional sense; the convergence is unconditional in the
quasi-norm of F s

pq if q �= ∞. Furthermore,

‖f‖F s
pq

∼ ‖(cQ(f))Q‖fs
pq(Q). (3.18)

This theorem is quite close in spirit to the developments in [3–5, 10, 19]. For completeness,
we provide the essential parts of its proof in the following. We shall need several lemmas.

Lemma 3.4. For any σ > 0, there exists a constant cσ > 0 such that

|Φj ∗GQ(x)| � cσ2ν/2((1 + 2ν |x− xQ|)−σ + (1 + 2ν |x− xQ∗ |)−σ), (3.19)

for Q ∈ Qν , j − 2 � ν � j + 1, and Φj ∗GQ(x) = 0 for Q ∈ Qν whenever ν � j + 2 or ν �
j − 3. Here Qν := ∅ if ν < −1.

Proof. Let Q = Qνk, j − 2 � ν � j + 1, j � 1, and ν � 0. By the definitions of Φj , GQ in
(2.7), (3.5), and by (2.5) we get

Φj ∗GQ(x) = 2−ν/2
∑
μ�0

ϕ̂1

( μ

2j−1

)
ψ̂

(
2πμ
2ν

)
e2πiμ(x−xQ)

+ 2−ν/2
∑
μ�0

ϕ̂1

( μ

2j−1

)
ψ̂

(
2πμ
2ν

)
e2πiμ(x−xQ∗ ) =: F (x) + F ∗(x).

Set ĝ(ξ) := ϕ̂1(2ν−j+1ξ)ψ̂(2πξ). Clearly, ĝ ∈ C∞(R), supp ĝ ⊂ [13 ,
4
3 ], and all derivatives of

ĝ can be bounded by constants independent of j, ν since |ν − j| � 3. On the other hand,
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ϕ̂1(μ/2j−1)ψ̂(2πμ/2ν) = ĝ(μ/2ν). Therefore, by Lemma 2.5, we get

|F (x)| � cσ2ν/2(1 + 2ν |x− xQ|)−σ,

and the same estimate with xQ replaced by xQ∗ holds for F ∗. These two estimates yield (3.19).
In the case when j = 0 or ν = −1, estimate (3.19) holds trivially.

Also, Φj ∗GQ(x) = 0 for Q ∈ Qν , ν � j + 2, or ν � j − 3, since in this case ĝ ≡ 0 with ĝ
from above.

Definition 3.5. For a collection of complex numbers {hQ}Q∈Vj
, we set

h�
Q :=

∑
P∈Vj

|hP |
(1 + 2j |xP − xQ|)κ

. (3.20)

Here κ > 0 is a sufficiently large parameter that will be selected later on.

Lemma 3.6. Suppose t > 0 and let {hQ}Q∈Vj
, j � 0 be a collection of complex numbers.

Assume κ > 1/t+ 1 in the definition (3.20) of h�
Q. Then

h�
Q1Q(x) � cMt

⎛
⎝∑

P∈Vj

|hP |1P

⎞
⎠ (x).

This lemma is essentially the univariate version of [4, Lemma A.2] and its proof will be
omitted.

Lemma 3.7. For any t > 0, there exists a constant c > 0 such that for any trigonometric
polynomial g of degree at most n (n � 0) one has

sup
y∈T

|g(y)|
(1 + n|x− y|)1/t

� c(Mtg)(x), x ∈ T.

This lemma is well known; its version for entire functions of exponential type is given in [19,
Theorem 1.3.1]. We omit the proof.

Proof of Theorem 3.3. We shall only prove part (b) of this theorem in the case when q <∞;
the proof in the case q = ∞ and the proof of part (a) are easier and will be omitted.

Choose the constants t, κ, σ so that 0 < t < min{p, q}, κ > 1/t+ 1, and σ � κ. Let f ∈ F s
pq.

Then by Proposition 3.1, f =
∑

Q∈Q〈f,GQ〉GQ in D′
+. Denote briefly cQ := 〈f,GQ〉 and let

us extend the sequence (cQ)Q∈Q to Q∗ by setting cQ∗ := cQ.
From above and (3.19), we get

|Φj ∗ f(x)| =

∣∣∣∣∣∣
∑
Q∈Q

cQΦj ∗GQ(x)

∣∣∣∣∣∣ �
∑

j−2�ν�j+1

∑
Q∈Qν

|cQ||Φj ∗GQ(x)|

� c
∑

j−2�ν�j+1

2ν/2
∑

Q∈Qν

|cQ|
(1 + 2ν |x− xQ|)σ

+
|cQ|

(1 + 2ν |x− xQ∗ |)σ

= c
∑

j−2�ν�j+1

2ν/2
∑

Q∈Vν

|cQ|
(1 + 2ν |x− xQ|)σ

.
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For any Q ∈ Vj , we denote WQ := {P ∈ ⋃j−2�ν�j+1 Vν : P ∩Q �= ∅}, where Vν := ∅ if ν < 0.
Note that #WQ � 5. Then it follows from above that

|Φj ∗ f(x)| � c
∑

P∈WQ

c�P 1̃P (x), x ∈ Q ∈ Vj .

Here 1̃P := �(P )−1/21P is the L2-normalized characteristic function of P . We now insert the
above in (2.9) and use Lemma 3.6 and the maximal inequality (2.11) to obtain

‖f‖F s
pq

� c

∥∥∥∥∥∥∥
⎛
⎝∑

j�0

⎡
⎣2sj

∑
Q∈Vj

∑
P∈WQ

c�P 1̃P (·)
⎤
⎦

q⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

� c

∥∥∥∥∥∥∥
⎛
⎝∑

j�0

⎡
⎣2sj

∑
Q∈Vj

c�Q1̃Q(·)
⎤
⎦

q⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

� c

∥∥∥∥∥∥∥
⎛
⎝∑

j�0

⎡
⎣Mt

⎛
⎝2sj

∑
Q∈Vj

|cQ|1̃Q

⎞
⎠ (·)

⎤
⎦

q⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

� c

∥∥∥∥∥∥∥
⎛
⎝∑

j�0

⎡
⎣2sj

∑
Q∈Vj

|cQ|1̃Q

⎤
⎦

q⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

� c‖(cQ)Q‖fs
pq(Q).

Thus, ‖f‖F s
pq

� c‖(cQ)Q‖fs
pq(Q), which readily implies the unconditional convergence in (3.17)

in the norm of F s
pq.

We next prove an estimate in the opposite direction. Put

Ψ̆j(x) :=
∑
ν�0

ψ(2πν2−j) e2πiνx, j � 0 and Ψ̆−1(x) := 1.

From properties (3.2)–(3.4) of ψ and remark (2) after Theorem 2.3, it follows that

‖f‖F s
pq

∼

∥∥∥∥∥∥∥
⎛
⎝∑

j�−1

(2sj |Ψ̆j ∗ f(·)|)q

⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

. (3.21)

Observe that Ψ̆j ∗ f is a trigonometric polynomial of degree < 4
32j and for Q ∈ Qj ,

|〈f,GQ〉| = 2−j/2|Ψ̆j ∗ f(xQ) + Ψ̆j ∗ f(xQ∗)|
� c2−j/2

(
sup
y∈Q

|Ψ̆j ∗ f(y)| + sup
y∈Q∗

|Ψ̆j ∗ f(y)|
)
.

Using the above and Lemma 3.7, we get

∑
Q∈Qj

[|〈f,GQ〉|1̃Q(·)]q � c
∑

Q∈Vj

[
sup
y∈Q

|Ψ̆j ∗ f(y)|1Q(·)
]q

� c

[
sup
y∈T

|Ψ̆j ∗ f(y)|
(1 + 2j |x− y|)1/t

]q

� c
[
Mt(|Ψ̆j ∗ f |)(x)

]q
.
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Further, we use the definition of ‖ · ‖fs
pq

in (3.14) and the maximal inequality (2.11) to obtain

‖(〈f,GQ〉)‖fs
pq

:=

∥∥∥∥∥∥∥
⎛
⎝∑

j�−1

2jsq
∑

Q∈Qj

[|〈f,GQ〉|1̃Q(·)]q
⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

� c

∥∥∥∥∥∥∥
⎛
⎝∑

j�−1

2jsq[Mt(|Ψ̆j ∗ f |)(·)]q
⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

� c

∥∥∥∥∥∥∥
⎛
⎝∑

j�−1

[2sj |Ψ̆j ∗ f(·)|]q
⎞
⎠

1/q
∥∥∥∥∥∥∥

Lp

� c‖f‖F s
pq
.

Here for the last inequality, we used (3.21).

4. General scheme for construction of bases

4.1. The setting

Assume that H is a separable complex Hilbert space (of functions) and D ⊂ H is a linear
subspace (of test functions) furnished with a locally convex topology induced by a sequence of
norms or semi-norms. Let D′ be the dual of D consisting of all continuous linear functionals on
D. We also assume H ⊂ D′. The pairing of f ∈ D′ and φ ∈ D will be denoted by 〈f, φ〉 := f(φ̄)
and we assume that it is consistent with the inner product 〈f, g〉 in H. We give some typical
examples:

(a) H = L2(Rn), D = S(Rn) the Schwartz class on Rn, and D′ = S ′ the dual space of all
tempered distributions on Rn;

(b) H = L2(Rn), D = S∞(Rn) the set of all functions φ in the Schwartz class S(Rn) such
that

∫
φ(x)xα = 0 for α ∈ Zn

+, and D′ its dual;
(c) H = H2(T) the Hardy space of boundary values of holomorphic functions in the unit

disc D, and D := D+ and D′ := D′
+ as described in § 2.

Our next assumption is that L ⊂ D′ with norm ‖ · ‖L is a quasi-Banach space of distributions,
which is continuously embedded in D′. Further, we assume D ⊂ H ∩ L and D is dense in H
and L with respect to their respective norms.

We also assume that �(Q) with norm ‖ · ‖�(Q) is associated to L, a quasi-Banach space of
complex-valued sequences with domain a countable index set Q. Coupled with a basis Ψ, the
sequence space �(Q) will be utilized for characterization of the space L. In addition to being a
quasi-norm, we assume that ‖ · ‖�(Q) obeys the following conditions.

(i) For any sequence (hQ)Q∈Q ∈ �(Q), one has ‖(hQ)‖�(Q) = ‖(|hQ|)‖�(Q).
(ii) If the sequences (hQ)Q∈Q, (gQ)Q∈Q ∈ �(Q), and |hQ| � |gQ| for Q ∈ Q, then

‖(hQ)‖�(Q) � c‖(gQ)‖�(Q).
(iii) Compactly supported sequences are dense in �(Q).

4.2. Construction of bases for spaces of distributions

4.2.1. The old basis Given spaces D ⊂ H ⊂ D′, L, and �(Q) as described in § 4.1 with Q
a countable index set, we assume that Ψ := {ψQ : Q ∈ Q} ⊂ D is an orthonormal basis for H,
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that is, 〈ψQ, ψP 〉 = δQP for Q,P ∈ Q, and for any f ∈ H,

f =
∑
Q∈Q

〈f, ψQ〉ψQ in H and ‖f‖H = ‖(〈f, ψQ〉)Q‖�2(Q). (4.1)

We also assume that Ψ is a basis for the space L in the following sense: every f ∈ L has a
unique representation in terms of {ψQ}Q∈Q and

f =
∑
Q∈Q

〈f, ψQ〉ψQ, (4.2)

where the convergence is unconditional in L, and

c1‖f‖L � ‖(〈f, ψQ〉)Q‖�(Q) � c2‖f‖L, (4.3)

for some constants c1, c2 > 0.

Remark 4.1. In (4.1)–(4.2) and throughout the rest of this section when we write ‘in H’
or ‘in L’, it will always mean that the convergence of the respective series is unconditional in
H or in L. For unconditional convergence and bases, we refer the reader to [9].

4.2.2. Construction of a new basis Our idea is to first construct, by perturbing Ψ, a new
basis Θ = {θQ : Q ∈ Q} for H with elements θQ ∈ H and then to show that under some
additional localization and approximation conditions, Θ is a basis for L. Since Ψ is a basis
for H, we have

θQ =
∑
P∈Q

〈θQ, ψP 〉ψP in H. (4.4)

Denote by A the transformation matrix

A := (aQP )Q,P∈Q, aQP := 〈θQ, ψP 〉. (4.5)

Our key assumption is that the operator A with matrix A is bounded and invertible on �2(Q)
and then A−1 is also bounded on �2(Q). Observe that if

D = (dQP )Q,P∈Q := (〈ψQ − θQ, ψP 〉)Q,P∈Q, (4.6)

then D = I − A and, therefore, A−1 exists and is bounded on �2(Q) if

‖D‖�2(Q) �→�2(Q) < 1. (4.7)

This is our main assumption in constructing Θ as a Riesz basis for H. The gist of our method
is to approximate ψQ by θQ in such a way that D satisfies (4.7).

We shall show that under these conditions Θ is a Riesz basis for H. To proceed, let

A−1 =: (bQP )Q,P∈Q, (4.8)

and define
θ̃Q :=

∑
P

bPQψP , Q ∈ Q. (4.9)

Since (A−1)∗ = (bPQ)Q,P∈Q is the adjoint matrix of A−1 and

‖(A−1)∗‖�2(Q) �→�2(Q) = ‖A−1‖�2(Q) �→�2(Q) <∞,

each row vector of (A−1)∗ belongs to �2(Q) and hence θ̃Q from (4.9) is well defined and θ̃Q ∈ H.
Clearly, bPQ = 〈θ̃Q, ψP 〉 and hence 〈ψP , θ̃Q〉 = bPQ.

We set Θ̃ := {θ̃Q : Q ∈ Q}. Then it is easy to see that the pair (Θ, Θ̃) is a biorthogonal
system in H, that is, 〈θP , θ̃Q〉 = δQP . Indeed,

〈θP , θ̃Q〉 =
∑

I

bIQ〈θP , ψI〉 =
∑

I

aPIbIQ = (AA−1)PQ = δPQ.
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Proposition 4.2. If A,A−1,AT , (A−1)T are bounded on �2(Q), then Θ (with dual Θ̃) is
a Riesz basis for H, that is, for any f ∈ H,

f =
∑
Q∈Q

〈f, θ̃Q〉θQ in H (4.10)

and

c1‖f‖H � ‖(〈f, θ̃Q〉)Q‖�2(Q) � c2‖f‖H . (4.11)

Proof. It is well known that (see, for example, [21]) a necessary and sufficient condition for
Θ ⊂ H to be a Riesz basis for H is that Θ satisfies the following conditions.

(i) The system Θ is complete in H (the closed span of Θ is all of H);
(ii) There exist constants c′, c′′ > 0 such that for any compactly supported sequence h =

(hQ)Q∈Q one has

c′‖h‖�2(Q) �

∥∥∥∥∥∥
∑
Q∈Q

hQθQ

∥∥∥∥∥∥
H

� c′′‖h‖�2(Q). (4.12)

We shall first prove that for any Q ∈ Q,

ψQ =
∑
I∈Q

〈ψQ, θ̃I〉θI =
∑
I∈Q

bQIθI in H. (4.13)

To this end, we shall utilize this lemma.

Lemma 4.3. The operator Th :=
∑

Q∈Q hQθQ is well defined and bounded as an operator

from �2(Q) into H.

Proof. Let h = (hQ)Q∈Q be a compactly supported sequence of complex numbers. Then by
the boundedness of AT on �2(Q) and (4.1) we have

‖Th‖H =

∥∥∥∥∥∥
⎛
⎝〈∑

Q∈Q
hQθQ, ψP

〉⎞⎠
P

∥∥∥∥∥∥
�2(Q)

=

∥∥∥∥∥∥
⎛
⎝∑

Q∈Q
hQ〈θQ, ψP 〉

⎞
⎠

P

∥∥∥∥∥∥
�2(Q)

� c‖AT ‖�2(Q) �→�2(Q)‖h‖�2(Q) � c‖h‖�2(Q).

Since compactly supported sequences are dense in �2(Q), it follows that the operator T is
bounded as an operator from �2(Q) to H. It also follows that for any sequence {hQ} ∈ �2(Q),
the series

∑
Q∈Q hQθQ converges unconditionally in �2(Q).

We now prove (4.13). Since A−1 = (bQP )Q,P∈Q and ‖(A−1)T ‖�2(Q) �→�2(Q) <∞, we have
(bQI)I ∈ �2(Q) and applying Lemma 4.3 it follows that gQ :=

∑
I∈Q bQIθI is a well-defined

element of H. On the other hand,

〈gQ, ψP 〉 =
∑
I∈Q

bQI〈θI , ψP 〉 =
∑
I∈Q

bQIaIP = (A−1A)QP = δQP ,

yielding gQ = ψQ. Hence, (4.13) holds.
As a basis, Ψ := {ψQ} is complete in H and now (4.13) implies that Θ := {θQ} is complete

in H as well.
We now turn to the proof of (4.12). Let h = (hQ)Q∈Q be a compactly supported sequence

of complex numbers. Then by Lemma 4.3, ‖∑Q∈Q hQθQ‖H � c‖h‖�2(Q), which gives the
right-hand-side estimate in (4.12).
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For the other direction, denote f :=
∑

Q∈Q hQθQ. As was shown above, the system Θ̃ :=
{θ̃Q}, defined in (4.9), is the dual of Θ and hence for Q ∈ Q,

hQ = 〈f, θ̃Q〉 =

〈
f,
∑
P∈Q

bPQψP

〉
=
∑
P∈Q

bPQ 〈f, ψP 〉 ,

which yields
‖h‖�2(Q) � ‖(A−1)T ‖�2(Q) �→�2(Q)‖(〈f, ψP 〉)P ‖�2(Q) � c‖f‖H .

Here, we used the boundedness of (A−1)T on �2(Q) and (4.1). Thus, (4.12) is established and
hence Θ is a Riesz basis. This in turn implies (4.10) and (4.11).

Our next aim is to show that under some reasonable conditions on A and A−1 the system
Θ is an unconditional basis for L.

Theorem 4.4. Let A and A−1 be bounded on �2(Q) and assume that the operators AT

and (A−1)T with matrices AT and (A−1)T are bounded on �(Q). Then Θ (with dual Θ̃) is a
basis for L in the following sense: each f ∈ L has a unique representation in terms of {θQ}Q∈Q
and

f =
∑
Q∈Q

〈f, θ̃Q〉θQ, (4.14)

where by definition 〈f, θ̃Q〉 :=
∑

P∈Q〈f, ψP 〉〈ψP , θ̃Q〉 and the series converges unconditionally
in L. Furthermore, there exist constants c1, c2 > 0 such that

c1‖f‖L � ‖(〈f, θ̃Q〉)Q‖�(Q) � c2‖f‖L for f ∈ L. (4.15)

Proof. We first prove the right-hand-side estimate in (4.15). Let f ∈ L. Then by (4.9),
〈ψQ, θ̃P 〉 = bQP and using that (A−1)T is bounded on �(Q), we get

‖(〈f, θ̃Q〉)‖�(Q) =

∥∥∥∥∥∥
(∑

P∈Q
〈f, ψP 〉〈ψP , θ̃Q〉

)
Q

∥∥∥∥∥∥
�(Q)

�

∥∥∥∥∥∥
(∑

P∈Q
bPQ〈f, ψP 〉

)
Q

∥∥∥∥∥∥
�(Q)

� ‖(A−1)T ‖�(Q) �→�(Q)‖(〈f, ψQ〉)Q‖�(Q) � c‖f‖L, (4.16)

where for the last inequality we used (4.3). Thus, the claimed inequality is confirmed.
We next deal with the left-hand-side estimate in (4.15). For this, we first prove that the

operator Th :=
∑

Q∈Q hQθQ is well defined and bounded as an operator from �(Q) into L.
First let h = (hQ)Q∈Q be a compactly supported sequence of complex numbers. By (4.4), we
have θQ =

∑
P aQPψP and hence

Th =
∑
Q∈Q

hQθQ =
∑
P∈Q

⎛
⎝∑

Q∈Q
aQPhQ

⎞
⎠ψP .

Then by (4.3) and the boundedness of AT on �(Q), we obtain

‖Th‖L � c

∥∥∥∥∥∥
⎛
⎝∑

Q∈Q
aQPhQ

⎞
⎠

P

∥∥∥∥∥∥
�(Q)

� c‖AT ‖�(Q) �→�(Q)‖h‖�(Q) � c‖h‖�(Q). (4.17)

By condition (iii) on �(Q), compactly supported sequences are dense in �(Q), and hence the
operator T can be extended uniquely as a bounded operator from �(Q) to L. More precisely,
from above and conditions (i)–(iii) on �(Q), it follows that for any sequence h = (hQ)Q∈Q ∈
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�(Q) and any ε > 0, there exists a finite set of indices F ⊂ Q such that for every index set
F ′ ⊂ Q \ F we have ∥∥∥∥∥∥

∑
Q∈F ′

hQθQ

∥∥∥∥∥∥
L

< ε.

This readily implies (see [9]) that the series
∑

Q∈Q hQθQ converges unconditionally in L. Thus,
T is a well-defined and bounded operator from �(Q) into L. Assuming that (4.14) is valid, using
(4.17) we obtain the left-hand-side estimate in (4.15).

It remains to show the validity of (4.14). We define a new operator U on L by

Uf :=
∑
Q∈Q

〈f, θ̃Q〉θQ.

By (4.16), we have (〈f, θ̃Q〉)Q∈Q ∈ �(Q) for f ∈ L. Then from the boundedness of the operator
T it follows that the operator U is well defined and bounded on L. On the other hand, by
(4.10), Uf = f for f ∈ H and hence for f ∈ D, but D is dense in L. Therefore, Uf = f for
f ∈ L, that is, (4.14) holds true.

5. Rational basis for B- and F-spaces on the disc

In this section, we utilize the scheme from § 4 for the construction of a basis consisting of rational
functions of uniformly bounded degrees for Besov and Triebel–Lizorkin spaces of holomorphic
functions in the unit disc. Our basis will be of the form {RQ}Q∈Q, where the index set Q is
the family of dyadic cubes defined in (3.7).

5.1. Construction of the new basis

Let

Φ(x) :=
1

(1 + x2)n
, x ∈ R, n ∈ N (5.1)

and denote

ΘK :=

{
θ : θ(x) =

K∑
ν=1

cνΦ(ax+ bν), cν , bν ∈ R, a > 0

}
. (5.2)

Obviously, ΘK ⊂ R2nK(R), where Rn(R) is the set of all rational functions of degree (order)
at most n on R with real coefficients.

For future references, we denote by Rn(D) the set of all rational functions R of degree (order)
at most n which are holomorphic on D, that is, the poles of R are outside D̄.

The gist of our method is to construct a rational basis for spaces of holomorphic functions in
D by taking the H2 projections of the periodized appropriate rational functions from RK(R)
for some fixed K.

The first step of this scheme is to approximate Meyer’s mother wavelet ψ and its derivatives
by a rational function on R.

Proposition 5.1. Suppose that ψ is the function from (3.2)–(3.4) which generates Meyer’s
orthonormal basis of L2(R). Given N,n ∈ N, M > 0 with 2n > M, and ε > 0, there exist K � 1
and θ ∈ ΘK such that

(i) |ψ(r)(x) − θ(r)(x)| � ε(1 + |x|)−M , 0 � r � N + 2.

(ii)
∫

R

xrθ(x) dx = 0, 0 � r � N.
(5.3)
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For the construction of a function θ as above, we refer the reader to [6, Theorem 4.1] (see
also [8, Theorem 3.8]).

We are now prepared to define the elements of our rational basis. Just as in the construction
of the two hump wavelet basis of H2(T) (see (3.5)), we define for each Q = Qjk ∈ Qj (0 � k <
2j−1, j � 0) a function RQ on T by

RQ(x) := 2−j/2
∑
ν�0

θ̂(2πν2−j)(e2πiν(x−k2−j) + e2πiν(x−k∗2−j)), (5.4)

where k∗ = 2j − k − 1 and we set RQ(x) := 1 if Q = Q−1,0. Here θ̂ is the Fourier transform of
θ. Then

R := {RQ : Q ∈ Q} (5.5)

is our new system on T. The parameters N , M , n, ε of R will be selected in Theorem 5.2.

5.2. Main result

In the following, we let J := 1/min{1, p} in the case of B-spaces and J := 1/min{1, p, q} for
F -spaces. Now, we can state our main result.

Theorem 5.2. Suppose s ∈ R, 0 < p, q <∞ and let R := {RQ}Q∈Q be constructed as
above with θ satisfying (5.3), where N > max{s,J ,J − s− 1} and M > N + 1. Then we
have:

(a) Each RQ ∈ R extends to a rational function in RK(D) for some fixed K <∞.
(b) If ε > 0 is sufficiently small (depending only on N and M), then the system R has a

dual system R̃ such that (R, R̃) is a Riesz basis for H2(T) and unconditional basis for Bs
pq

and F s
pq in the sense of Theorem 4.4. In particular, every f ∈ Bs

pq or f ∈ F s
pq has a unique

representation

f =
∑
Q∈Q

dQ(f)RQ, (5.6)

where dQ(f) := 〈f, R̃Q〉 :=
∑

P∈Q〈f,GP 〉〈GP , R̃Q〉 and the convergence is unconditional in Bs
pq

or F s
pq. Furthermore, if f ∈ Bs

pq or f ∈ F s
pq, then we have

‖f‖Bs
pq

∼ ‖(dQ(f))Q‖bs
pq(Q) or ‖f‖F s

pq
∼ ‖(dQ(f))Q‖fs

pq(Q), (5.7)

respectively.

Remark 5.3. (a) The roles of {s, p, q} and {N,M, ε} above can be reversed, that is, the
conditions on the parameters of the basis R can be considered as conditions on the indices
{s, p, q} under which the conclusion of the theorem holds.

(b) Using the identification from (2.3) and (2.4), one can immediately extend the elements
of R to D to obtain a rational basis for the F - and B-spaces of holomorphic functions on D.
In the future, for example, in § 6, we shall denote this basis by R again.

We shall carry out the proof of Theorem 5.2 in several steps, showing first that the elements
of R are rational functions.

5.3. The basis elements are rational functions

In this subsection, we prove part (a) of Theorem 5.2 (see Proposition 5.6). To this end, we
need some preparation.
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Denote by Pn the set of all univariate algebraic polynomials of degree at most n.

Lemma 5.4. Let Φ(x) = 1/(1 + x2)n, n ∈ N. Then there exists a polynomial P ∈ Pn−1 such
that

Φ̂(x) = e−|x|P (|x|), (5.8)

where Φ̂ is the Fourier transform of Φ (see (3.1)).

Proof. Since Φ is an even function, Φ̂ is also even, and hence it suffices to establish (5.8)
for x > 0 only. Changing the variables, we get

Φ̂(x) =
∫

R

1
(1 + y2)n

e−ixy dy = x2n−1

∫
R

eiy

(x2 + y2)n
dy. (5.9)

Let

f(z) :=
eiz

(x2 + z2)n
=

eiz

(z − ix)n(z + ix)n
.

Fix x > 0 and for R > x, let γ = γR be the curve consisting of the segment [−R,R] on the real
line and the arch of the circle |z| = R in the upper half plane. By the Residue Theorem,

1
2πi

∫
γ

f(z) dz = Res(f ; ix),

where Res(f ; ix) is the residue of f at ix given by

Res(f ; ix) =
1

(n− 1)!
lim

z→ix

dn−1

dzn−1
(z − ix)nf(z)

=
1

(n− 1)!
lim

z→ix

dn−1

dzn−1

(
eiz

(z + ix)n

)
.

Using Leibniz’s formula, there exist constants aν ∈ C, ν = 0, . . . , n− 1 such that

Res(f ; ix) = e−x
n−1∑
ν=0

aνx
−n−ν . (5.10)

Writing ∫
γ

f(z) dz =
∫R

−R

eiy

(x2 + y2)n
dy +

∫π

0

eiReit

iReit

(x2 +R2e2it)n
dt,

we observe that the second integral above tends to zero as R→ ∞ and letting R→ ∞ we
arrive at ∫

R

eiy

(x2 + y2)n
dy = 2πiRes(f ; ix). (5.11)

Finally, putting together (5.9)–(5.11) we get

Φ̂(x) = e−x
n−1∑
ν=0

cνx
ν ,

for some constants c0, . . . , cn−1 ∈ C, which completes the proof.

Lemma 5.5. Let P ∈ Pn−1, n ∈ N and a ∈ C. Then there exist constants b0, . . . , bn−1 ∈ C

such that ∑
m�0

P (m)
(z
a

)m

=
n−1∑
ν=0

bν

(
a

a− z

)ν+1

, |z| < |a|. (5.12)
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Proof. Put pν(x) := ((x+ 1) · · · (x+ ν))/ν! for ν � 1 and p0(x) := 1. Clearly, the polynomi-
als p0, . . . , pn−1 are linearly independent and pν(m) = ( m+ν

ν ). Therefore, there exist coefficients
bν ∈ C, ν = 0, . . . , n− 1 such that

P (m) =
n−1∑
ν=0

bν

(
m+ ν

ν

)
, m ∈ Z. (5.13)

On the other hand, the identity (1/(a− z))(ν) = ν!/(a− z)ν+1 implies that for |z| < |a|,
aν+1

(a− z)ν+1
=
aν

ν!

∑
n�0

(
zn

an

)(ν)

=
∑
n�ν

(
n

ν

)(z
a

)n−ν

=
∑
m�0

(
m+ ν

ν

)(z
a

)m

.

Using this and (5.13), we obtain

∑
m�0

P (m)
(z
a

)m

=
n−1∑
ν=0

bν
∑
m�0

(
m+ ν

ν

)(z
a

)m

=
n−1∑
ν=0

bν

(
a

a− z

)ν+1

,

which confirms (5.12).

We are now prepared to show that the new system R = {RQ : Q ∈ Q} (defined in (5.5))
consists of rational functions of uniformly bounded degrees.

Proposition 5.6. Each element RQ of the new system R extends to a rational function
from R2nK(D).

Proof. Let Q = Qjk ∈ Qj (0 � k < 2j−1, j � 0). From the definition of RQ in (5.4), we infer
that RQ can be extended in D as

RQ(z) = Hj,k(z) +Hj,k∗(z),

where
Hj,k(z) = 2−j/2

∑
m�0

θ̂(2πm2−j) e−2πimk2−j

zm, |z| < 1 (5.14)

and k∗ := 2j − k − 1. Observe that from the decay of θ̂, it follows that the last series above
converges absolutely for |z| = 1. Thus, it suffices to show Hj,k(z) ∈ RnK if 0 � k < 2j .

Since θ ∈ ΘK , then θ is of the form θ(x) =
∑K

ν=1 cνΦ(αx+ βν) with α > 0 and cν , βν ∈ R.
Applying the Fourier transform and Lemma 5.4, we get

θ̂(ξ) = α−1Φ̂(ξ/α)
K∑

ν=1

cν e
i(βν/α)ξ = α−1 e−|ξ|/αP (|ξ|/α)

K∑
ν=1

cν e
i(βν/α)ξ, (5.15)

where P ∈ Pn−1, and hence

Hj,k(z) = 2−j/2
∑
m�0

α−1 e−2πm2−jα−1
P (2πm2−jα−1)

K∑
ν=1

cν e
i2πm2−j(βν/α−k)zm

= 2−j/2
K∑

ν=1

cν
α

∑
m�0

P (2πm2−jα−1)
(

z

exp{2π2−jα−1 − i2π2−j(βν/α− k)}
)m

.

We set aν := exp{2π2−jα−1 − i2π2−j(βν/α− k)} and apply Lemma 5.5 to obtain

Hj,k(z) = 2−j/2
K∑

ν=1

α−1cν
∑
m�0

P (2πm2−jα−1)
(
z

aν

)m

=
K∑

ν=1

n−1∑
r=0

γrcν

(
aν

aν − z

)r+1

,
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for some γ0, . . . , γn−1 ∈ C. Observe that |aν | > 1. Therefore, Hj,k ∈ RnK(D), which completes
the proof.

5.4. Almost-diagonal operators

For the proof of Theorem 5.2, we need to study the boundedness of almost-diagonal operators
on the sequence spaces bspq := bspq(Q) and fs

pq := fs
pq(Q).

Definition 5.7. Let A be a linear operator acting on bspq or fs
pq with associated matrix

(aQP )Q,P∈Q. We say that A is almost diagonal if there exists δ > 0 such that

sup
Q,P∈Q

|aQP |
ωδ(Q,P )

<∞,

where for Q ∈ Qj and P ∈ Qi, i, j � −1,

ωδ(Q,P ) := 2(i−j)s min{2(i−j)(1+δ)/2, 2(j−i)(J+δ/2−1/2)}
×
(

1
(1 + 2min{i,j}|xQ − xP |)J+δ

+
1

(1 + 2min{i,j}|xQ − xP∗ |)J+δ

)
, (5.16)

with J := 1/min{1, p} for bspq and J := 1/min{1, p, q} for fs
pq.

Note that above we use our earlier convention |x− y| := minn∈Z |x− y + n|.
We claim that almost-diagonal operators are bounded on bspq and fs

pq. More precisely, with
the notation

‖A‖δ := sup
Q,P∈Q

|aQP |
ωδ(Q,P )

, (5.17)

the following result holds.

Proposition 5.8. Suppose s ∈ R, 0 < q � ∞, and 0 < p <∞ (0 < p � ∞ in the case of
b-spaces) and assume ‖A‖δ <∞ for some δ > 0. Then there exists a constant c > 0 such that
for any sequence h := {hQ}Q∈Q ∈ bspq,

‖Ah‖bs
pq

� c‖A‖δ‖h‖bs
pq
, (5.18)

and for any h := {hQ}Q∈Q ∈ fs
pq,

‖Ah‖fs
pq

� c‖A‖δ‖h‖fs
pq
. (5.19)

The proof of this proposition is quite similar to the proof of [4, Theorem 3.3]. We omit it.

5.5. Estimation of inner products

Our next step is to estimate the decay of |〈RQ, GP 〉| and |〈GQ −RQ, GP 〉| away from the main
diagonal. To this end, we need some preparation.

Lemma 5.9. Let h ∈ C2(R) satisfy the following conditions for some N > 1 and M >
N + 1: ∫

R

xrh(x) dx = 0, 0 � r � N, (5.20)

|h(r)(x)| � A(1 + |x|)−M , r = 0, 1, 2. (5.21)
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If

g(x) =
∑
ν�0

ĥ(2πνn−1) e2πiνx, n � 1,

then

|g(x)| � cAn(1 + n|x|)−N , |x| � 1
2 . (5.22)

Proof. Formally,

ξmĥ(r)(ξ) = (−i)mir
∫

R

(xrh(x))(m) e−iξx dx,

and hence, using (5.21) and the assumption M > N + 1, we get

|ξ|2|ĥ(r)(ξ)| �
∫

R

|(xrh(x))′′| dx � cA for 0 � r � N,

which implies

|ĥ(r)(ξ)| � cA(1 + |ξ|)−2, ξ ∈ R, 0 � r � N.

On the other hand, by (5.20) we have ĥ(r)(0) = 0 for 0 � r � N .
Let f := (ĥ(·)1[0,∞))∨, that is, f(x) =

∫∞
0
ĥ(ξ)eiξxdξ. Using the above, we infer

|x|N |f(x)| =
∣∣∣∣
∫∞

0

ĥ(N)(ξ) eiξx dξ

∣∣∣∣ �
∫∞

0

|ĥ(N)(ξ)| dξ � cA,

and hence

|f(x)| � cA(1 + |x|)−N , x ∈ R. (5.23)

Poisson’s summation formula ∑
ν∈Z

f(x+ ν) =
∑
ν∈Z

f̂(2πν) e2πiνx, (5.24)

applied to f(n·) (observe that f̂(n·) = n−1f̂(·/n)) yields

g(x) =
∑
ν�0

ĥ(2πνn−1) e2πiνx = n
∑
ν∈Z

f(n(x+ ν)).

This coupled with (5.23) gives, for |x| � 1
2 ,

|g(x)| � cnA
∑
ν∈Z

(1 + n|x+ ν|)−N � cnA(1 + n|x|)−N
∑
ν�1

ν−N � cnA(1 + n|x|)−N ,

which completes the proof.

In the following, for a given function g on R we set gj(x) := 2jg(2jx) for j ∈ Z. Observe that
(gj)∧(ξ) = ĝ(ξ2−j).

Lemma 5.10. Suppose that the functions g ∈ CN (R) and h ∈ C(R) satisfy the conditions

|g(r)(x)| � A1(1 + |x|)−M1 , 0 � r � N, |h(x)| � A2(1 + |x|)−M2

and ∫
R

xrh(x) dt = 0 for 0 � r � N − 1,
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where N � 1, M2 � M1, M2 > N + 1, and A1, A2 > 0. Then for k � j (j, k ∈ Z),

|gj ∗ hk(x)| � cA1A22−(k−j)N2j(1 + 2j |x|)−M1 ,

where c > 0 depends only on M1, M2, and N .

The proof of this lemma is essentially the same as the proof of [4, Lemma B.1]. The only
difference is in the normalization of the functions. We omit the proof.

To give our main assertion here, we introduce the following notation: given f, h ∈ L1(R) we
write for Q = Qj,k ∈ Qj and P = Pm,l ∈ Qm,

FQ(x) := 2−j/2
∑
ν�0

f̂(2πν2−j)(e2πiν(x−k2−j) + e2πiν(x−k∗2−j)),

HP (x) := 2−m/2
∑
ν�0

ĥ(2πν2−m)(e2πiν(x−l2−m) + e2πiν(x−l∗2−m)).
(5.25)

Proposition 5.11. Suppose that f, h ∈ CN+2(R), N � 2 satisfy the conditions

|f (r)(x)| � A1(1 + |x|)−M and |h(r)(x)| � A2(1 + |x|)−M , (5.26)

for 0 � r � N + 2, where M > N + 1 and∫
R

xrf(x) dx =
∫

R

xrh(x) dx = 0, 0 � r � N − 1. (5.27)

Then for Q = Qj,k ∈ Qj and P = Pm,l ∈ Qm,

|〈FQ,HP 〉| � cA1A22−|j−m|(N+1/2)

× [(1 + 2min{j,m}|xQ − xP |)−N + (1 + 2min{j,m}|xQ − xP∗ |)−N ], (5.28)

where c > 0 depends only on N and M .

Proof. From the definition of FQ,HP in (5.25), we get

〈FQ,HP 〉 = 2−(j+m)/2
∞∑

ν=0

f̂

(
2πν
2j

)
ĥ

(
2πν
2m

)
e2πiν(xP −xQ)

+ 2−(j+m)/2
∞∑

ν=0

f̂

(
2πν
2j

)
ĥ

(
2πν
2m

)
e2πiν(xP∗−xQ)

+ 2−(j+m)/2
∞∑

ν=0

f̂

(
2πν
2j

)
ĥ

(
2πν
2m

)
e2πiν(xP −xQ∗ )

+ 2−(j+m)/2
∞∑

ν=0

f̂

(
2πν
2j

)
ĥ

(
2πν
2m

)
e2πiν(xP∗−xQ∗ )

=: β1 + β2 + β3 + β4.

Assume m � j. It is readily seen that

f̂

(
2πν
2j

)
ĥ

(
2πν
2m

)
= (fj ∗ h̃m)∧(2πν) = (f ∗ h̃m−j)∧

(
2πν
2j

)
,

where h̃(x) := h(−x). On the other hand, evidently

(f ∗ h̃m−j)(r)(x) = (f (r) ∗ h̃m−j)(x).
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By (5.26), we have

|f (r+s)(x)| � A1(1 + |x|)−M , 0 � s � N, 0 � r � 2 and |h̃(x)| � A2(1 + |x|)−M .

Also, by (5.27) it follows that
∫

R
xsh̃(x) dx = 0, 0 � s � N − 1. We apply Lemma 5.10 to f (r)

and h̃ to obtain

|(f ∗ h̃m−j)(r)(x)| = |(f (r) ∗ h̃m−j)(x)| � c2−(m−j)N (1 + |x|)−M , 0 � r � 2.

On the other hand, by (5.27) it follows that∫
R

xs(f ∗ h̃m−j)(r)(x) dx = 0, 0 � r � 2, 0 � s � 2(N − 1), (2(N − 1) � N).

Using the above, we apply Lemma 5.9 to f ∗ h̃m−j and infer

β1 � c2−(j+m)/22−(m−j)N2j(1 + 2j |xP − xQ|)−N

= c2−(m−j)(N+1/2)(1 + 2j |xQ − xP |)−N .

Exactly in the same way, we get similar estimates for β2, β3, β4, where xQ − xP is replaced
by xQ − xP∗ , xQ∗ − xP , and xQ∗ − xP∗ , respectively. These estimates imply (5.28) taking into
account that 2j |xP − xQ| ∼ 2j |xP∗ − xQ∗ | and 2j |xP∗ − xQ| ∼ 2j |xP − xQ∗ |.

5.6. Proof of Theorem 5.2

Let
A := (aQP )Q,P∈Q, aQ,P := 〈RQ, GP 〉, (5.29)

and D = I − A, that is,

D := (dQP )Q,P∈Q, dQP := 〈GQ −RQ, GP 〉. (5.30)

Obviously, Theorem 5.2 will follow by Theorem 4.4, applied with H := H2(T), L := Bs
pq and

�(Q) := bspq(Q) (or L := F s
pq and �(Q) := fs

pq(Q)), and Ψ := G, Meyer’s biorthogonal basis from
(3.8) and Theorem 3.3, if we prove that the matrices A,A−1 above are bounded on H2(T) and
AT , (A−1)T are bounded on bspq (or fs

pq).
To establish the boundedness of A,AT , it is sufficient to show that A is almost diagonal on

bspq(f
s
pq), while for the boundedness of A−1, (A−1)T it is sufficient to prove ‖D‖bs

pq→bs
pq
< 1 (or

‖D‖fs
pq→fs

pq
< 1). However, by Proposition 5.8, ‖D‖bs

pq→bs
pq

� c‖D‖δ, and hence it suffices to
prove that there exists δ > 0 such that for any sufficiently small ε > 0,

‖D‖δ < ε, (5.31)

and similarly for fs
pq. We shall only prove (5.31); the proof of the estimates ‖A‖δ, ‖AT ‖δ <∞

is very similar and will be omitted.
By the definition of the systems {GQ} and {RQ} in (3.8) and (5.5), we have forQ = Qjk ∈ Qj

(j � 0),

GQ(x) −RQ(x) = 2−j/2
∑
ν�0

(ψ − θ)∧(2νπ2−j)(e2νπi(x−k2−j) + e2νπi(x−k∗2−j)),

GQ(x) = 2−j/2
∑
ν�0

ψ̂(2νπ2−j)(e2νπi(x−k2−j) + e2νπi(x−k∗2−j)),

and from the construction of θ in Proposition 5.1 and from (3.2),

|(ψ − θ)(r)(x)| � ε(1 + |x|)−M , |ψ(r)(x)| � c(1 + |x|)−M , 0 � r � N + 2,
∫

R

xrθ(x) dx = 0,
∫

R

xrψ(x) dx = 0, 0 � r � N − 1,
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where M > N + 1 and N > max{s,J ,J − s− 1}. Now, applying Proposition 5.11 we obtain
for Q ∈ Qj , P ∈ Qi, i, j � 0,

|〈GQ −RQ, GP 〉| � cεmin{2(j−i), 2(i−j)}N+1/2 × ((1 + 2min{i,j}|xQ − xP |)−N

+ (1 + 2min{i,j}|xQ − xP∗ |)−N ). (5.32)

It is easy to see that this estimate also holds whenever i = −1 or j = −1. Therefore, there
exists δ > 0 such that ‖D‖δ < cε. However, ε is independent of c,N,M , and hence cε can be
replaced by ε, that is, (5.31) holds.

5.7. Localization and norms of the basis elements {RQ}
The following result will be instrumental in the next section.

Proposition 5.12. For any Q ∈ Q, we have

|RQ(x)| � c�(Q)−1/2

((
1 +

|x− xQ|
�(Q)

)−N

+
(

1 +
|x− xQ∗ |
�(Q)

)−N
)
, (5.33)

and if ε > 0 in the definition of RQ is sufficiently small, then

‖RQ‖Lp ∼ �(Q)−1/2+1/p for 1/N < p � ∞. (5.34)

Proof. Estimate (5.33) is immediate from the definition of RQ in (5.4) and Lemma 5.9.
From (5.33), it readily follows that ‖RQ‖Lp � c�(Q)−1/2+1/p if p > 1/N . The estimate in the

other direction is more subtle. Exactly as in the proof of (5.32) using Proposition 5.11, we get
‖GQ −RQ‖L2 � cε. On the other hand, ‖GQ‖L2 = 1. Therefore, choosing ε > 0 so that cε � 1

2 ,
we obtain 1

2 � ‖RQ‖L2 � 3
2 . This and (5.33) imply (5.34) in general. Indeed, if 1/N < p < 2,

then
1
4 � ‖RQ‖2

L2 � ‖RQ‖p
Lp‖RQ‖2−p

L∞ � c‖RQ‖p
Lp�(Q)−1+p/2,

and hence ‖RQ‖Lp � c�(Q)−1/2+1/p. If 2 < p <∞, then we apply Hölder’s inequality to obtain
1
4

�
∫

T

|RQ(x)|2 dx � ‖RQ‖Lp‖RQ‖Lp′ � c‖RQ‖Lp�(Q)−1/2+1/p′
,

which leads again to ‖RQ‖Lp � c�(Q)−1/2+1/p. For p = ∞, this estimate is immediate from
‖RQ‖L2 � 1

2 .

6. Rational approximation in the Hardy spaces Hp on the disc

Here, we use the development of a rational basis from the previous section to give another proof
of the direct estimate of Pekarskii [16] for rational approximation in Hp(D). Given f ∈ Hp,
we denote by ρn(f,Hp) the best approximation of f from the class Rn(D) of rational functions
of degree at most n on D, that is,

ρn(f,Hp) := inf
g∈Rn(D)

‖f − g‖Hp .

Pekarskii’s result involves the Besov space Bs
τ := Bs

ττ , s > 0, 1/τ := s+ 1/p, 0 < p <∞ of
holomorphic functions in D.

Theorem 6.1 (Pekarskii [16]). For any f ∈ Bs
τ ,

ρn(f,Hp) � cn−s‖f‖Bs
τ
, n � 1, (6.1)

where the constant c > 0 depends only on s and p.



458 G. KYRIAZIS AND P. PETRUSHEV

This result coupled with the companion Bernstein estimate from [15] enabled Pekarskii to
give a complete characterization of the rates of rational approximation (approximation spaces)
in the Hp spaces; see [14] for a comprehensive discussion of these results.

To prove estimate (6.1), we shall consider the n-term approximation in Hp from the rational
basis R := {RQ : Q ∈ Q} we constructed in § 5.1. More precisely, we shall use {RQ} to denote
both the basis functions introduced in (5.4) and (5.5) and their analytic extensions to D that
are rational functions with poles outside D as shown in § 5.3. As such, we have ‖RQ‖Hp(D) =
‖RQ‖Lp , where on the right we have the Lp-norm of RQ on T. We hope this slight abuse of
notation will not create problems.

Let Σn be the nonlinear set of all functions g of the form

g =
∑

Q∈Λn

aQRQ,

where Λn ⊂ Q, #Λn � n, and Λn may vary with g. Denote by σn(f)p the error of best Hp-
approximation to f ∈ Hp from Σn, that is,

σn(f,Hp) := inf
g∈Σn

‖f − g‖Hp .

The approximation will take place in Hp(D), 1/N < p <∞, where N is the main parameter
of the basis R, see Theorem 5.2; N can be selected arbitrarily large.

Under this assumption, from (5.7) in Theorem 5.2 and (5.34) one obtains easily the following
representation of the norm in Bs

τ :

‖f‖Bs
τ
∼
⎛
⎝∑

Q∈Q
‖〈f, R̃Q〉RQ‖τ

Hp

⎞
⎠

1/τ

. (6.2)

We now give the main result of this section.

Theorem 6.2. If f ∈ Bs
τ , then

σn(f,Hp) � cn−s‖f‖Bs
τ
, n � 1, (6.3)

where c depends only on s, p, and the parameters of R.

Remark 6.3. Observe that by Theorem 5.2, RQ ∈ RK(D) for all Q ∈ Q with some K =
const. Therefore, Σn ⊂ RKn(D) and hence ρn(f,Hp) � σKn(f,Hp). Consequently, estimate
(6.3) implies Pekarskii’s estimate (6.1).

The proof of Theorem 6.2 relies on the following lemma.

Lemma 6.4. Let F =
∑

Q∈Ωn
aQRQ, where Ωn ⊂ Q and #Ωn � n. Suppose ‖aQRQ‖Hp �

A for Q ∈ Ωn, where 0 < p <∞. Then ‖F‖Hp � cAn1/p.

Proof. Let 1 < p <∞; the case when 0 < p � 1 is trivial. For the rest of the proof, we
shall work as before with the norms on T rather than on D. By (5.34) and the assumption
‖aQRQ‖Lp � A, we get |aQ| � cA�(Q)1/2−1/p for Q ∈ Qj . Choose t so that 1/N < t < 1. Then
using (2.12) and (5.33) we infer

|RQ(x)| � cMt(�(Q)−1/21Q)(x) + cMt(�(Q∗)−1/21Q∗)(x), Q ∈ Qj ,
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and hence, using the maximal inequality (2.11),

‖F‖Lp � c

∥∥∥∥∥∥
∑

Q∈Ωn

Mt(|aQ|�(Q)−1/21Q)

∥∥∥∥∥∥
Lp

+ c

∥∥∥∥∥∥
∑

Q∈Ωn

Mt(|aQ|�(Q∗)−1/21∗
Q)

∥∥∥∥∥∥
Lp

� c

∥∥∥∥∥∥
∑

Q∈Ωn

|aQ|�(Q)−1/21Q

∥∥∥∥∥∥
Lp

+ c

∥∥∥∥∥∥
∑

Q∈Ωn

|aQ|�(Q∗)−1/21∗
Q

∥∥∥∥∥∥
Lp

� cA

∥∥∥∥∥∥
∑

Q∈Ωn

�(Q)−1/p1Q

∥∥∥∥∥∥
Lp

.

Let E :=
⋃

Q∈Ωn
Q and ω(x) := min{�(Q) : Q ∈ Ωn, x ∈ Q} for x ∈ E. Clearly, for x ∈ Q, Q ∈

Ωn, we have ∑
P :x∈P,Q⊂P

(�(P )/�(Q))1/p �
∑
ν�0

2−ν/p = c1 <∞.

Therefore, ∑
Q∈Ωn

�(Q)−1/p1Q(x) � c1ω(x)−1/p, x ∈ E,

which implies

‖F‖Lp � cA‖ω(·)−1/p‖Lp = cA

(∫
E

ω(x)−1dx

)1/p

� cA

⎛
⎝ ∑

Q∈Ωn

�(Q)−1

∫
E

1Q(x) dx

⎞
⎠

1/p

� cA(#Ωn)1/p � cAn1/p.

One carries out the proof Theorem 6.2 precisely as the proof of [11, Theorem 6.2], using
(6.2) and Lemma 6.4. We omit the details.
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