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Abstract

We introduce a new method for constructing frames for general distribution spaces and employ it to the
construction of frames for Triebel–Lizorkin and Besov spaces on the sphere. Conceptually, our scheme
allows the freedom to prescribe the nature, form or some properties of the constructed frame elements. For
instance, our frame elements on the sphere consist of smooth functions supported on small shrinking caps.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Bases and frames are a workhorse in Harmonic analysis in making various spaces of functions
and distributions more accessible for study and utilization. Wavelets [18] are one of the most
striking example of bases playing a pivotal role in Theoretical and Computational Harmonic
analysis. The ϕ-transform of Frazier and Jawerth [6–8] is an example of frames which have had
a significant impact in Harmonic analysis. Orthogonal expansions were recently used for the
development of frames of a similar nature in non-standard settings such as on the sphere [19,20],
interval [15,23] and ball [16,24] with weights, and in the context of Hermite [25] and Laguerre
[12] expansions.
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Our aim is to construct bases and frames with prescribed nature or form for different spaces of
distributions by using a particular “small perturbation argument” method. Here we only present
our scheme in the case of frames. The somewhat simpler version of our method for construction
of bases with some meaningful applications will be reported elsewhere.

To describe the idea of our construction of bases and frames, assume that H is a separable
Hilbert space of functions (e.g. some L2-space) and

S ⊂ H ⊂ S ′,

where S is a linear space of test functions and S ′ is the associated space of distributions. Suppose

L ⊂ S ′

is a quasi-Banach space of distributions with associated sequence space �(X ) which is a quasi-
Banach space as well. Targeted spaces L are the Triebel–Lizorkin and Besov spaces on the unit
sphere S

n in R
n+1, on the unit ball or cube in R

n with weights as well as Triebel–Lizorkin and
Besov spaces in the context of Hermite and Laguerre expansions.

We assume that there is a basis or frame Ψ = {ψξ }ξ∈X in H which allows to characterize L

in terms of �(X ). The central idea of our method is to construct a new system Θ = {θξ }ξ∈X ⊂ H

which approximates Ψ sufficiently well in a specific sense, while at the same time the nature,
form or some specific properties of the elements {θξ } can be prescribed in advance. To make this
scheme work we rely on two basic principles: Localization and Approximation. The measure of
localization is in terms of the size of the various inner products of the form 〈ψξ ,ψη〉, 〈θη,ψξ 〉,
〈ψξ , θη〉, more precisely, in terms of boundedness of the respective operators on �2(X ) and �(X ).
The measure of approximation is in terms of the size of the inner products of the form 〈ψη,

ψξ − θξ 〉, 〈ψη − θη,ψξ 〉. In fact, the critical step is to construct {θξ } so that the operators with
matrices

(〈ψη,ψξ − θξ 〉
)
ξ,η∈X and

(〈ψη − θη,ψξ 〉
)
ξ,η∈X

have sufficiently small norms on �2(X ) and �(X ). The good localization and approximation
properties of the new system Θ will guarantee that it is a basis or frame for the distribution
spaces of interest.

The goal of this paper is two-fold: First, to develop our “small perturbation argument” method
for construction of frames in a general setup of distribution spaces, and second, to apply these
results for developing new frames for specific spaces of distributions. Choosing from various
possible applications, we consider one key example that best demonstrates the versatility of our
general scheme. Building upon the recently developed needlet frame on the sphere [20] we shall
construct a new frame for Triebel–Lizorkin and Besov spaces on the sphere with elements sup-
ported on small shrinking caps. These frames are reminiscent of compactly supported wavelets
on R

n. The situation on the sphere, however, is much more complicated than on R
n since there are

no dilation or translation operators on the sphere. Other meaningful applications of our scheme
would be to the construction of frames on the cube and ball with weights, and in the context of
Hermite and Laguerre expansions, which we shall not pursue here.

Our “small perturbation argument” method for construction of frames is related to the method
of Christensen and Heil [1] for construction of atomic decompositions. We shall explain the
similarities and differences of the two approaches in Section 2.5.
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A relevant theme is the study of the localization and self-localization of frames, initiated by
Gröchenig in [9,10] and further generalized and extended by Fornasier and Gröchenig in [5],
using Banach algebra techniques, and in [4]. Our understanding of localization is different but
related to the one in [4,5,9,10]. Our idea of using the basic principles of localization and approxi-
mation mentioned above for constructing bases and frames for spaces of distributions has its roots
in our previous developments, where bases and frames were constructed for Triebel–Lizorkin and
Besov spaces on R

n. Most of our previous results on bases and frames from [13,14,22] can now
be derived as applications of our general theory.

The rest of the paper is organized as follows: In Section 2 we develop our general method
for construction of frames for distribution spaces. In Section 3 we make an application of our
general results from Section 2 to the construction of frames for the Triebel–Lizorkin and Besov
spaces on the sphere.

Some useful notation: We shall denote |x| := (
∑

i |xi |2)1/2 for x ∈ R
n. Positive constants will

be denoted by c, c1, c2, . . . and they will be allowed to vary at every occurrence; a ∼ b will stand
for c1a � b � c2a.

2. General scheme for construction of frames

2.1. The setting

We assume that H is a separable complex Hilbert space (of functions) and S ⊂ H is a linear
subspace (of test functions) furnished with a locally convex topology induced by a sequence of
norms or semi-norms. Let S ′ be the dual of S consisting of all continuous linear functionals on S .
We also assume that H ⊂ S ′. The pairing of f ∈ S ′ and φ ∈ S will be denoted by 〈f,φ〉 := f (φ)

and we assume that it is consistent with the inner product 〈f,g〉 in H . Typical examples are:

(a) H := L2(Rn), S = S∞(Rn) is the set of all functions φ in the Schwartz class S(Rn) such
that

∫
φ(x)xα = 0 for α ∈ Z

n+, and S ′ is its dual;
(b) H := L2(Sn), S := C∞(Sn) with S

n being the unit sphere in R
n+1, and S ′ is its dual;

(c) H := L2(Bn,μ), where B is the unit ball in R
n and dμ := (1−|x|)γ−1/2 dx, S := C∞(Bn),

and S ′ is its dual;
(d) H := L2(I,μ), where I := I1 × · · · × In is a box in R

n and μ is a product Jacobi measure
on I , S := C∞(I ), and S ′ is its dual.

Our next assumption is that L ⊂ S ′ with norm ‖ · ‖L is a quasi-Banach space of distributions,
which is continuously embedded in S ′. Further, we assume that S ⊂ H ∩ L and S is dense in H

and L with respect to their respective norms.
We also assume that �(X ) with norm ‖ · ‖�(X ) is an associated to L quasi-Banach space of

complex-valued sequences with domain a countable index set X . Coupled with a frame Ψ the
sequence space �(X ) will be utilized for characterization of the space L. In addition to being a
quasi-norm we assume that ‖ · ‖�(X ) obeys the conditions:

(i) For any ξ ∈ X the projections Pξ : �(X ) �→ C defined by Pξ (h) = hξ for h = (hη) ∈ �(X )

are uniformly bounded on �(X ), i.e. |hξ | � c‖h‖�(X ) for ξ ∈ X .
(ii) For any sequence (hξ )ξ∈X ∈ �(X ) one has ‖(hξ )‖�(X ) = ‖(|hξ |)‖�(X ).

(iii) If the sequences (hξ )ξ∈X , (gξ )ξ∈X ∈ �(X ) and |hξ | � |gξ | for ξ ∈ X , then ‖(hξ )‖�(X ) �
c‖(gξ )‖�(X ).

(iv) Compactly supported sequences are dense in �(X ).



2162 G. Kyriazis, P. Petrushev / Journal of Functional Analysis 257 (2009) 2159–2187
2.2. Frames in Hilbert spaces: Background

Here we collect some basic facts from the theory of frames (cf. [2,11]). Let H with inner
product 〈·,·〉 be a separable Hilbert space. A family Ψ := {ψξ : ξ ∈ X } ⊂ H , where X is a
countable index set, is called a frame for H if there exist constants A,B > 0 such that

A‖f ‖2
H �

∑
ξ∈X

∣∣〈f,ψξ 〉
∣∣2 � B‖f ‖2

H for f ∈ H. (2.1)

It is not hard to see that the frame operator S : H �→ H defined by

Sf =
∑
ξ∈X

〈f,ψξ 〉ψξ (2.2)

is a bounded linear operator and AI � S � BI . Therefore, S is self-adjoint, S is invertible, and
B−1I � S−1 � A−1I . Also,

S−1f =
∑
ξ∈X

〈
f,S−1ψξ

〉
S−1ψξ in H. (2.3)

The family S−1Ψ := {S−1ψξ }ξ∈X is a frame for H as well. Furthermore, for every f ∈ H

f = SS−1f =
∑
ξ∈X

〈
f,S−1ψξ

〉
ψξ in H (2.4)

and

f =
∑
ξ∈X

〈f,ψξ 〉S−1ψξ in H. (2.5)

Thus Ψ and S−1Ψ provide (like Riesz bases) stable representations of all f ∈ H . However,
unlike a basis, Ψ may be redundant and (2.4) is not necessarily a unique representation of f in
terms of {ψξ }. A similar observation holds for S−1Ψ . The frame Ψ is termed a tight frame if
A = B in (2.1).

2.3. The old frame

We adhere to the setting describe in Section 2.1. We also assume that for any f ∈ H

f =
∑
ξ∈X

〈f,ψξ 〉ψξ in H and ‖f ‖H ∼ ∥∥(〈f,ψξ 〉
)∥∥

�2(X )
. (2.6)

Thus Ψ := {ψξ : ξ ∈ X } ⊂ S is a frame for H .
More importantly, we assume also that Ψ is a frame for L in the following sense:
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A1. For any f ∈ L

f =
∑
ξ∈X

〈f,ψξ 〉ψξ in L. (2.7)

A2. For any f ∈ L, (〈f,ψξ 〉)ξ ∈ �(X ), and

c1‖f ‖L �
∥∥(〈f,ψξ 〉

)∥∥
�(X )

� c2‖f ‖L. (2.8)

Our aim is by using the idea of “small perturbation argument” to construct a new system
Θ := {θξ : ξ ∈ X } ⊂ S with some prescribed features, which is a frame for L in the following
sense:

Definition 2.1. We say that Θ := {θξ : ξ ∈ X } ⊂ H is a frame for the space L with associated
sequence space �(X ) if the following conditions are obeyed:

B1. There exist constants c1, c2 > 0 such that

c1‖f ‖L �
∥∥(〈f, θξ 〉

)∥∥
�(X )

� c2‖f ‖L for f ∈ L, (2.9)

where 〈f, θξ 〉 is defined by 〈f, θξ 〉 := ∑
η∈X 〈f,ψη〉〈ψη, θξ 〉.

B2. The operator S : L �→ L defined by

Sf =
∑
ξ∈X

〈f, θξ 〉θξ

is bounded and invertible on L; S−1 is also bounded on L and

S−1f =
∑
ξ∈X

〈
f,S−1θξ

〉
S−1θξ in L.

B3. There exist constants c3, c4 > 0 such that

c3‖f ‖L �
∥∥(〈

f,S−1θξ

〉)∥∥
�(X )

� c4‖f ‖L for f ∈ L, (2.10)

where as above by definition 〈f,S−1θξ 〉 := ∑
η∈X 〈f,ψη〉〈ψη,S

−1θξ 〉.
B4. For any f ∈ L

f =
∑
ξ∈X

〈
f,S−1θξ

〉
θξ =

∑
ξ∈X

〈f, θξ 〉S−1θξ in L. (2.11)

Remark 2.2. Above and throughout the rest of this section when we write “in H ” or “in L” it
means that the convergence of the respective series is unconditional in H or in L. For uncondi-
tional convergence we refer the reader to [17].

Observe that if L is a Hilbert space then properties B2–B4 are byproducts of B1 (see Sec-
tion 2.2). However, this is no longer true for more general spaces.
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2.4. Construction of a new frame

The key of our method for constructing a new frame Θ := {θξ : ξ ∈ X } for L (as described
above) is to build {θξ } with appropriate localization and approximation properties with respect to
the given tight frame Ψ . The localization of Θ will be measured in terms of the size of the inner
products 〈ψξ ,ψη〉, 〈θη,ψξ 〉, 〈ψξ , θη〉. More precisely, we construct {θξ } so that the operators
with matrices

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη,ψξ 〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη,ψξ 〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ 〉, (2.12)

are bounded on �2(X ) and �(X ). Notice that C = B∗ the adjoint of B. The approximation prop-
erty of Θ will be measured in terms of the size of the inner products 〈ψη,ψξ −θξ 〉, 〈ψη −θη,ψξ 〉.
Namely, we construct {θξ } so that the operators with matrices

D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη,ψξ − θξ 〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη,ψξ 〉, (2.13)

are bounded on �2(X ) and �(X ) and, more importantly, for sufficiently small ε > 0

‖D‖�2(X )�→�2(X ) � ε, ‖E‖�2(X )�→�2(X ) � ε, (2.14)

‖D‖�(X )�→�(X ) � ε, ‖E‖�(X )�→�(X ) � ε. (2.15)

Notice that E = D∗.
Before we treat the case of general distribution spaces, we shall give sufficient conditions

which guarantee that the new system Θ is a frame for the Hilbert space H itself.

Proposition 2.3. As above, let Ψ = {ψξ }ξ∈X be a frame for the Hilbert space H such that (2.6)

holds. Suppose Θ = {θξ }ξ∈X ⊂ H is constructed so that the operators with matrices C and D
defined in (2.12)–(2.13) are bounded on �2(X ) and for a sufficiently small ε > 0

‖D‖�2(X )�→�2(X ) � ε. (2.16)

Then Θ is a frame for H , that is, there exist constants c1, c2 > 0 such that

c1‖f ‖H �
∥∥(〈f, θξ 〉

)
ξ

∥∥
�2(X )

� c2‖f ‖H , f ∈ H. (2.17)

Proof. Note that f = ∑
η∈X 〈f,ψη〉ψη for f ∈ H and hence

∥∥(〈f, θξ 〉
)∥∥

�2(X )
=

∥∥∥∥
( ∑

η∈X
〈f,ψη〉〈ψη, θξ 〉

)
ξ

∥∥∥∥
�2(X )

� ‖C‖�2(X )�→�2(X )

∥∥(〈f,ψξ 〉
)∥∥

�2(X )
� c‖f ‖H . (2.18)

Thus the right-hand side estimate in (2.17) is established.
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For the proof of the left-hand side of (2.17), we have using (2.1)

‖f ‖H � c
∥∥(〈f,ψξ 〉

)∥∥
�2(X )

� c
{∥∥(〈f,ψξ − θξ 〉

)∥∥
�2(X )

+ ∥∥(〈f, θξ 〉
)∥∥

�2(X )

}
. (2.19)

Observe that

∥∥(〈f,ψξ − θξ 〉
)∥∥

�2(X )
=

∥∥∥∥
( ∑

η∈X
〈f,ψη〉〈ψη,ψξ − θξ 〉

)
ξ

∥∥∥∥
�2(X )

� ‖D‖�2(X )�→�2(X )

∥∥(〈f,ψξ 〉
)∥∥

�2(X )
� ε‖f ‖H . (2.20)

From (2.19)–(2.20) we obtain for sufficiently small ε > 0 (ε < 1/c will do)

‖f ‖H � c

1 − cε

∥∥(〈f, θξ 〉
)∥∥

�2(X )
� c

∥∥(〈f, θξ 〉
)∥∥

�2(X )
,

which confirms the left-hand side estimate in (2.17). �
We now come to the main result of this section.

Theorem 2.4. Let Ψ := {ψξ : ξ ∈ X } ⊂ S be the old frame for H and L as described in Sec-
tion 2.3. Suppose the system Θ := {θξ : ξ ∈ X } ⊂ H is constructed so that the operators with
matrices A, B, C, D, E from (2.12)–(2.13) are bounded on �(X ) and C, D are bounded on
�2(X ) as well. Then if for sufficiently small ε > 0 the matrices D, E obey (2.14)–(2.15), the
sequence Θ is a frame for L in the sense of Definition 2.1.

Most importantly, if f ∈ S ′, then f ∈ L if and only if (〈f,S−1θξ 〉) ∈ �(X ), and for f ∈ L

f =
∑
ξ∈X

〈
f,S−1θξ

〉
θξ in L and ‖f ‖L ∼ ∥∥(〈

f,S−1θξ

〉)∥∥
�(X )

. (2.21)

Proof. We first note that by Proposition 2.3 Θ is a frame for H .
We next prove that Θ obeys condition B1. From the definition of 〈f, θξ 〉 (see Definition 2.1),

the boundedness of C, and (2.8) we infer

∥∥(〈f, θξ 〉
)∥∥

�(X )
=

∥∥∥∥
( ∑

η∈X
〈f,ψη〉〈ψη, θξ 〉

)∥∥∥∥
�(X )

� ‖C‖�(X )�→�(X )

∥∥(〈f,ψξ 〉
)∥∥

�(X )
� c‖f ‖L, (2.22)

which confirms the right-hand side estimate in (2.9).
For the proof of the left-hand side of (2.9), we have by (2.8)

‖f ‖L � c
∥∥(〈f,ψξ 〉

)∥∥
�(X )

� c‖(〈f,ψξ − θξ 〉
)‖�(X ) + c

∥∥(〈f, θξ 〉
)∥∥

�(X )

and we next estimate the first term above using (2.15) and (2.8):
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∥∥(〈f,ψξ − θξ 〉
)∥∥

�(X )
=

∥∥∥∥
( ∑

η∈X
〈f,ψη〉〈ψη,ψξ − θξ 〉

)∥∥∥∥
�(X )

� ‖D‖�(X )�→�(X )

∥∥(〈f,ψξ 〉
)∥∥

�(X )
� c′ε‖f ‖L.

Substituting this above, we get

‖f ‖L � c

1 − cc′ε
∥∥(〈f, θξ 〉

)∥∥
�(X )

,

yielding the left-hand side estimate in (2.9) if ε > 0 is sufficiently small, namely, if ε < 1/cc′.
The following lemma will play a key role in the sequel.

Lemma 2.5. The operators T h := ∑
ξ∈X hξ θξ and V h := ∑

ξ∈X hξψξ are well defined and
bounded as operators from �(X ) to L.

Proof. We shall only prove the boundedness of T ; the proof of the boundedness of V is easier
and will be omitted. Let h = (hξ )ξ∈X be a compactly supported sequence of complex numbers.
Then using (2.8) and the boundedness of B, we get

‖T h‖L � c

∥∥∥∥
(〈∑

ξ∈X
hξ θξ ,ψη

〉)
η

∥∥∥∥
�(X )

= c

∥∥∥∥
( ∑

ξ∈X
hξ 〈θξ ,ψη〉

)
η

∥∥∥∥
�(X )

� c‖B‖�(X )�→�(X )‖h‖�(X ) � c‖h‖�(X ).

By condition (iv) on �(X ) compactly supported sequences are dense in �(X ) and, therefore, the
operator T can be uniquely extended to a bounded operator from �(X ) to L. Furthermore, it is
easy to show that the series

∑
ξ∈X hξψξ converges unconditionally in L. �

We now prove that Θ satisfies B2. By definition Sf = ∑
ξ∈X 〈f, θξ 〉θξ , but by (2.22) we have

(〈f, θξ 〉)ξ∈X ∈ �(X ). Therefore, by Lemma 2.5 the operator S : L → L is bounded.
The space L is a quasi-Banach space, but nevertheless it is easily seen that if ‖I −S‖L�→L < 1,

then S−1 exists and is bounded on L. In fact, S−1 can be constructed by the Neumann series,
i.e. S−1 = ∑∞

k=0(I − S)k . To prove that ‖I − S‖L�→L < 1 for sufficiently small ε, let us denote
G = (gξ,η)ξ,η∈X , where gξ,η := 〈(I − S)ψη,ψξ 〉. Then, assuming that G is bounded on �(X ),
we get

∥∥(I − S)f
∥∥

L
� c

∥∥(〈
(I − S)f,ψξ

〉)∥∥
�(X )

= c

∥∥∥∥
( ∑

η∈X
〈f,ψη〉

〈
(I − S)ψη,ψξ

〉)∥∥∥∥
�(X )

� c‖G‖�(X )�→�(X )

∥∥(〈f,ψξ 〉
)∥∥

�(X )
� c‖G‖�(X )�→�(X )‖f ‖L. (2.23)

Here for the equality we used that the operator I − S is bounded on L. We next estimate
‖G‖�(X )�→�(X ). Evidently, we have

〈Sψη,ψξ 〉 =
∑

〈ψη, θω〉〈θω,ψξ 〉 and 〈ψη,ψξ 〉 =
∑

〈ψη,ψω〉〈ψω,ψξ 〉

ω∈X ω∈X



G. Kyriazis, P. Petrushev / Journal of Functional Analysis 257 (2009) 2159–2187 2167
and hence

gξ,η = 〈ψη,ψξ 〉 − 〈Sψη,ψξ 〉
=

∑
ω∈X

〈ψη,ψω − θω〉〈ψω,ψξ 〉 +
∑
ω∈X

〈ψη, θω〉〈ψω − θω,ψξ 〉

= (AD)ξ,η + (EC)ξ,η.

Thus G = AD + EC and by the boundedness of the respective operators and (2.15)

‖G‖�(X )�→�(X ) � c
(‖A‖�(X )�→�(X )‖D‖�(X )�→�(X ) + ‖E‖�(X )�→�(X )‖C‖�(X )�→�(X )

)
� cε.

Substituting this in (2.23) we get ‖(I − S)f ‖L � c′′ε‖f ‖L and hence for sufficiently small ε we
have ‖I − S‖L�→L � c′′ε < 1 (ε < 1/c′′ will do). Then the operator S−1 exists and is bounded
on L.

For the rest of the proof of the theorem we need the following lemma:

Lemma 2.6. The operators with matrices

H := (〈
ψη,S

−1θξ

〉)
ξ,η∈X , H∗ := (〈

S−1θξ ,ψη

〉)
ξ,η∈X ,

J := (〈ψη,Sψξ 〉
)
ξ,η∈X , J1 := (〈

ψη,S
−1ψξ

〉)
ξ,η∈X

are bounded on �(X ).

Proof. We shall only prove the boundedness of H and H∗; the proof of the boundedness of J
and J1 is simpler and will be omitted.

Let d = (dξ ) be a compactly supported sequence and set f := ∑
ξ∈X dξψξ . Then

(Hd)ξ =
∑
η∈X

dη

〈
ψη,S

−1θξ

〉 = ∑
η∈X

dη

〈
S−1ψη, θξ

〉 = 〈∑
η∈X

dηS
−1ψη, θξ

〉

=
〈
S−1

( ∑
η∈X

dηψη

)
, θξ

〉
= 〈

S−1f, θξ

〉 = ∑
ω∈X

〈
S−1f,ψω

〉〈ψω, θξ 〉.

Here for the second equality we used that S−1 is self-adjoint on H . Now, similarly as before we
get

‖Hd‖�(X ) � ‖C‖�(X )�→�(X )

∥∥(〈
S−1f,ψω

〉)∥∥
�(X )

� c
∥∥S−1f

∥∥
L

� c‖f ‖L � c‖d‖�(X ).

Here for the last inequality we used Lemma 2.5.
Since compactly supported sequences are dense in �(X ) then the operator H can be uniquely

extended to a bounded operator on �(X ).
The proof of the boundedness of H∗ goes along similar lines. Given a compactly supported

sequence d = (dξ ), we set g := ∑
dηψη and then
η∈X
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(H∗d)ξ =
∑
η∈X

dη

〈
S−1θξ ,ψη

〉 = ∑
η∈X

dη

〈
θξ , S

−1ψη

〉 = 〈
θξ , S

−1
( ∑

η∈X
dηψη

)〉
.

As above, using the boundedness of S−1 on L and B1, we obtain

‖H∗d‖�(X ) = ∥∥(〈
S−1g, θξ

〉)∥∥
�(X )

� c
∥∥S−1g

∥∥
L

� c‖g‖L � c‖d‖�(X ) = c‖d‖�(X ).

Here for the first and last equalities we used condition (ii) on �(X ). Now the boundedness of H∗
follows as above. �

Just as in (2.22) the boundedness on �(X ) of the operator with matrix H from Lemma 2.6
implies ∥∥(〈

f,S−1θξ

〉)∥∥
�(X )

� c‖f ‖L for f ∈ L.

Furthermore, the boundedness on �(X ) of the operator with matrix H∗ defined in Lemma 2.6
yields that the operator

Uh :=
∑
ξ∈X

hξS
−1θξ

is bounded as an operator from �(X ) to L (see the proof of Lemma 2.5). Combining these two
facts shows that the operator S−1� defined by

S−1� f :=
∑
ξ∈X

〈
f,S−1θξ

〉
S−1θξ (2.24)

is well defined and bounded on L. On the other hand, by a well known property of frames
(see (2.3)) for any f ∈ H

S−1f =
∑
ξ∈X

〈
f,S−1θξ

〉
S−1θξ . (2.25)

Since by assumption S ⊂ H is dense in L, this leads to S−1 = S−1� on L. Therefore, representa-
tion (2.25) of S−1 holds on L as well. This completes the proof of B2.

We need one more lemma.

Lemma 2.7. For any f ∈ L

〈Sf,ψξ 〉 = 〈f,Sψξ 〉 and
〈
S−1f,ψξ

〉 = 〈
f,S−1ψξ

〉
for ξ ∈ X . (2.26)

Proof. The proof relies on the fact that S and S−1 are self-adjoint operators on H and S ⊂ H ∩L

is dense in L.
We shall only prove the left-hand side identity in (2.26); the proof of the right-hand side

identity is the same. Let f ∈ L and choose a sequence fn ∈ S so that ‖f −fn‖L → 0. Using that
〈Sfn,ψξ 〉 = 〈fn,Sψξ 〉 as fn ∈ S , we get∣∣〈Sf,ψξ 〉 − 〈f,Sψξ 〉

∣∣ �
∣∣〈S(f − fn),ψξ

〉∣∣ + ∣∣〈f − fn,Sψξ 〉
∣∣. (2.27)
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By condition (i) on �(X ), (2.8), and the boundedness of S on L, it follows that∣∣〈S(f − fn),ψξ

〉∣∣ � c
∥∥(〈

S(f − fn),ψξ

〉)∥∥
�(X )

� c
∥∥S(f − fn)

∥∥
L

� c‖f − fn‖L. (2.28)

By definition 〈f − fn,Sψξ 〉 = ∑
η∈X 〈f − fn,ψη〉〈ψη,Sψξ 〉 and using again condition (i) on

�(X ) and Lemma 2.6, we get

∣∣〈f − fn,Sψξ 〉
∣∣ �

∥∥∥∥
( ∑

η∈X
〈f − fn,ψη〉〈ψη,Sψξ 〉

)∥∥∥∥
�(X )

� ‖J‖�(X )�→�(X )

∥∥(〈f − fn,ψη〉
)∥∥

�(X )
� c‖f − fn‖L.

We use this and (2.28) in (2.27) to obtain∣∣〈Sf,ψξ 〉 − 〈f,Sψξ 〉
∣∣ � c‖f − fn‖L → 0,

which implies the left-hand side identity in (2.26). �
We are now prepared to prove that Θ obeys B3-4. Given f ∈ L, by definition Sf =∑
ξ∈X 〈f, θξ 〉θξ and from f = SS−1f we arrive at

f =
∑
ξ∈X

〈
S−1f, θξ

〉
θξ =

∑
ξ∈X

〈
f,S−1θξ

〉
θξ in L, (2.29)

where we used Lemma 2.7. Thus the left-hand side identity in (2.11) holds.
Similarly f = S−1Sf and using (2.25) in L and Lemma 2.7, we get

f =
∑
ξ∈X

〈
Sf,S−1θξ

〉
S−1θξ =

∑
ξ∈X

〈
f,SS−1θξ

〉
S−1θξ =

∑
ξ∈X

〈f, θξ 〉S−1θξ ,

which gives the right-hand side identity in (2.11). Therefore, B3 holds.
Going further, we have by definition 〈f,S−1θξ 〉 := ∑

η∈X 〈f,ψη〉〈ψη,S
−1θξ 〉 and using the

boundedness of H (Lemma 2.6), we get∥∥(〈
f,S−1θξ

〉)∥∥
�(X )

� ‖H‖�(X )�→�(X )

∥∥(〈f,ψη〉
)∥∥

�(X )
� c‖f ‖L,

which confirms the validity of the right-hand side estimate in (2.10).
In the other direction, by (2.29) 〈f,ψη〉 = ∑

ξ∈X 〈f,S−1θξ 〉〈θξ ,ψη〉 and hence

‖f ‖L � c
∥∥(〈f,ψη〉

)∥∥
�(X )

= c

∥∥∥∥
( ∑

ξ∈X

〈
f,S−1θξ

〉〈θξ ,ψη〉
)

η

∥∥∥∥
�(X )

� c‖B‖�(X )�→�(X )

∥∥(〈
f,S−1θξ

〉)∥∥
�(X )

� c
∥∥(〈

f,S−1θξ

〉)∥∥
�(X )

.

Thus B3 is established.
Finally, observe that if f ∈ S ′ and (〈f,S−1θξ 〉) ∈ �(X ), then by Lemma 2.5 F :=∑
ξ∈X 〈f,S−1θξ 〉θξ ∈ L. Since g = ∑

ξ∈X 〈g,S−1θξ 〉θξ for g ∈ H and S ⊂ H ∩ L is dense
in L, then F = f . The proof of Theorem 2.4 is complete. �
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2.5. Comparison of our method with the method of Christensen and Heil

Our approach to constructing frames is related to the work of Christensen and Heil [1], where
they use perturbations of atomic decompositions to construct new atomic decompositions. To be
more specific, using our notation from above, a pair {ψξ }ξ∈X , {ψ̃ξ }ξ∈X is said to be an atomic
decomposition of the Banach space L with respect to the sequence space �(X ) if each f ∈ L has
the representation f = ∑

ξ∈X 〈f, ψ̃ξ 〉ψξ and ‖f ‖L ∼ ‖〈f, ψ̃ξ 〉‖�(X ).
The most relevant Theorem 2.3 in [1] says that if {θξ }ξ∈X is in a sense a “small” perturbation

of {ψξ }ξ∈X , then the operator Tf = ∑
ξ 〈f, ψ̃ξ 〉θξ is invertible in L and the pair {θξ }, {(T −1)∗ψ̃ξ }

is a new atomic decomposition of L.
In contrast, we have shown in Section 2.4 that the usual frame operator Sf = ∑

ξ 〈f, θξ 〉θξ is
bounded and invertible in L. This enabled us to establish, as in the Hilbert space case, that both
{θξ } and {S−1θξ } are frames in L (see Theorem 2.4), more precisely, for all f ∈ L we have f =∑

ξ∈X 〈f,S−1θξ 〉θξ = ∑
ξ∈X 〈f, θξ 〉S−1θξ and ‖f ‖L ∼ ‖(〈f, θξ 〉)‖�(X ) ∼ ‖(〈f,S−1θξ 〉)‖�(X ).

Thus, although the two approaches bear some similarities, our goal is not only to construct atomic
decompositions but rather to extend the basic elements of the frame theory in Hilbert spaces to
the case of a general quasi-Banach space L.

3. Frames with elements supported on shrinking caps on the sphere

In this section we utilize the scheme from Section 2.4 to the construction of frames for
Triebel–Lizorkin (F) and Besov (B) spaces on the unit sphere S

n in Rn+1 (n > 1) of the form
{θξ }ξ∈X , where X = ⋃∞

j=0 Xj is a multilevel index set of points on S
n and for ξ ∈ Xj the frame

element θξ is supported on a spherical cap of radius ∼ 2−j centered at ξ . The F- and B-spaces on
the sphere are introduced and explored in [20] as a natural progression of the Littlewood–Paley
theory on Sn. These spaces are also characterized in [20] via frames with elements of nearly ex-
ponential localization, called “needlets”. We next give a short account of the development in [20],
which we shall build upon.

3.1. Spaces of distribution on the sphere: Background

Denote by Hν the space of all spherical harmonics of order ν on S
n. As is well known the

kernel of the orthogonal projector onto Hν is given by

Pν(ξ · η) = ν + λ

λωn

P (λ)
ν (ξ · η), λ = λn := n − 1

2
, (3.1)

where ωn is the hypersurface area of S
n and P

(λ)
ν is the Gegenbauer polynomial of degree ν

normalized with P
(λ)
ν (1) = (

ν+2λ−1
ν

)
; ξ · η is the inner product of ξ, η ∈ S

n.
Let S := C∞(Sn) be the space of all test functions on S

n and let S ′ := S ′(Sn) be its dual, the
space of all distributions on S

n. The action of f ∈ S ′ on φ ∈ S is denoted by 〈f,φ〉 := f (φ).
For functions Φ ∈ L∞[−1,1] and f ∈ L1(Sn) the nonstandard convolution Φ ∗ f is defined

by

Φ ∗ f (ξ) :=
∫
Sn

Φ(ξ · σ)f (σ )dσ,

where the integration is over S
n, and it extends by duality from S to S ′.
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To define the Triebel–Lizorkin and Besov spaces on the sphere, one first introduces a sequence
of functions {Φj } of the form

Φ0 := P0 and Φj :=
∞∑

ν=0

â

(
ν

2j−1

)
Pν, j � 1, (3.2)

with â obeying the conditions:

â ∈ C∞[0,∞), supp â ⊂ [1/2,2], (3.3)∣∣â(t)
∣∣ > c > 0 if t ∈ [3/5,5/3]. (3.4)

Hence, Φj , j = 0,1, . . . , are band limited.

Definition 3.1. Let s ∈ R, 0 < p < ∞, and 0 < q � ∞. The Triebel–Lizorkin space F
sq
p :=

F
sq
p (Sn) is defined as the set of all f ∈ S ′ such that

‖f ‖F
sq
p

:=
∥∥∥∥∥
( ∞∑

j=0

(
2sj

∣∣Φj ∗ f (·)∣∣)q
)1/q

∥∥∥∥∥
Lp(Sn)

< ∞, (3.5)

where the �q -norm is replaced by the sup-norm if q = ∞.

We note that as in the classical case on R
n by varying the indexes s,p, q one can recover most

of the classical spaces on S
n, e.g. F 02

p = Lp(Sn) if 1 < p < ∞.

Definition 3.2. Let s ∈ R and 0 < p,q � ∞. The Besov space B
sq
p := B

sq
p (Sn), is defined as the

set of all f ∈ S ′ such that

‖f ‖B
sq
p

:=
( ∞∑

j=0

(
2sj‖Φj ∗ f ‖Lp(Sn)

)q

)1/q

< ∞ (3.6)

with the usual modification when q = ∞.

Remark. Observe that the above definitions of Triebel–Lizorkin and Besov spaces are indepen-
dent of the specific selection of â. For more details, see [20].

We refer the reader to [21] and [27] as general references for Triebel–Lizorkin and Besov
spaces.

3.2. Frame on S
n (Needlets)

In this part we slightly defer from [20]. Let â satisfy the conditions

(i) â ∈ C∞[0,∞), â � 0, supp â ⊂ [1/2,2],
(ii) â(t) > c > 0, if t ∈ [3/5,5/3],

(iii) â2(t) + â2(2t) = 1, if t ∈ [1/2,1] (3.7)
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and hence,

∞∑
j=0

â2(2−j t
) = 1, t ∈ [1,∞). (3.8)

We select j0 � −2 so that 2j0+1 � λ < 2j0+2 (λ := n−1
2 ) and define the kernels {Ψj } by Ψj0 := P0

and

Ψj :=
∞∑

ν=0

â

(
ν + λ

2j

)
Pν, j > j0. (3.9)

A Calderón type reproducing formula follows from (3.8)-(3.9): For any f ∈ S ′

f =
∞∑

j=j0

Ψj ∗ Ψj ∗ f in S ′. (3.10)

As in [20] (see also [19]) there exist a set Xj ⊂ S
n (j � j0) and weights {cξ }ξ∈Xj

such that
the cubature formula ∫

Sn

f (σ ) dσ ∼
∑
ξ∈Xj

cξ f (ξ) (3.11)

is exact for all spherical polynomials of degree � 2j+1. Here, in addition, cξ ∼ 2−jn and the
points in Xj are almost uniformly distributed, i.e. there exist constants c2 > c1 > 0 such that
Bξ (c12−j ) ∩ Bη(c12−j ) = ∅ whenever ξ �= η, ξ, η ∈ Xj , and Sn = ⋃

ξ∈Xj
Bξ (c22−j ), where

Bξ (r) := {η ∈ S
n: d(η, ξ) < r} with d(η, ξ) being the geodesic distance between η, ξ on S

n.
The j th level needlets are defined by

ψξ (x) := c
1/2
ξ Ψj (ξ · x), ξ ∈ Xj , (3.12)

and the whole needlet system by

Ψ := {ψξ }ξ∈X , where X :=
∞⋃

j=j0

Xj . (3.13)

Here equal points from different levels Xj are regarded as distinct points of the index set X .
By discretization of (3.10) using cubature formula (3.11) one arrives at the representation

formula: For any f ∈ S ′

f =
∑
ξ∈X

〈f,ψξ 〉ψξ in S ′. (3.14)

The same representation holds in Lp for functions f ∈ Lp(Sn) as well.
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The key feature of the functions ψξ , ξ ∈ X , is their superb localization: For any M > 0 there
exists a constant cM > 0 such that

∣∣ψξ (x)
∣∣ � cM

2jn/2

(1 + 2j d(ξ, x))M
, x ∈ S

n, (3.15)

where as mentioned above d(ξ, η) := arccos(ξ · η).

We next define the sequence spaces f
sq
p and b

sq
p associated to X , where for ξ ∈ Xj , Gξ

denotes the spherical cap Bξ (c22−j ), introduced above.

Definition 3.3. Let s ∈ R, 0 < p < ∞, and 0 < q � ∞. Then f
sq
p := f

sq
p (X ) is defined as the

space of all complex-valued sequences h := (hξ )ξ∈X such that

‖h‖f
sq
p

:=
∥∥∥∥
( ∑

ξ∈X

[|Gξ |−s/n−1/2|hξ |1Gξ (·)
]q)1/q∥∥∥∥

Lp

< ∞ (3.16)

with the usual modification for q = ∞. Here |Gξ | is the measure of Gξ and 1Gξ is the character-
istic function of Gξ .

Definition 3.4. Let s ∈ R, 0 < p,q � ∞. Then b
sq
p := b

sq
p (X ) is defined as the space of all

complex-valued sequences h := (hξ )ξ∈X such that

‖h‖b
sq
p

:=
( ∞∑

m=0

[
2j (s+n/2−n/p)

( ∑
ξ∈Xm

|hξ |p
)1/p]q

)1/q

< ∞ (3.17)

with the usual modification when p = ∞ or q = ∞.

Observe that f 02
2 = b02

2 = �2(X ) with equivalent norms.
The main result here asserts that Ψ is a frame for Triebel–Lizorkin and Besov spaces on the

sphere in the sense of the following theorem.

Theorem 3.5. (See [20].) Let s ∈ R and 0 < p,q < ∞.

(a) If f ∈ S ′, then f ∈ F
sq
p if and only if (〈f,ψξ 〉)ξ∈X ∈ f

sq
p . Furthermore, for any f ∈ F

sq
p

f =
∑
ξ∈X

〈f,ψξ 〉ψξ and ‖f ‖F
sq
p

∼ ∥∥(〈f,ψξ 〉
)∥∥

f
sq
p

. (3.18)

(b) If f ∈ S ′, then f ∈ B
sq
p if and only if (〈f,ψξ 〉)ξ∈X ∈ b

sq
p . Furthermore, for any f ∈ B

sq
p

f =
∑
ξ∈X

〈f,ψξ 〉ψξ and ‖f ‖B
sq
p

∼ ∥∥(〈f,ψξ 〉
)∥∥

B
sq
p

. (3.19)

The convergence in (3.18) and (3.19) is unconditional in F
sq
p and B

sq
p , respectively.



2174 G. Kyriazis, P. Petrushev / Journal of Functional Analysis 257 (2009) 2159–2187
Remark 3.6. A word of clarification is needed here. First, the result of Theorem 3.5 above is
stated and proved in [20] for a pair of dual frames {ϕξ } and {ψξ }. Here we need it in the case when
ϕξ = ψξ . Second, in [20] it is only stated that the series in (3.18)–(3.19) converge in S ′, but it is
allowed to have p = ∞ or q = ∞. It is easy to see that when p,q < ∞ the boundedness of the
operator Tψh := ∑

ξ∈X hξψξ as an operator from f
sq
p to F

sq
p or from b

sq
p to B

sq
p , proved in [20],

implies that the series in (3.18) or (3.19) converge unconditionally in F
sq
p or B

sq
p , respectively.

However, this is no longer true if p = ∞ or q = ∞ since S is not dense in F
sq
p and B

sq
p in this

case.

3.3. Construction of new frames

Our construction of frames for the Triebel–Lizorkin and Besov spaces on the sphere relies on
the general approach from Theorem 2.4.

In this section, it will be convenient to define the Fourier transform f̂ of a function f on R by
f̂ (ξ) := ∫

R
f (y)e−iξy dy.

Suppose â is the function from the definition of needlets in (3.7) and let us denote again by
â its even extension to R, i.e. â(−t) = â(t). The inverse Fourier transform a of â is then real-
valued, even, and belongs to the Schwartz class S of rapidly decaying functions on R. For given
M > 1, an integer N � 1, and ε > 0, we construct an even function b ∈ C∞(R) obeying the
following conditions:

(i) suppb ⊂ [−R,R] for some R > 0,

(ii)
∣∣a(r)(t) − b(r)(t)

∣∣ � ε
(
1 + |t |)−M for 0 � r � N + n − 1,

(iii)
∫
R

t rb(t) dt = 0 for 0 � r � N + n − 2. (3.20)

Note that the Fourier transform b̂ of b is even and belongs to S . A scheme for constructing this
sort of functions b will be given below.

Just as in the construction of needlets we shall use X = ∪∞
j=j0

Xj (see (3.13)) as an index set
as well as a set of localization points for the new elements. For each ξ ∈ Xj (j � j0) we define
the function θξ on the sphere by

θξ (x) := c
1/2
ξ

∞∑
ν=0

b̂

(
ν + λ

2j

)
Pν(ξ · x), λ := (n − 1)/2, (3.21)

and then Θ := {θξ }ξ∈X is our new system on S
n.

With the next theorems we show that for appropriately selected parameters M , N , and ε, Θ

is a frame for the F- and B-spaces with the claimed support property.
Let J := n/min{1,p, q} in the case of F-spaces and J := n/min{1,p} for B-spaces.

Theorem 3.7. Suppose s ∈ R, 0 < p,q < ∞ and let Θ := {θξ }ξ∈X be constructed as above with
b satisfying (3.20), where M > J and N > max{s, J − n − s,1}. Then for sufficiently small
ε > 0 the system Θ is a frame for the spaces L2(Sn), F

sq
p , and B

sq
p in the sense of Definition 2.1.

In particular, we have:
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(a) The operator

Sf :=
∑
ξ∈X

〈f, θξ 〉θξ , (3.22)

where 〈f, θξ 〉 := ∑
η∈X 〈f,ψη〉〈ψη, θξ 〉, is bounded and invertible on L2(Sn), F sq

p , Bsq
p , and

S−1 is also bounded on L2(Sn), F
sq
p , B

sq
p , and

S−1f =
∑
ξ∈X

〈
f,S−1θξ

〉
S−1θξ . (3.23)

(b) If f ∈ S ′, then f ∈ F
sq
p if and only if (〈f,S−1θξ 〉) ∈ f

sq
p , and for f ∈ F

sq
p

f =
∑
ξ∈X

〈
f,S−1θξ

〉
θξ and ‖f ‖F

sq
p

∼ ∥∥(〈
f,S−1θξ

〉)∥∥
f

sq
p

. (3.24)

(c) If f ∈ S ′, then f ∈ B
sq
p if and only if (〈f,S−1θξ 〉) ∈ b

sq
p , and for f ∈ B

sq
p

f =
∑
ξ∈X

〈
f,S−1θξ

〉
θξ and ‖f ‖B

sq
p

∼ ∥∥(〈
f,S−1θξ

〉)∥∥
b
sq
p

. (3.25)

The convergence in (3.22)–(3.25) is unconditional in the respective space L2, F
sq
p , or B

sq
p .

Above, (b) and (c) also hold with the roles of θξ and S−1θξ interchanged.
Moreover, for any ξ ∈ Xj , j � j0, the element θξ is supported on the spherical cap Bξ (R2−j ),

where R > 0 is the constant from (3.20).

Several remarks are in order:

(a) Atomic decompositions are available for various spaces and in particular for Triebel–
Lizorkin and Besov spaces on Rn (see [7]). Theorem 3.7 provides atomic decompositions
for Triebel–Lizorkin and Besov spaces on S

n. These atomic decompositions have the ad-
vantage that they involve atoms from a fixed sequence Θ , while in general the atoms in the
atomic decompositions may vary with the distributions.

(b) Note that the function b ∈ C∞ from our construction is not necessarily compactly supported.
As long as b satisfies conditions (ii)–(iii) in (3.20) it will induce a frame for the F- and B-
spaces on S

n. In addition to this the nature of b or b̂ can be prescribed, e.g. b or b̂ can be a
low degree rational function or a linear combination of a small number of dilations and shifts
of the Gaussian e−t2

.
(c) We would like to point out that the elements of Θ are essentially rotations and spectral dila-

tions of a single function supported on a cap on the sphere and hence bear some resemblance
with compactly supported wavelets.

We start with the construction of a function b obeying (3.20). Then we shall carry out the proof
of Theorem 3.7 in several steps. The gist of the proof will be the interplay between the spherical
harmonics and the classical Fourier transform related by the Dirichlet–Mehler representation of
Gegenbauer polynomials.
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3.4. Construction of b

A first step in constructing the frame {θξ } is the construction of a function b satisfying con-
ditions (3.20), which we give in the next theorem. As will be seen this construction allows to
prescribe the nature of b or b̂.

Theorem 3.8. For given M > 0, N � 1, and ε > 0, here exists an even real-valued function
b ∈ C∞ which satisfies conditions (3.20).

Proof. The construction of a function b with the claimed properties follows the same lines as
in the proof of Theorem 4.1 in [13]. Therefore, we shall only outline the main steps in this
construction.

We pick an even function φ ∈ C∞such that suppφ ⊂ [−1,1] and
∫

R
φ = 1. Write φk(t) :=

kφ(kt) and denote by Φk the set of all finite linear combinations of shifts of φk , i.e. functions g

of the form g(t) = ∑
j ajφk(t + bj ), where the sum is finite.

We first show that for every ε > 0 and an even (or odd) function h ∈ C∞ there exist k > 0
(sufficiently large) and an even (or odd) function g ∈ Φk such that

∣∣h(r)(t) − g(r)(t)
∣∣ � ε

(
1 + |t |)M

, t ∈ R, r = 0,1, . . . ,N0, (3.26)

where N0 := N + n − 1. Indeed, define gk := h ∗ φk . Since
∫

R
φk = 1, then

h(r)(t) − g
(r)
k (t) =

∫
R

[
h(r)(t) − h(r)(t − y)

]
φk(y) dy

and taking k sufficiently large one easily shows that

∣∣h(r)(t) − g
(r)
k (t)

∣∣ � (ε/2)
(
1 + |t |)−M

, t ∈ R, r = 0,1, . . . ,N0. (3.27)

Notice that gk is even (odd) if h is even (odd).
To discretize the approximant gk we first observe that since h ∈ S , there exists R > 0 such

that

∣∣h(r)(t)
∣∣ � ε

(
1 + |t |)−M

, |t | � R, r = 0,1, . . . ,N0. (3.28)

Now, we choose sufficiently large S > 0 so that J := SR is an integer and consider the points
tj := j−1/2

S
, j = 1, . . . , J , and tj := j+1/2

S
, j = −1, . . . ,−J . We define

g(t) := S−1
∑

−J�j�J, j �=0

h(tj )φk(t − tj ),

which can be viewed as a Riemann sum for the integral
∫ R

R
h(y)φk(t − y)dy. Notice that

gk(t) = ∫
R

h(y)φk(t − y)dy. As in the proof of Theorem 4.1 in [13], one easily shows, using
(3.27)–(3.28), that for sufficiently large S this function satisfies (3.26). In addition to this, evi-
dently g is even (odd) if h is even (odd) and g ∈ Φk .
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Our second step is to utilize the result of the first step to construct the desired function b.
Consider the shift operator Tδf (t) := f (t + δ). Then the sth centered difference is defined by
�s

δf := (Tδ − T−δ)
sf and it is easy to see that its Fourier transform satisfies (�s

δf )∧(ξ) =
(2i sin δξ)s f̂ (ξ).

We choose s := N0 and 0 < δ � 1/s, and define the function h from the identity ĥ(ξ) :=
â(ξ)

(2i sin δξ)s
. Since â(ξ) = 0 for ξ ∈ [−1/2,1/2], then ĥ ∈ S and hence h ∈ S . Further, since â is

even, then ĥ and h are even (odd) if s is even (odd). Moreover, by the construction a = �s
δh. We

now use the result of the first step to construct a function g ∈ Φk such that g satisfies (3.26) with
h from above.

After this preparation, we define b := �s
δg and claim that b has the desired properties. Indeed,

note that a(r) − b(r) = �s
δ(h

(r) − g(r)) and by (3.26) we infer∣∣a(r)(t) − b(r)(t)
∣∣ � ε2s+M

(
1 + |t |)−M

, r = 0,1, . . . ,N0. (3.29)

On the other hand∫
R

t rb(t) dt =
∫
R

t r�s
δg(t) dt = (−1)s

∫
R

g(t)�s
δt

r dt = 0, r = 0,1, . . . , s − 1.

Also, note that b := �s
δg is even if g and s are both odd or even and evidently b ∈ Φk and hence

b is compactly supported. We finally observe that since ε is independent of M and s the factor
ε2s+M in (3.29) can be replaced by ε. �
3.5. Almost diagonal matrices

To show that the new system Θ := {θξ : ξ ∈ X } is a frame for Triebel–Lizorkin and Besov
spaces we shall use Theorem 2.4 with L := F

sq
p (Sn) or B

sq
p (Sn) and �(X ) := f

sq
p (X ) or b

sq
p (X ),

respectively. Then L2(Sn) is the natural selection of an associated Hilbert space. By Theorem 2.4
it readily follows that Θ is a frame for F

sq
p (or B

sq
p ) if the operators with matrices

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη,ψξ 〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη,ψξ 〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ 〉,
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη,ψξ − θξ 〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη,ψξ 〉, (3.30)

are bounded on f
sq
p (or b

sq
p ), and ‖D‖f

sq
p �→f

sq
p

� ε, ‖E‖f
sq
p �→f

sq
p

� ε (respectively,
‖D‖b

sq
p �→b

sq
p

� ε, ‖E‖b
sq
p �→b

sq
p

� ε) for sufficiently small ε.
In analogy with the classical case on R

n (see [7]), we shall show the boundedness of the above
operators by using the machinery of the almost diagonal operators.

It will be convenient to us to denote

�(ξ) := 2−j for ξ ∈ Xj , j � j0. (3.31)

Evidently, �(ξ) is a constant multiple of the radius of the cap Gξ .
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Definition 3.9. Let A be a linear operator acting on f
sq
p (X ) or b

sq
p (X ) with associated matrix

(aξη)ξ,η∈X . We say that A is almost diagonal if there exists δ > 0 such that

sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

< ∞,

where

ωδ(ξ, η) :=
(

�(ξ)

�(η)

)s(
1 + d(ξ, η)

max{�(ξ), �(η)}
)−J −δ

× min

{(
�(ξ)

�(η)

)(n+δ)/2

,

(
�(η)

�(ξ)

)(n+δ)/2+(J −n)}
,

with J := n/min{1,p, q} for f
sq
p and J := n/min{1,p} for b

sq
p .

The almost diagonal operators are bounded on f
sq
p and b

sq
p . More precisely, with the notation

‖A‖δ := sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

(3.32)

the following result holds:

Theorem 3.10. Suppose s ∈ R, 0 < q � ∞, and 0 < p < ∞ (0 < p � ∞ in the case of b-spaces)
and let ‖A‖δ < ∞ (in the sense of Definition 3.9) for some δ > 0. Then there exists a constant
c > 0 such that for any sequence h := {hξ }ξ∈X ∈ f

sq
p

‖Ah‖f
sq
p

� c‖A‖δ‖h‖f
sq
p

, (3.33)

and for any sequence h := {hξ }ξ∈X ∈ b
sq
p

‖Ah‖b
sq
p

� c‖A‖δ‖h‖b
sq
p

. (3.34)

The proof of this theorem is quite similar to the proof of Theorem 3.3 in [7]. For completeness
we give it in Appendix A.

The above theorem indicates that to prove that Θ is a frame for F
sq
p (or B

sq
p ) it suffices to

show that the operators with matrices A, B, C, D, and E, defined in (3.30) , are almost diagonal
and

‖D‖δ � ε, ‖E‖δ � ε (3.35)

for a fixed δ > 0 and sufficiently small ε > 0.
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3.6. Representation and localization of kernels. Estimation of supp θξ

Kernels of the form

ΛN(ξ · η) :=
∑
ν�0

ĝ

(
ν + λ

N

)
Pν(ξ · η), ξ, η ∈ S

n, N � 1, (3.36)

will play an important role in the proof of Theorem 3.7. Here as everywhere else Pν and λ are
from (3.1).

Lemma 3.11. For an even function ĝ ∈ S the kernel ΛN from above has the representation

ΛN(cosα) = cn

(sinα)n−2

π∫
α

(cosα − cosϕ)λ−1KN(ϕ)dϕ, 0 � α � π, (3.37)

where

KN(α) = (π/2)N
∑
ν∈Z

(−1)ν(n−1)Rn

(
d

dα

)
g
(
N(α + 2πν)

)
(3.38)

with

Rn(z) :=
� n−1

2 �∏
r=1

(−z2 − (λ − r)2) ×
{−z sinλπ, n even,

cosλπ, n odd,
(3.39)

and cn > 0 depends only on n.

This lemma is in essence contained in [19, Proposition 3.2]. For completeness we give its
proof in Appendix A.

We next give an estimate of the localization of the kernels ΛN from (3.36) provided g and its
derivatives are well localized.

Lemma 3.12. If g ∈ Cn−1(R) is even and

∣∣g(m)(t)
∣∣ � A

(1 + |t |)M , t ∈ R, 0 � m � n − 1, (3.40)

for some constants M > 1 and A > 0, then

∣∣ΛN(cosα)
∣∣ � cANn

(1 + Nα)M
, 0 � α � π, (3.41)

where c > 0 depends only on M and n.



2180 G. Kyriazis, P. Petrushev / Journal of Functional Analysis 257 (2009) 2159–2187
Proof. We use (3.40) and that Rn(z) from (3.39) is a polynomial of degree n − 1 to obtain

∣∣KN(α)
∣∣ � cAN

∑
ν∈Z

Nn−1

(1 + N |α + 2πν|)M � cANn

(1 + Nα)M
.

Now, precisely as in [19, §3.4] one shows that the above estimate used in (3.37) yields (3.41).
We skip the details. �
Lemma 3.13. For every ξ ∈ Xj , j � j0, θξ is supported on the spherical cap of radius R2−j

centered at ξ , where R is from (3.20)(i).

Proof. Let ξ ∈ Xj , j � j0. Then by the definition of θξ in (3.21) along with Lemma 3.11, we
have

θξ (x) = cn

(sinφ)n−2

π∫
φ

(cosφ − cosϕ)λ−1Kj(ϕ)dϕ, ξ · x =: cosφ, (3.42)

where

Kj(ϕ) := (π/2)c
1/2
ξ 2j

∑
ν∈Z

(−1)ν(n−1)Rn(
d

dϕ
)b

(
2j (ϕ + 2πν)

)
.

By construction suppb ⊂ [−R,R] and, hence, suppKj ⊂ [−R2−j ,R2−j ] whenever R2−j < π .
This and (3.42) apparently lead to supp θξ ⊂ Bξ (R2−j ). The case when R2−j � π is trivial. �
3.7. Estimation of inner products

We shall need an estimate on the localization of the convolution of two well localized func-
tions. In the following, for a given function g on R we denote gj (t) := 2j g(2j t).

Lemma 3.14. Suppose the functions g ∈ CN(R) and h ∈ C(R) satisfy the conditions:

∣∣g(r)(t)
∣∣ � A1

(1 + |t |)M1
, 0 � r � N,

∣∣h(t)
∣∣ � A2

(1 + |t |)M2
,

and ∫
R

t rh(t) dt = 0 for 0 � r � N − 1,

where N � 1, M2 � M1, M2 > N + 1, and A1,A2 > 0. Then for k � j

∣∣gj ∗ hk(t)
∣∣ � cA1A22−(k−j)N 2j

(1 + 2j |t |)M1
,

where c > 0 depends only on M1, M2, and N .
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The proof of this lemma is almost identical to the proof of Lemma B.1 in [7] and will be
omitted. The only difference is in the normalization of the functions.

We now come to the main lemma which will enable us to estimate the inner products involved
in (3.30). For simplicity, in the following we assume that g,h ∈ S . Then their Fourier transforms
ĝ, ĥ ∈ S as well, with S being the Schwartz class. For ξ ∈ Xj , j � j0, and η ∈ Xk, k � j0, we
define

Gξ(x) := c
1/2
ξ

∞∑
ν=0

ĝ

(
ν + λ

2j

)
Pν(ξ · x), Hη(x) := c1/2

η

∞∑
ν=0

ĥ

(
ν + λ

2k

)
Pν(η · x), (3.43)

where cξ , cη are from (3.11).

Lemma 3.15. Suppose g,h ∈ S are both even and real-valued,

∣∣g(m)(t)
∣∣ � A1

(1 + |t |)M and
∣∣h(m)(t)

∣∣ � A2

(1 + |t |)M , 0 � m � N + n − 1, (3.44)

and ∫
R

t rg(t) dt =
∫
R

t rh(t) dt = 0, 0 � m � N + n − 2, (3.45)

where N > 1 and M > N + 1. Then for ξ ∈ Xj and η ∈ Xk

∣∣〈Gξ ,Hη〉
∣∣ � cA1A22−|k−j |(N+n/2)

(
1 + 2min{j,k}d(ξ, η)

)−M (3.46)

where c > 0 depends only on N , M , and n.

Proof. Assume that k � j and let ξ · η =: cosα, 0 � α � π . Then using that∫
Sn

Pν(ξ · x)P�(ξ · x)dx = δν,�Pν(ξ · η),

cξ ∼ 2−jn if ξ ∈ Xj , and cη ∼ 2−kn if η ∈ Xk , we have

〈Gξ,Hη〉 ∼ 2−(k+j) n
2

∞∑
ν=0

ĝ

(
ν + λ

2j

)
ĥ

(
ν + λ

2k

)
Pν(ξ · η).

It is easy to see that

ĝ

(
ν + λ

2j

)
ĥ

(
ν + λ

2k

)
= (gj ∗ hk)

∧(ν + λ) = (g ∗ hk−j )
∧
(

ν + λ

2j

)
.

On the other hand,

(g ∗ hk−j )
(m)(t) = (

g(m) ∗ hk−j

)
(t)



2182 G. Kyriazis, P. Petrushev / Journal of Functional Analysis 257 (2009) 2159–2187
and therefore, by Lemma 3.14,

∣∣(g ∗ hk−j )
(m)(t)

∣∣ � cA1A22−(k−j)N

(1 + |t |)M , 0 � m � n − 1.

We now invoke Lemma 3.12 to obtain

∣∣〈Gξ,Hη〉
∣∣ � cA1A22−(k+j) n

2 2−(k−j)N 2jn

(1 + 2jα)M
� cA1A2

2−(k−j)(N+ n
2 )

(1 + 2jα)M
. �

Proof of Theorem 3.7. Evidently, Theorem 3.7 will follow by Theorem 2.4, applied with H :=
L2(Sn), L := F

sq
p and �(X ) := f

sq
p (or L := B

sq
p and �(X ) := b

sq
p ), and Ψ the frame from

Theorem 3.5, if we prove that the matrices defined in (3.30) are almost diagonal and ‖D‖δ < ε,
‖E‖δ < ε for some δ > 0 and sufficiently small ε (see (2.15)).

Here, we only give the argument regarding the estimate ‖D‖δ < ε; the proof of the estimate
‖E‖δ < ε is the same. By the definition of the needlet ψξ for ξ ∈ Xj (j � j0) we have

ψξ (x) := c
1/2
ξ

∞∑
ν=0

â

(
ν + λ

2j

)
Pν(ξ · x).

Since â ∈ C∞ is compactly supported and â(t) = 0 for t ∈ [−1/2,1/2], there exists a constant
A1 > 0 such that

∣∣a(r)(t)
∣∣ � A1

(
1 + |t |)−M

, 0 � r � N + n − 1, and
∫
R

t ra(t) dt = 0, r � 0.

On the other hand, from the definition of θξ in (3.21) it follows that

ψη(x) − θη(x) = c1/2
η

∞∑
ν=0

(a − b)∧
(

ν + λ

2k

)
Pν(η · x), η ∈ Xk,

and from the construction of b we have

∣∣(a − b)(r)(t)
∣∣ � ε

(
1 + |t |)−M

, 0 � r � N + n − 1, and∫
R

t r (a − b)(t) dt = 0, 0 � r � N + n − 2.

We now apply Lemma 3.15 with g = a and h := a − b to obtain

∣∣〈ψξ ,ψη − θη〉
∣∣ � cA1ε min

{
�(ξ)

�(η)
,
�(η)

�(ξ)

}N+ n
2
(

1 + d(ξ, η)

max{�(ξ), �(η)}
)−M

and since M > J and N > max{s, J − n − s}, we get ‖D‖δ < cA1ε. However, ε is independent
of c, A1, M , and N , therefore, cA1ε above can be replaced by ε. �
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Appendix A

Proof of Theorem 3.10. We need the maximal operator on Sn. Denote by G the set of all spheri-
cal caps on S

n, i.e. G ∈ G if G is of the form: G := {x ∈ S
n: d(x, η) < ρ} with η ∈ S

n and ρ > 0.
The maximal operator Mt (t > 0) is defined by

Mt f (x) := sup
G∈G: x∈G

(
1

|G|
∫
G

∣∣f (ω)
∣∣t dω

)1/t

, x ∈ S
n.

We shall use the Fefferman–Stein vector-valued maximal inequality (see [26]): If 0 < p < ∞,
0 < q � ∞, and 0 < t < min{p,q}, then for any sequence of functions f1, f2, . . . on S

n

∥∥∥∥∥
( ∞∑

j=1

[
Mt fj (·)

]q)1/q∥∥∥∥∥
p

L

� c

∥∥∥∥∥
( ∞∑

j=1

∣∣fj (·)
∣∣q)1/q∥∥∥∥∥

p

L

(A.1)

where c = c(p, q, t, n).
The next lemma will also be needed.

Lemma A.1. Let 0 < t � 1 and M > d/t . For any sequence of complex numbers {hη}η∈Xm
,

m � 0, we have for x ∈ Gξ , ξ ∈ X ,

∑
η∈Xm

|hη|
(

1 + d(ξ, η)

max{�(ξ), �(η)}
)−M

� c max

{(
�(ξ)

�(η)

) d
t

,1

}
Mt

( ∑
η∈Xm

|hη|1Gη

)
(x).

When �(ξ) � �(η), this lemma is Lemma 4.8 in [20]. The proof in the case �(ξ) > �(η) is
similar and will be omited (see also Remark A.3 in [7]).

We shall only prove estimate (3.33). The proof of (3.34) is similar and we omit it. Let A be
an almost diagonal operator on f

sq
p with associated matrix (aξη)ξ,η∈X and let h ∈ f

sq
p . Then

(Ah)ξ = ∑
η∈X aξηhη, where the series converges absolutely (see proof below). Then

‖Ah‖f
sq
p

:=
∥∥∥∥
( ∑

ξ∈X

[|Gξ |−s/n−1/2
∣∣(Ah)ξ

∣∣1Gξ

]q)1/q∥∥∥∥
Lp

� c

∥∥∥∥
( ∑

ξ∈X

[
�(ξ)−s−n/2

∑
η∈X

|aξη||hη|1Gξ

]q)1/q∥∥∥∥
Lp

� c(Σ1 + Σ2),

where

Σ1 :=
∥∥∥∥
( ∑

ξ∈X

[
�(ξ)−s−n/2

∑
�(η)≤�(ξ)

|aξη||hη|1Gξ

]q)1/q∥∥∥∥
Lp

and

Σ2 :=
∥∥∥∥
( ∑[

�(ξ)−s−n/2
∑

|aξη||hη|1Gξ

]q)1/q∥∥∥∥
Lp

.

ξ∈X �(η)>�(ξ)
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Since ‖A‖δ < ∞ , we have whenever �(η) � �(ξ)

|aξη| � c‖A‖δ

(
�(η)

�(ξ)

)J −s−n/2+δ/2(
1 + d(ξ, η)

�(ξ)

)−J −δ

.

Choose 0 < t < min{1,p, q} so that J − d/t + δ/2 > 0. Let λξ := �(ξ)−s−n/21Gξ . Then we
have

Σ1

‖A‖δ

� c

∥∥∥∥
( ∑

ξ∈X

( ∑
�(η)��(ξ)

(
�(η)

�(ξ)

)J −s− n
2 + δ

2
(

1 + d(ξ, η)

�(ξ)

)−J −δ

|hη|λξ

)q) 1
q
∥∥∥∥

Lp

= c

∥∥∥∥
( ∑

j�0

∑
ξ∈Xj

( ∑
m�j

2(j−m)(J −s− n
2 + δ

2 )
∑

η∈Xm

(
1 + 2j d(ξ, η)

)−J −δ|hη|λξ

)q) 1
q
∥∥∥∥

Lp

.

We now apply Lemma A.1 and the maximal inequality (A.1) to obtain

Σ1

‖A‖δ

� c

∥∥∥∥
( ∑

j�0

∑
ξ∈Xj

( ∑
m�j

2(j−m)(J −s− n
2 + δ

2 − n
t
)Mt

( ∑
η∈Xm

|hη|1Gη

)
λξ

)q) 1
q
∥∥∥∥

Lp

� c

∥∥∥∥
( ∑

j�0

( ∑
m�j

2(j−m)(J − n
t
+ δ

2 )Mt

( ∑
η∈Xm

|hη|λη

))q) 1
q
∥∥∥∥

Lp

� c

∥∥∥∥
( ∑

j�0

(
Mt

( ∑
ξ∈Xj

|hξ |λξ

))q) 1
q
∥∥∥∥

Lp

� c‖h‖f
sq
p

.

If �(η) > �(ξ), then

|aξη| � c‖A‖δ

(
�(ξ)

�(η)

)s+d/2+δ/2(
1 + d(ξ, η)

�(η)

)−J −δ

and hence

Σ2

‖A‖δ

� c

∥∥∥∥
( ∑

ξ∈X

( ∑
�(η)>�(ξ)

(
�(ξ)

�(η)

)s+ n
2 + δ

2
(

1 + d(ξ, η)

�(η)

)−J −δ

|hη|λξ

)q) 1
q
∥∥∥∥

Lp

= c

∥∥∥∥
( ∑

j�0

∑
ξ∈Xn

( ∑
m<j

2(m−j)(s+ n
2 + δ

2 )
∑

η∈Xm

(
1 + 2md(ξ, η)

)−J −δ|hη|λξ

)q) 1
q
∥∥∥∥

Lp

.

Employing again Lemma A.1 and the maximal inequality (A.1) we obtain
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Σ2

‖A‖δ

� c

∥∥∥∥
( ∑

j�0

∑
ξ∈Xj

( ∑
m<j

2(m−j)(s+ n
2 + δ

2 )Mt

( ∑
η∈Xm

|hη|1Gη

)
λξ

)q) 1
q
∥∥∥∥

Lp

� c

∥∥∥∥
( ∑

j�0

( ∑
m<j

2(m−j)(δ/2)Mt

( ∑
η∈Xm

|hη|λη

))q) 1
q
∥∥∥∥

Lp

� c

∥∥∥∥
( ∑

j�0

(
Mt

( ∑
ξ∈Xj

|hξ |λξ

)
(x)

)q) 1
q
∥∥∥∥

Lp

� c‖h‖f
sq
p

.

The above estimates for Σ1 and Σ2 yield (3.33). �
Proof of Lemma 3.11. Recall first the Dirichlet–Mehler integral representation of Gegenbauer
polynomials [3, p. 177]:

P (λ)
ν (cosα) = 2λΓ (λ + 1

2 )Γ (ν + 2λ)(sinα)1−2λ

√
πν!Γ (λ)Γ (2λ)

π∫
α

cos
(
(ν + λ)ϕ − λπ

)
(cosα − cosϕ)1−λ

dϕ.

On account of (3.1), then (3.37) holds with

KN(α) =
∞∑

ν=0

ĝ

(
ν + λ

N

)
(ν + λ)(ν + n − 2)!

ν! ×
{

sinλπ sin(ν + λ)α, n even,

cosλπ cos(ν + λ)α, n odd.

Evidently, (ν+λ)(ν+n−2)!
ν! = (ν + λ)(ν + n − 2) . . . (ν + 1) and a little algebra shows that

(ν + λ)(ν + n − 2)!
ν! =

� n−1
2 �∏

r=1

(
(ν + λ)2 − (λ − r)2) ×

{
ν + λ, n even,

1, n odd.

Let now Qn(z) be the degree n − 1 polynomial

Qn(z) :=
� n−1

2 �∏
r=1

(
z2 − (λ − r)2) ×

{
z sinλπ, n even,

cosλπ, n odd.

Then

KN(α) =
∞∑

ν=0

ĝ

(
ν + λ

N

)
Qn(ν + λ) ×

{
sin(ν + λ)α, n even,

cos(ν + λ)α, n odd.

Note that Qn(−z) = (−1)n−1Qn(z) and Qn has zeros ±(λ − r), r = 1, . . . , �n−1
2 �. The critical

step now is that since ĝ is even and because of the symmetry and zeros of Qn

KN(α) = (1/2)
∑

ĝ

(
ν + λ

N

)
Qn(ν + λ) ×

{
sin(ν + λ)α, n even,

cos(ν + λ)α, n odd.
(A.2)
ν∈Z
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Let

Rn(z) :=
� n−1

2 �∏
r=1

(−z2 − (λ − r)2) ×
{−z sinλπ, n even,

cosλπ, n odd,

which is a polynomial of degree n − 1 (related to Qn). Then (A.2) can be rewritten in the form

KN(α) = (1/2)Rn

(
d

dα

)∑
ν∈Z

ĝ

(
ν + λ

N

)
cos(ν + λ)α

= (1/4)Rn

(
d

dα

)∑
ν∈Z

ĝ

(
ν + λ

N

)
ei(ν+λ)α. (A.3)

Here we again used that the part of the sum in (A.2) with indices −(n − 1) < ν < 0 is void.
Recall the Poisson summation formula:

∑
ν∈Z

f (2πν) = (2π)−1
∑
ν∈Z

f̂ (ν), where f̂ (ξ) :=
∫
R

f (y)e−iξy dy,

and set f̂ (ξ) := ĝ(
ξ+λ
N

)ei(ξ+λ)t . Then f (y) = Ne−iλya(N(y + t)) and (A.3) along with the
summation formula give

KN(α) = (π/2)NRn

(
d

dα

)∑
ν∈Z

e−2πiνλg
(
N(α + 2πν)

)
,

which implies (3.38). �
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