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HEAT KERNEL BASED DECOMPOSITION OF SPACES
OF DISTRIBUTIONS IN THE FRAMEWORK
OF DIRICHLET SPACES

GERARD KERKYACHARIAN AND PENCHO PETRUSHEV

ABSTRACT. Classical and nonclassical Besov and Triebel-Lizorkin spaces with
complete range of indices are developed in the general setting of Dirichlet space
with a doubling measure and local scale-invariant Poincaré inequality. This
leads to a heat kernel with small time Gaussian bounds and Hélder continuity,
which play a central role in this article. Frames with band limited elements of
sub-exponential space localization are developed, and frame and heat kernel
characterizations of Besov and Triebel-Lizorkin spaces are established. This
theory, in particular, allows the development of Besov and Triebel-Lizorkin
spaces and their frame and heat kernel characterization in the context of Lie
groups, Riemannian manifolds, and other settings.
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1. INTRODUCTION

Spaces of functions or distributions play a prominent role in various areas of
mathematics such as harmonic analysis, PDEs, approximation theory, probability
theory and statistics and their applications. The main purpose of this article is
to develop the theory of Besov and Triebel-Lizorkin spaces with a full set of in-
dices in the general setting of strictly local regular Dirichlet spaces with doubling
measure and local scale-invariant Poincaré inequality, leading to a markovian heat
kernel with small time Gaussian bounds and Holder continuity. The gist of our
method is to have the freedom of dealing with different geometries, on compact
and noncompact sets, and with nontrivial weights, and at the same time to allow
for the development and frame decomposition of Besov and Triebel-Lizorkin spaces
with complete range of indices, and therefore to cover a great deal of classical and
nonclassical settings. As an application, our theory allows us to develop in full
Besov and Triebel-Lizorkin spaces and their frame decomposition in the setup of
Lie groups or homogeneous spaces with polynomial volume growth, complete Rie-
mannian manifolds with Ricci curvature bounded from below and satisfying the
volume doubling condition, and various other nonclassical setups.

There are many forerunners of the ideas in this article which we do not even try
to list here. Our development can be viewed as a generalization of the Littlewood-
Paley theory developed by Frazier and Jawerth in the classical setting on R™ in
[T2,13]; see also [14]. More recently, Besov and Triebel-Lizorkin spaces and their
frame characterization were developed in nonclassical settings such as on the sphere
[34] and more general homogeneous spaces [15], on the interval with Jacobi weights
[28], on the ball with weights [29], and in the context of Hermite [40] and Laguerre
expansions [27].

This is a follow-up paper to [6], where we laid down some of the ground work
needed for the developments in this paper. We adhere to the framework and nota-
tion established in [6], which we recall in the following, beginning with the setting:

I. We assume that (M, p, i) is a metric measure space satisfying the conditions:
(M, p) is a locally compact metric space with distance p(-,-) and p is a positive
Radon measure such that the following volume doubling condition is valid:

(1.1) 0 < u(B(z,2r)) < cou(B(z,r)) <oo forallze M and r >0,

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



HEAT KERNEL BASED DECOMPOSITION OF SPACES 123

where B(z,r) is the open ball centered at = of radius r and ¢y > 1 is a constant.
Note that (1) readily implies

(1.2) w(B(z, M) < coXp(B(z,r)) for x € M, r >0, and A > 1.

Here d = log, cp > 0 is a constant playing the role of a dimension, but one should
not confuse it with dimension.

II. The main assumption is that the local geometry of the space (M, p,u) is
related to a self-adjoint positive operator L on L?(M, du), mapping real-valued to
real-valued functions, such that the associated semigroup P = e~'" consists of
integral operators with (heat) kernel p;(z,y) obeying the conditions:

e Small time Gaussian upper bound:

* ox ,y)
(1.3) |pe(z, y)] p{ ; for z,ye M,0<t<1.

wt <m%ﬁ»

e Holder continuity: There exists a constant o > 0 such that

cp (m/)}

Py, y ) exp{
V(B VD)u(B(y. V)

for z,y,y’ € M and 0 < t < 1, whenever p(y,y') < V1.
e Markov property:

(1.5) /M pi(x,y)du(y) =1 for t > 0.

Above C*,¢* > 0 are structural constants which along with ¢y will affect most of
the constants in the sequel.

In certain situations, we shall assume one or both of the following additional
conditions:

e Reverse doubling condition: There exists a constant ¢ > 1 such that

diam
(1.6) w(B(x,2r)) > cu(B(x,r)) for z € M and 0 < r < d2mA

(14 |pley) —piles)] < 0 (52

e Noncollapsing condition: There exists a constant ¢ > 0 such that

(1.7) mig}&p(B(x, 1) >ec

It will be explicitly indicated where each of these two conditions is required.

As is shown in [6] a natural realization of the above setting appears in the
general framework of Dirichlet spaces. It turns out that in the setting of strictly
local regular Dirichlet spaces with a complete intrinsic metric (see [IH4L8, 136,
48H50]) it suffices to only verify the local Poincaré inequality and the global doubling
condition on the measure, and then our general theory applies in full. We refer the
reader to §1.2 in [6] for the details.

The point is that situations where our theory applies are quite common, which
becomes evident from the examples given in [6]. We next describe them briefly.

e Uniformly elliptic divergence form operators on R%. Given a uniformly elliptic
symmetric matrix-valued function {a; ;j(x)} depending on x € R%, one can define

an operator L = — Z?jzl % (am- %) on L?(R%, dx) via the associated quadratic
b i J
form. The uniform ellipticity condition yields that the intrinsic metric associated

with this operator is equivalent to the Euclidean distance. The Gaussian upper and
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124 GERARD KERKYACHARIAN AND PENCHO PETRUSHEV

lower bounds on the heat kernel in this setting are due to Aronson, and the Holder
regularity of the solutions is due to Nash [35].

e Domains in R?. Uniformly elliptic divergence form operators on domains in R¢
can be developed by choosing boundary conditions. In this case the upper bounds
of the heat kernels are well understood (see e.g. [36]). The Gaussian lower bounds
are much more complicated to establish, and one has to choose Neumann conditions
and impose regularity assumptions on the domain. We refer the reader to [19] for
more details.

e Riemannian manifolds and Lie groups. The local Poincaré inequality and
doubling condition are verified for the Laplace-Beltrami operator of a Riemannian
manifold with nonnegative Ricci curvature [30], also for manifolds with Ricci cur-
vature bounded from below if one assumes in addition that they satisfy the volume
doubling property, also for manifolds that are quasi-isometric to such a manifold
[T'7[43l[45], also for co-compact covering manifolds whose deck transformation group
has polynomial growth [43][45], for sublaplacians on polynomial growth Lie groups
[42,55] and their homogeneous spaces [3I]. Observe that the case of the sphere
endowed with the natural Laplace-Beltrami operator treated in [33,[34] and the
case of more general compact homogeneous spaces endowed with the Casimir oper-
ator considered in [I5] fall into the above category. One can also consider variable
coefficients operators on Lie groups; see [40].

We refer the reader to [I9, Section 2.1] for more details on the above examples
and to [8[I8.B36L44.55] as general references for the heat kernel.

o Heat kernel on [—1, 1] generated by the Jacobi operator. In this case M = [—1, 1]
with du(r) = wa,g(z)dz, where wy 5(z) = (1 —2)*(1+2)?, a, 8 > —1, is the clas-
sical Jacobi weight, and L is the Jacobi operator. As is well known, e.g. [52],
LP, = A\, Py, where Py, (k > 0) is the kth degree (normalized) Jacobi polynomial
and A\, = k(k +a+ 8+ 1). As is shown in [0] in this case the general theory ap-
plies, resulting in a complete strictly local Dirichlet space with an intrinsic metric
p(x,y) = |arccosx — arccosy|. It is also shown that the respective scale-invariant
Poincaré inequality is valid and the measure i obeys the doubling condition. There-
fore, this example fits in the general setting described above and our theory applies
and covers completely the results in [28][38].

The development of weighted spaces on the unit ball in R? in [29[39] also fits in
our general setting. The treatment of this and other examples will be the theme of
a future work.

In this article we advance on several fronts. We considerably refine one of the
main results in [6] which asserts that in the general setting described above for
any compactly supported function f € C*(R) obeying f**1(0) = 0, v > 0, the
operator f(v/L) has a kernel f(v/L)(x,y) of nearly exponential space localization
(see Theorem Bl below). Furthermore, we show that for appropriately selected
functions f of this sort with “small” derivatives, f(v/L)(z,y) has sub-exponential
space localization:

_cop{ - p(ee) ey
= Vu(B(x,0))u(B(y,9))

We also show that the class of integral operators with sub-exponentially localized
kernels is an algebra, which plays a crucial role in the development of frames.
We make a substantial improvement in the scheme for constriction of frames from

[F(6V)(,y)
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[6] which enables us to construct duals of sub-exponential space localization. These
advances allow us to generalize in full the theory of Frazier-Jawerth [12HI4].

To introduce Besov spaces in the general setting of this article we follow the
well-known idea [37,53,64] of using spectral decompositions induced by a self-
adjoint positive operator. Consider real-valued functions g, € C*(R,) such
that supp ¢ C [0, 2], gpé2y+1)(0) =0 for v > 0, suppp C [1/2,2], and |po(N)] +
> > l(279A)] > ¢ > 0 on Ry. Set ;(A) := ¢(279)) for j > 1. The possibly
anisotropic geometry of M is the reason for introducing two types of Besov spaces
(56):
(i) The “classical” Besov space B;, = B5 (L) is defined as the set of all distri-
butions f such that

: a\1/q
1155, = (D (2710s(VD)FOls) ) <00 and
Jj=0
i e “nonclassica esov space BS, = B? is defined by the norm
ii) The « lassical” B B,, = B;,(L) is defined by th

1715, = (3 (NBC279) /2, (VD) £ ()10 ) )

720

1/q

Our main motivation for introducing the spaces B;q lies in nonlinear approximation

(§6.5). However, we believe that these spaces capture well the geometry of the

underlying space M and will play an important role in other situations.
“Classical” Triebel-Lizorkin spaces Fj, = F} (L) are defined by means of the

norms
. q
r = | (32 (2l VDrOl))
>0
while their “nonclassical” version ﬁ’psq = F;q (L) is introduced through the norms

5= (X (1BG 2 e, Dr o))
>0

1/q

/]

)

Lp

/]

e

It is important that our setting, though general, permits us to develop Besov and
Triebel-Lizorkin spaces with complete range of indices, e.g. s € R, 0 < p,q < o0,
in the case of Besov spaces. We only consider inhomogeneous Besov and Triebel-
Lizorkin spaces here, for this enables us to treat simultaneously the compact and
noncompact cases. Their homogeneous version, however, can be developed in a
similar manner.

One of the main results in this article is the frame decomposition of the Besov
and Triebel-Lizorkin spaces in the spirit of the @p-transform decomposition in the
classical case by Frazier and Jawerth [I2/[13]. To show the flavor of these results,
let {te}eca and {1[)5}56;5 be the pair of dual frames constructed here, indexed
by a multilevel set X = szo &;. Then the decomposition of e.g. Bls)q takes the

form (§6.2))
17155, ~ (X[ (1Bes)/ics. dewel,) ")

j=>0 £eiX;

1/q
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126 GERARD KERKYACHARIAN AND PENCHO PETRUSHEV

We also establish characterization of Besov and Triebel-Lizorkin spaces in terms of
the heat kernel. For instance, for By, we have for m > s (§6.1)

1 1
135, ~ NBC DI/ gl + ([ lBearaenymee i) ™.

As will be shown our theory covers completely the classical case on R¢ and on the
torus T¢ as well as the above mentioned cases on the sphere [34] and more general
homogeneous spaces [15], on the interval [28], and on the ball [29]. Our theory also
applies in full in the various situations briefly indicated above. Others are yet to be
identified or developed. Related interesting issues such as atomic decompositions
and interpolation will not be treated here.

The metric measure space (M, p, 1) (with the doubling condition) from the set-
ting of this article is a space of homogeneous type in the sense of Coifman and Weiss
[5]. The theory of Besov and Triebel-Lizorkin spaces on general homogeneous spaces
is well developed by now; see e.g. [20,21L[32,[56]. The principle difference between
this theory and our theory is that the smoothness of the spaces in the former the-
ory is limited (|s| < &). Yet, it is a reasonable question to explore the relationship
between these two theories. We do not attempt to address this issue here.

For Hardy spaces HP associated with nonnegative self-adjoint operators under

the general assumption of the Davies-Gaffney estimate, we refer the reader to [9]
99,26).
The organization of this paper is as follows: In §2 we present some technical
results and background. In §3 we refine and extend the functional calculus results
from [6]. In §4 we develop an improved version of the construction of frames from
[6] which produces frame elements of sub-exponential space localization. In §5
we introduce distributions in the setting of this paper and establish some of their
main properties and decomposition. In §6 we introduce classical and nonclassical
inhomogeneous Besov spaces and give their characterization in terms of the heat
kernel and the frames from §4. We also show the application of Besov spaces to
nonlinear approximation from frames. In §7 we develop classical and nonclassical
inhomogeneous Triebel-Lizorkin spaces in the underlying setting and establish their
characterization in terms of the heat kernel and the frames from §4. We also present
identification of some Triebel-Lizorkin spaces.

Notation. Throughout this article we shall use the notation |F| := u(FE) and 1 g will
denote the characteristic function of E C M, |- |l, = || - [|zr := || - [| 2 (a1,dn)- UCB
will stand for the space of all uniformly continuous and bounded functions on M.
We shall denote by C§°(R) the set of all compactly supported C* functions on
R, :=[0,00). In some cases “sup” will mean “esssup”, which will be clear from the
context. Positive constants will be denoted by ¢, C, c1, ¢/, ..., and they may vary
at every occurrence. Most of them will depend on the basic structural constants
¢, C*, ¢* from (LI))-(T4)). This dependence usually will not be indicated explicitly.
Some important constants will be denoted by ¢y, ¢y, ¢, ..., and they will remain
unchanged throughout. The notation a ~ b will stand for ¢; < a/b < cs.

2. BACKGROUND

In this section we collect a number of technical results that will be needed in the
sequel. Most of the nontrivial ones are proved in [6].
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2.1. Estimates and facts related to the doubling and other conditions.
Since B(z,r) C B(y, p(y, z) + r), (L2) yields

d
(2.1) |B(z,7)| gco(l—l—m) |B(y,r)|, z,y€ M, r>Q0.

r

The reverse doubling condition (@) implies
—1 diam M
(2.2) |B(z,Ar)| = ¢ A |B(z,r)|, A>1,7>0,0<\r< damd

where ¢ > 1 is the constant from ([6) and ¢ = logyc > 0. In this article, the

reverse doubling condition will be used: for lower bound estimates of the LP norms

of operator kernels (§3.5]) and frame elements (§), in nonlinear approximation from

frames (§6.0)), and in the identification of some Triebel-Lizorkin spaces (§7.3).
The noncollapsing condition (IL7) and (2] yield

(2.3) in{/{ |B(x,r)| >érd, 0<r<1, ¢&=const.
fAS

The noncollapsing condition is needed in establishing the LP — L? boundedness of
integral operators (§2.3)) and for embedding results for Besov spaces (§6.3]).

As shown in [6] the following clarifying statements hold:

(a) p(M) < oo if and only if diam M < oo. Moreover, if diam M = D < oo, then

(2.4) in{/[ |B(z,7)| > cerdM|D™, 0<r<D.
fAS

(b) If M is connected, then the reverse doubling condition (6] is valid. There-
fore, it is not quite restrictive.

(c) In general, | B(z,7)| can be much larger than O(r?) for certain points z € M
as is evident from the example on [—1, 1] with the heat kernel induced by the Jacobi
operator.

The following symmetric functions will govern the localization of most operator
kernels in the sequel:

(25)  Digley) = (B olIBwo) (14 227wy em

Observe that (L2) and ([2.1)) readily imply

(2.6) Ds.o(2,y) < ¢|B(,8)|! (1 + @)_”d/z.

Furthermore, for 0 < p < oo and ¢ > d(1/2 + 1/p),

@27 IDsolz )l = ( /M [Dé,a(x,y)]pdu(y))l/p < ¢y|B(x,8)]//77
and
(2.8) /M Ds o (2,u)Ds o (u, y)dp(u) < cDs o (z,y) if o> 2d.

The above two estimates follow readily by Lemma 2.J] which will also be useful.
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128 GERARD KERKYACHARIAN AND PENCHO PETRUSHEV

Lemma 2.1. (a) For o >d and 6 >0,

(2.9) / (146 p(e,y)) " dp(y) < 1| Bz, 5)|, @ € M.
M
(b) If 0 > d, then for z,y € M and § > 0,
1 L B@.9)| + |B(y,8)]
/, 075 o0, ) (45 Tl w7 M <2 51,0 )

|B(z,9)|

(210) = U pla, )

(¢) If o > 2d, then for xz,y € M and 6 > 0,
1 C3
2.11 duly) < ,
(211) /M B0+ om0y A+ 5 o a)y MY < Trs g
and if in addition 0 < § < 1, then
1 Cy4

2.12 d <
(2.12) /M B+ w07 A+ o) Y S T ple )

Proof. Estimates (2.9)-(ZI1)) are proved in [0] (see Lemma 2.3). Estimate (2Z.12)
follows easily from (2I1]). Indeed, denote by J the integral in 2ZI2). If p(z,y) < 1,
then using ([21)), (29), and the fact that o > 2d, we get

du(y) / dp(y)
J < < <e,
<) BT e S, BT
which implies 212). If p(x,y) > 1, then using 2.1,

J</ 67 dp(y) < 0
= Jar 1B, 0)|(1 407 p(w,u))? (1 + 67 p(y, u) — (1+ 67" pla,y))7
which yields ([212]). O

2.2. Maximal é-nets. In the construction of frames in the general setting of this
article there is an underlying sequence of maximal é-nets {X;};>0 on M: We say
that X C M is a 0-net on M (6 > 0) if p(§,m) >0 for allé,me X, and X C M is
a mazimal d-net on M if X is a 6-net on M that cannot be enlarged.

We next summarize the basic properties of maximal d-nets [6, Proposition 2.5]:
A mazximal §-net on M always exists, and if X is a mazximal 6-net on M, then

(213) M= |J B(&6) and B(£6/2)NB(n,6/2) =0 if £#n, EneX.
fex

Furthermore, X is countable or finite and there exists a disjoint partition {Ag¢}ecx
of M consisting of measurable sets such that

(2.14) B(£,0/2) C Ae C B(£,6), &€ X.

Discrete versions of estimates ([2.8)-(212) are valid [6]. In particular, assuming
that X' is a maximal d-net on M and {A¢}ecx is a companion disjoint partition of
M as above, then

(2.15) Z (1+ 5_1p(x,§))_2d_1 <gc

fex
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and if 0 > 2d + 1,

(216) Z ‘Ag‘D(s’g(l',g)D&g(y,f) < CDé,o(xay)'
fex

Furthermore, if §, > §, then

(2.17) Z 1+5;1 (2,0)) <

562(

2.3. Maximal and integral operators. The maximal operator will be an impor-
tant tool for proving various estimates. We shall use its version M, (¢ > 0) defined
by

(2.18) Mf(z) = sup(|B| [ s du)  zel,

where the sup is over all balls B C M such that x € B.

Since p is a Radon measure on M which satisfies the doubling condition (L2,
the general theory of maximal operators applies and the Fefferman-Stein vector-
valued maximal inequality holds ([47]; see also [16]): If 0 < p < 00,0 < g < 00, and
0 < t < min{p, ¢}, then for any sequence of functions {f,} on M,

(2.19) H (Z |Mtfy(~)|")1/q < cH (Z \fy(-)l")l/q

We shall also need the following “integral version” of this inequality: Let p,q,t be
as above. Then for any measurable function F': M x [0, 1] — C with respect to the

product measure du X du one has
d 1/q
< ([ e mes)
u

ey ([ e )

An elaborate proof of estimate (2.I9]) in the general setting of homogeneous type
spaces is given in [16]. The same proof can be easily adapted for the proof of
estimate (Z20). We omit the details.

Lp Lp ’

e

Remark 2.2. The vector-valued maximal inequality (ZI9) is usually stated and
used with ¢ = 1 and p,q > 1. We find the maximal inequality in the form given
in 219) with 0 < ¢t < min{p, ¢} more convenient. It follows immediately from the
case t = 1 and p,q > 1. The same observation is valid for inequality (2.20]).

A lower bound estimate on the maximal operator of the characteristic function
1 g(y,r) of the ball B(y,r) will be needed:

z, da/t
(2.21) (ML pym) (@) > (1 4 A : y)) . wEM.
This estimate follows easily from the doubling condition (2.

The localization of the kernels of most integral operators that will appear in the
sequel will be controlled by the quantities Ds »(z,y), defined in (2.0). We next give
estimates on the norms of such operators.
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Proposition 2.3. Let H be an integral operator with kernel H(x,y), i.e.

Hf(w)=/MH(w7y)f(y)du(y)7 and let |H(z,y)| < ¢'Ds o (z,y)

for some 0 < §d <1 and o >2d+ 1. Then we have:
(7) For 1 <p < oo,

(2.22) IH fllp < ccl[fllp, f €L
(ii) Assuming the noncollapsing condition (LT) and 1 < p < g < oo,
(2.23) |Hfly < e8], f e L.

Proof. By ([21) there exists a constant ¢ > 0 such that
sup [H(z, Y1 < amd  sup [H(-p)]lus < e
zeM yeM

Then ([Z22)) follows by the Schur lemma. The proof of [(Z23]) is given in [6], Propo-
sition 2.6]. 0

The following useful result for products of integral and nonintegral operators is
shown in [6].
Proposition 2.4. In the general setting of a doubling metric measure space
(M, p,p), let UV : L?> — L? be integral operators and suppose that for some
0<d6<1ando>d+1 we have
(2.24) Uz, y)| < c1Dso(w,y) and |V(z,y)| < c2Ds o (x,y).
Let R : L? — L? be a bounded operator, not necessarily an integral operator. Then
URV is an integral operator with the following bound on its kernel:

cerez||Rlla—o
1/2°

(IB(z,0)[|B(y,9)])

2.4. Compactly supported cut-off functions with small derivatives. In the
construction of frames we shall need compactly supported C*° functions with small-
est possible derivatives. Such functions are developed in [24}25].

(2.25)  [URV(z,y)| <[[U(z,")ll2l|Rll22[[V (- y)ll2 <

Definition 2.5. A real-valued function ¢ € C*°(R,) is said to be an admissible
cut-off function if ¢ # 0, supp ¢ C [0,2] and ("™ (0) = 0 for m > 1. Furthermore,
¢ is said to be admissible of type (a), (b) or (c) if ¢ is admissible and in addition
obeys the respective condition:

(a) ¢(t) =1,t€[0,1],

(b) suppp C [1/2,2] or

(¢) suppp C [1/2,2] and >-72 [p(277t)[> = 1 for t € [1,00).

The following proposition will be instrumental in the construction of frames.

Proposition 2.6 ([25]). For any 0 < e <1 there exists a cut-off function ¢ of type
(a), (b) or (c) such that ||p|lcc <1 and

(2.26) lo™|o < 8(16e"K+€)* vk € N.

Observe that, as shown in [25], Proposition is sharp in the sense that there
is no cut-off function ¢ such that ||o® ||, < v(5k)* for all & € N no matter how
large v, 4 > 0 might be. For more information about cut-off functions with “small”
derivatives we refer the reader to [25].
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2.5. Key implications of the heat kernel properties. We first observe that
as L is a nonnegative self-adjoint operator and maps real-valued to real-valued
functions, then for any real-valued, measurable and bounded function f on R, the
operator f(L) := fooo f(N)dE), is bounded on L2, self-adjoint, and maps real-valued
functions to real-valued functions. Moreover, if f(L) is an integral operator, then
its kernel f(L)(z,y) is real-valued and f(L)(y,z) = f(L)(z,y).

The main results in this paper will rely on the functional calculus induced by
the heat kernel. We shall further refine the functional calculus developed in [6] by
improving the assumptions and constant in the main space localization estimate
(see Theorem 3.4 in [6]). Our new proof will utilize two basic ingredients: (i)
The finite speed propagation property for the solution of the associated to L wave
equation, and (ii) A nonsmooth functional calculus estimate.

In this theory, the following Davies-Gaffney estimate plays a significant role:

A2
(2:27) (Pfr £ S exp { = Z=HiAilallfoll2y >0,

for all open sets U; C M and f; € L?(M) with supp f; C Uj, j = 1,2, where
r:= p(Uy,Usz) and é > 0 is a constant.

Proposition 2.7. In the setting described in the introduction the Davies-Gaffney
estimate ([2227) holds with ¢ = ¢*, where ¢* is the constant from (1.3).

Proof. We need this version of the Phragmén-Lindelof theorem ([7], Prop. 2.2):

Claim. Let F be holomorphic in C := {z : Rez > 0} and let there exist constants
B,~ > 0 such that |F(z)| < B for z € C, and for any € > 0 there exists a constant

A. such that |F(t)| < Ace™"7 for 0 <t <1. Then |F(z)| < Be %% for 2 € C,.

—&

Proof. Clearly, |F(t)| < B < Be?%¢~"7 fort>1and 0 < ¢ < . Therefore,

|F(t)] < B<max{A.,Be” *}e” "% forallt>0and0<e <n.

By applying the Phragmén-Lindel6f theorem (see [7]) we conclude that for any

e > 0 we have |F(z)| < Be™®¢ "= for z € C,. This readily implies the claim. O

As shown in [7, Lemma 3.1] it suffices to prove ([Z27)) only in the case when Uq,
U, are balls. Let B; = B(aj,r;) and f; € L*(B;), j = 1,2. Write r := p(By, Bz).

Since L is a positive self-adjoint operator, P, is holomorphic in C; and || P.||2—2
<1Vz e C;. Therefore, the function F(z) := (P, f1, f2) is holomorphic in C4 and

(2.98) P < fillallfalls for 2 € Cs.
We next estimate |F(t)| for 0 < ¢ < 1. Using (1.3) we infer

(Pufi, f2)] < /B /B 1Py ()| 2 ()] o) () da(y)

o AL, ()]
<o [ e AT [, o am o)
<ot il [ Bl V) au(x)) | B @)

where in the last inequality we used the Cauchy-Schwartz inequality.
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If vVt <7 and € By, then B(a,r) C B(x,2r1) and hence using (1.2) we
. T ri\ 4 :
obtain |B(a,r)| < |B(x, 21_\/%/E)| < 00(27;) | B(z, /)|, which leads to

(2.29) (/ |B(z, \/{e)rldu(x))l/z <e(I)? < eef Ve>0and Vi<,
By Vi

where c¢. > 0 is a sufficiently large constant. If Vi>riandxz € By = B(a,r1), then
B(a,r1) C B(w,2v/t) and hence by using (1.1) we get |B1| < co|B(w, /)], implying
fBl |B(z,vt)|"'du(x) < co. Therefore, estimate ([2.29) holds for all 0 < ¢ < 1.

Exactly in the same manner one shows that for every £ > 0 there exists a constant
¢ > 0 such that ([, [B(y, \/Z)|_1du(y))1/2 <éeifor0<t<l.

Putting the above estimates together we concl}lge that for every € > 0 there
exists a constant A. > 0 such that |F(t)] < Ace= "7 for 0 <t < 1.

Finally, from this and (2.28]), employing the claim from above, we conclude that

|F(2)] < e Rel<E) for 2 € C4, which completes the proof. O

In going further, observe that as proved in [7] (Theorem 3.4), the Davies-Gaffney
estimate (2.27)) implies (in fact, it is equivalent to) the finite speed propagation
property:

1
2/c*’

for all open sets U; C M, f; € L*(M), supp f; C Uj, j = 1,2, where r := p(Uy, Us).
We next use this to derive important information abqut the kernels of operators
of the form f(5v'L) whenever f is band limited. Here (&) := [; f(t)e~"*dt.

(2.30) <cos(t\/Z)f17 f2)=0, 0<ét<r, ¢:=

Proposition 2.8. Let f be even, supp f C [-A, A] for some A >0, and fe wir
for some m > d, i.e. |||y < co. Then for 6 >0 and x,y € M,

(2.31) FOOVL)(z,y) =0 if A< p(z,y).
Proof. From functional calculus and the Fourier inversion formula,
1t
fOVL) =~ / £(&) cos(¢5V'L)dE.
0
Fix x,y € M, x # y, and let ¢6 A < p(z,y). Choose € > 0 so that ¢6A < p(x,y) —2¢

and let g1 := |B(z,€)| ' 1 p(y,e) and gy := |B(y, €)| ' 1 g(y,¢). Then from above and

230) we derive
1[4,
(2.32) <f(5\/z)91,92> = ;/ f(§)<005(§5\/z)91,92>d§ =0,
0
using the fact that ¢6A < p(z,y) — 2¢ < p(B(z,¢€), B(y,€)). On the other hand, it

casily follows from Theorem 3.7 in [6] that the kernel of f(5v/L) is continuous and,
therefore,

(F(6VL)g1,92) = /M /M FOVL)(u,0)g1(u)ga(v)dp(u)du(v) = (VL) (2, y)

as € = 0. This and (232) imply (Z3T]). O
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Another important ingredient for our further development will be the following
(Theorem 3.7 in [6]):

Proposition 2.9. Let f be a bounded measurable function on Ry with supp f C
[0, 7] for some T > 1. Then f(v/L) is an integral operator with kernel f(v/L)(x,y)
satisfying

233) WD)l < ol

" (1B, 7 1B(y, 7)Y

where ¢, > 0 depends only on the constants co, C*,c* from (1)) — ([L3)).

T,y € M,

This proposition also follows by the properties of the heat kernel p;(x,y) from §I1

Remark 2.10. As is well known the Davies-Gaffney estimate ([2.27) is weaker than
assuming the Gaussian bound (L3]) on the heat kernel and also estimate ([233)) is
weaker than (L3]). However, it can be shown by combining results from [7] and [36]
that the Davies-Gaffney estimate ([2:27)), estimate (233]), and the doubling condition
(CI) imply ([@C3). Therefore, deriving in the next section the main localization esti-
mate ([B.I)) of the functional calculus by using the finite speed propagation property
@30) and 233) instead of (3], we essentially do not weaken our assumptions.

3. SMOOTH FUNCTIONAL CALCULUS INDUCED BY THE HEAT KERNEL

We shall make heavy use in this paper of the functional calculus developed in
[6] in the setting described in the introduction. We next improve and extend some
basic results from §3 in [6].

3.1. Kernel localization and Hoélder continuity. We first establish an im-
proved version of Theorem 3.4 in [6]. The main new feature is the improved control
on the constants, which will be important for our subsequent developments.

Theorem 3.1. Let f € C*(R,), k> d+ 1, supp f C [0, R] for some R > 1, and
f(2”+1)(0) =0 for v > 0 such that 2v+ 1 < k. Then f(é\/f), 0<d6<1,isan
integral operator with kernel f(6v/L)(x,y) satisfying

(3.1) |f(0VL)(2,y)| < ckDsp(w,y) and

(32) [V ) - FOVD)ws)| < (D) Dy () if olwv)) <6

Here Ds . (z,y) is from (Z3),
(3.3) cx = cr(f) = R (crk)* || fll L + (c2R)* [ f*) || <],

where c1,co > 0 depend only on the constants co, C*,c* from (L)) — (L) and
¢, = c3cp R with c3 > 0 depending only on cy, C*,c* and k. As before o > 0 is the
constant from ([A)). Furthermore,

(3.4) /M VI (. 9)du(y) = £(0).

Remark 3.2. The condition f(2**1(0) = 0 for v > 0 such that 2v + 1 < k simply
says that if f is extended as an even function to R (f(—=A) = f(\)), then f € C*(R).
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Proof. Tt suffices to prove the theorem in the case R = 1. Then in general it follows
by rescaling.

Assume that f satisfies the hypotheses of the theorem with R = 1 and denote
again by f its even extension to R. As already observed in Remark[3.2] f € C*(R).
The idea of the proof is to approximate f by a band limited function f4 and then
utilize Propositions 2.812.91

Set
- _ 1
¢:=11_1_ 51,5 *%Hs*---xHs, where Hs:=(20) 1]1[_575], 0= ht )
k+1
Clearly, ¢ is even, supp¢ C [-1,1], 0 < < 1, ¢(€) =1 for € € [-1/2,1/2], and
(3.5) 160l 0o < 077 < (2(k +2))” < (4k)Y for v=0,1,..., k+1.

The last inequality follows just as in [23] Theorem 1.3.5].

Denote ¢(t) e o( zgtdﬁ and set ¢4(t) = A¢(At), A > 0. Then
¢A( )= (§/A) and hence supp ¢A C [-A4, 4]

Now, consider the function f4 := f % ¢4. Clearly, ﬁ = f@, which implies
suppﬁ C [-A, 4]. Since f and ¢ are even, then f, is even. Furthermore,

£(t) = falt) = (2m)! / FO) - dle/A)ecta
(2m)1 A" / € f() e/ Ay,

where F'(€) = (1 — gé(é))f‘k. Set Fa(t) := AF(At) and note that F}(g) = F(¢/A).
Also, observe that f() (&) = (i€)* f(£). From all of the above we derive

(3.6) 1f = Salloo < A7FIF® 5 Fallo < A7 SO loo| Fall -
Clearly,
;2 dN\2 - ) 2
ER(t) = o / (je) Floea ana y(%) B <+ )

and hence |F(t)| < ¥ (1+|t|)~2, which leads to || Fa||z: = ||F|z: < ¥, where ¢ > 1
is an absolute constant. From this and ([B.6) we get

(3.7) 1f = Falloo < FATFfP o
We next estimate |f(t) — fa(t )\ for ¢ > 1. For this we need an estimate on the
localization of |¢4(t)|. Since supp ¢ C [—1,1] we have ¢(t) = T qb(f) tde, and
integrating by parts k 4+ 1 times we obtain
o) = T [ geengeisag
2w (it)k+1 )y '

Therefore, using ([3.5]),
[ 0(0)] < [V |oo < (4k) .
In turn, this and the obvious estimate ||¢||cc < 2 imply |¢(¢)| < ('k)*(1+ [¢])~F~!

where ¢’ > 4 is an absolute constant. Hence,

(3.8) [6a()] < c(R)AL+ A, e(k) = (R
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Using this and supp f C [—1,1] we obtain for ¢t > 1
1
10 = 101 = |£a®)] = 1 5 6401 < [ 1 @loaty = )ldy

t+1 t+1
< £l / | 16a(w)ldu < (k)| £l / A(1L+ Au) " du

-1

Sl [ () < A el = D7
A(t—1)
This yields
B9 1O~ 4] £ GFA e+ 1) fore 2

In our next step we utilize Proposition 2.9 For this we need to apply a de-
composition of unity argument. Choose ¢y € C°(R,) so that supp ey C [0, 2],
0 < o <1, and po(A) = 1 for XA € [0,1]. Let p(A) := wo(A) — ¢o(2X). Note
that ¢ € C(R) and suppy C [1/2,2]. Set @;(A) := ©(279)), j > 1. Then
> is0®j(A) =1for A € Ry, and hence

FO) = Fa) = D_IF ) = faW)es V),
320

which implies

(3.10) FOVL) = fa(6VL) =Y [f(6VL) — fa(0VL)]p;(6VL), 6> 0,

Jj=0

where the convergence is strong (in the L? — L? operator norm).
Let z,y € M, x # y, and assume p(z,y) > J. Choose A > 0 so that

plx,y) _ .. plz,y)
<
95 = CcA < 5

(3.11)
Since suppf; C [-A,A] and E € WlkJrl with &k > d + 1, by Proposition 2.8
fa(6v/L)(x,y) = 0, and hence

FOVI)(@,y) = FOVL)(w,y) = fa(6VI)(x,y).

Denote briefly F;(A) := (f(A) — fa(X))g;(A). Then the above and [B.I0) lead to
[F@VL) (@)l < Y |F;(0VL) (@, y).
=0

Note that, supp Fy = supp oo C [0,2] and supp F; = supp ¢, C [2/71,2/T1] 5 > 1.
For j = 0,1 we use (1) to obtain ||Fjle < FAF||f®)], and applying
Proposition 2.9]

AT Mo 0 (268)%[| )| oo
(1B, /2By, 6/2))"* ~ (1B(x,0)|[B(y,8)])"/* (14 252)"

where we used (B10]) and |B(-,d)| < ¢o|B(+,6/2)| by ([TI).

|F5(6VL)(2,y)| <
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For j > 2 we use (33) to obtain ||Fj|le < (3ck)FA™F|| |27 U1 and again
applying Proposition 2.9 we get

|Fj(6VL) (2, y)| < ¢ (6¢/k)¥|| fll 20D
J 5 S . :
(1B, 62-3-1)|| By, 52--1)[) /* (1 + £z

€00 (6¢Th)* [ floc2~ 0D+
>~ 1/2 T
(1B(z, 8)||B(y, 8))"/* (1 + 2w)

Here we again used ([BI1) and |B(-, )| < ¢o2UTD9|B(-, 6277 1)| by ([T2).
We sum up the above estimates taking into account that £ > d + 1 and obtain

5

(crk)* 1 flloo + S 1FP e
FOVI) (@, y)| <
(1B, 8)||B(y, 8))"/* (1 + 2z

- if p(z,y) > 0.

Whenever p(z,y) < ¢, this estimate is immediate from Proposition 229 with ¢|| f]|co
in the numerator. The proof of estimate ([BI]) is complete.
For the proof of ([B.2) we write

FOVE ) = [ SOV e p)dut)

and proceed further exactly as in the proof of (3.3) in [6] using (3I)) and the Holder
continuity of the heat kernel, stipulated in (L4). |

Remark 3.3. Tt is readily seen that Theorem [B.1] holds under the slightly weaker
condition k > d rather than k£ > d + 1, but then the constants ¢, ¢, will depend
also on k —d.

Now, we would like to take a step forward and free the function f in the hypoth-
esis of Theorem [B.1] from the restriction of being compactly supported.

Theorem 3.4. Suppose f € CF(R,), k>d+ 1,
IFON) < Cu(L+ N for A>0and 0 < v <k, wherer > k+d+1,

and f**+1(0) = 0 for v > 0 such that 2v +1 < k. Then f(6v/L) is an integral
operator with kernel f(6v/L)(z,y) satisfying B1)-B2), where the constants cy, ¢,
depend on k,d, o, but also depend linearly on Cjy.

Proof. As in the proof of Theorem B choose ¢y € C*°(R;) so that 0 < ¢ < 1,
wo(A) =1 for A € [0,1], and supp o C [0,2]. Let o(N) := @o(A) — ©o(2)) and set
©j(\) == p(279\), j > 1. Clearly, > js09i(A) =1for A € Ry, and hence

(3.12) =Y FNe;(N) = F(OVL) =Y f(0VL)p;(6VL), >0,

j=0 j>0

where the convergence is strong. Set h;(A) := f(27N\)p(N), 5 > 0, and ho(N) :=
F(N)go(N). Then hy(296VE) = F(6vE)p,(6VE).

By the hypotheses of the theorem it follows that for j > 1,

(k) jk 0) (97 iko—jr —j(d+1
15 ML < €2 Oglfgk”f()(2]')HL°°[1/2,2] < 27k97IT < ppmIdHD)
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and ||hj|pe < 279" < 2774+ We use this and Theorem [.] to conclude that
f(0V/L)p;(6V/L) is an integral operator with kernel satisfying
279D (1 4 57127 p(x, y))_k
: TN1/2
(1B (. 6279)] 1By, 62-)))
279 (1+ 6129 p(x, y))fk
=c 12
(IB(z,)[1B(y.0)])

Here for the latter estimate we used (LZ). Exactly as above we derive a similar
estimate when j = 0. Finally, summing up we obtain

7OV (VD)@ p)| = i (2 76V D) )| < ¢

FOVI) @, y)| < (1B, 0)||By,0)]) D277 (14620 p(w,y)) " <Dyl y),
j=0

which proves (B1]). The proof of (8:2) goes along similar lines and will be omitted.
O

Corollary 3.5. Suppose f € C®°(Ry), [f*(N)] < Cpr(14+ N7 for all v,r > 0
and X\ > 0, and fP*D(0) = 0 for v > 0. Then for any m > 0 and § > 0 the
operator L™ f(6v/L) is an integral operator with kernel L™ f(5v/L)(z,y) having the
property that for any o > 0 there exists a constant cy ., > 0 such that

(3.13) ’me(é\/f)(:t,y)’ < Comd 2" Ds o (z,y) and

(3.14) ‘me(&/f)(a:, y) — me(é\/z)(x,y')’ < cg,mé_%"(%)aD&k(x,y),

whenever p(y,y') < 4.
Proof. Let h(\) := XA2™ f(\). Then h(6v/L) = 6*™ L™ f(5v/L). Tt is easy to see that

R(¥+1(0) = 0 for all v > 0. Then the corollary follows readily by Theorem B4
applied to h. |

3.2. Band limited sub-exponentially localized kernels. The kernels of oper-
ators of the form ¢(§v/L) with sub-exponential space localization and ¢ € C§°(R)
will be the main building blocks in constructing our frames.

Theorem 3.6. For any 0 < e < 1 there exists a cut-off function ¢ of any type, (a)
or (b) or (c) (see Definition 2.5), such that for any § > 0,

croxp { —n(*5)" )
(1B(x,8)||B(y, )"

(3.15) lp(6VL)(z,y)| < z,y € M,

and
(3.16)

| 0(0VL) (x,y)—p(6VL)(z,y)| <

ca (P8) exp { — i (222)' 77}
(1B(x, )| By, )"

if p(y,y') <9,

where ¢1,k > 0 depend only on € and the constants co, C*,c* from (LI) — (L4);
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ca > 0 also depends on «. Furthermore, for any m € N,

et exp { - n(252)"]
(1B(x,8)||B(y,5))"*

with cg > 0 depending on €, ¢y, C*, c*, and m.

(3.17) L™ o(8V L) (2,y)| < ;o ryeM,

Proof. Let 0 < € < 1. Then by Proposition there exists a cut-off function ¢
of any type ((a) or (b) or (c)) such that [|¢® | < (ck)*(+2) for all k € N and
lelloo < 1. Now, using Theorem [B.1] we obtain

(Ok)k(lJre)
1/2 3 k
(IB(z,0)1B(y. 6)]) " (L + 8- *p(z,y))
Here C > 1 depends only on ¢, ¢y, C*, ¢*. From this we infer

e~k

(1B(x,8)||B(y,0)|)

Assume 6 1p(x,y) > 4c, and choose k € N so that k < (%ﬁm’y))l/(lﬁ) <k+1.
Then from above

|p(0VL)(z,y)| < Va,y € M,Vk € N.

e(6VI) (2, y)| < it 6 p(a,y) > e(CR)HE =t e ke,

1/2

exp { — (2=) MUY exp { - (52)' )
(1B, ®|Bw,o)"*  ~ (1B(,6)|By,s))"

provided §~1p(x,y) > 4c,. In the case 6~ !p(z,y) < 4c, we get from Proposition 2.9
that

lp(OVL)(z,y)| <

y _ coxp{ = n(#2)'7)
(1B 0)1Bw.0))"* ~ (1B@.6)|Bw.0)"
with ¢ = ¢ exp{4kc,}. This completes the proof of (B.1H).
For the proof of [3.16) we shall use the representation ¢(5v/L) = @(6@)65%6_5%.
Let h(A) := ¢(\)e*’. Rough calculation shows that H(d/d}\)ke)P”Loo[,Q’Q] < (ck)*
and by applying the Leibniz rule that [|h(F)| . < (ck)*(+2) Vi € N. Now, as in

the proof of ([B.13)),

lp(0VL)(z,y)| <

cexpd — p(2zmyl—e
oDy < A )1/2}.

(1B(x,0)[|B(y.)|)

Just as in the proof of Theorem 3.1 in [6], using this and the Holder continuity of
the heat kernel we obtain whenever p(z,y) < J that

(VL) (x,y) = w(OVL)(2.y/)| < /M (VL) (&, w)|ps2 (u, y) — sz (u,y)|dpa(u)
Y\ z, 1—¢ x, 2
C(p(yéy)) / exp{_ﬁ(p((;y)) _C(p(ay)) }
" (1B, 9)]1B(w.0)) " S 1B, 9)
() exp { — (2 7)
= 1/2
(1B(x,8)/|B(y.5)])"
Here for the last estimate we used inequality (8:222)) below. This confirms (BI6]).

du(u)
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To show ([B.I7) consider the function ¥(\) = A*™p()\). Using the fact that
o™ ||oo < (ck)*(1Fe) it is easy to see that [|op(F)||o < 22™(2m)!(2ck)*(1+9) VE € N,
and ||1]|oo < 22™. Also, it is easy to see that ¢(?*+1)(0) = 0 for all v > 0. Then
just as above it follows that |¢)(6v/L)(z,v)| satisfies (BI5) with a slightly bigger
constant on the right multiplied in addition by 22™(2m)!. On the other hand,
Y(6vL) = 6*"L"p(5+/L) and BI7) follows. O

Remark 3.7. As shown in [24], in general, estimate ([B.IH]) is no longer valid with
e = 0 for an admissible cut-off function ¢ no matter what the selection of the
constants c¢i, k > 0 may be.

3.3. The algebra of operators with sub-exponentially localized kernels.

Definition 3.8. We denote by £(5,x) with 0 < 8 < 1 and k > 0 the set of all
operators of the form f(6v/L), where f : R — C is such that the operator f(5v/L)
is an integral operator with kernel f(5v/L)(z,%) obeying

Com { — n(252)")
1/2°

(1B(z.8)[|B(y.5)))

for some constant C' > 0. We introduce the norm || f(§v/L) |« := inf C on L(B, ).

(3.18) |F(6VI) (2, y)| <

z,y €M, 6 >0,

We shall use the abbreviated notation

z,y)\B
exp { — (#5%)"}

(3.19) Esn(z,y) = g
B, 0)1B.9))

It will be critical for our development of frames to show that the class £(f, ) is
an algebra:

Theorem 3.9. (a) If the operators f1(6\/L) and f2(5v/'L) belong to L(B, k), i.e.

(320) |f](5\/f)(a:,y)| < CjE5»N(x7y)7 Jj=12,
then the operator fi(0v/L)f2(6V/L) also belongs to L(3, k) and
(3.21) |10V 20V L) (2, y)| < ecxereaEs (@, y),

for some constant ¢y > 1 depending only on 8, K, co.

(b) There exists a constant ¢ > 0 depending only on B,k,d such that if the
operator f(0\V/'L) is in L(B,r) and ||f(6VL)||« < €, then I1d — f(6v/L) is invertible
and [Id — f(6v/L)]~* —1d belongs to L(B, k).

Proof. Clearly, to prove part (a) of the theorem it suffices to show that there exists
a constant ¢; > 0, depending only on 3, &, cp, such that

e { (252" (222) s
) p(x,y))ﬂ}_

Schexp{—n( 5

The proof of this relies on the following inequality: For any z,y,u € M,
(3:23)  pla,uw)’ + p(y,w)’ > p(z,y)” + (2= 27)p(x,w)’ if  p(z,u) < p(y,u).

(3.22
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To prove this inequality, suppose p(z,u) < p(y,u) and let p(y,u) = tp(z,u), t > 1.
Then using the fact that 0 < 8 < 1,

plaz,u)? + ply,u)’ = (14 %) p(x, u)”
(14 t)p(z,w)]? + [1+t° — (1 +1)P]p(z, )’
= [p(x,u) + p(y, w)]” + minfl +47 = (14 1)7]p(a, )"

p(xay)ﬁ + (2 - Qﬂ)p(xau)ﬁ,

v

which confirms ([3:23)).

Let z,y € M, = # y. We split M into two: M' := {u € M : p(z,u) < p(y,u)}
and M" := M \ M’. Denote I' := [, ,--- and I := [, ---. To estimate I’ we
use inequality (B:223) and obtain

I/Sexp{—l-c(M ’ /|B(u,5)\7lexp{—H(Z—Qﬁ)(@)ﬁ}du(u)

< coxp { - (22 / (B, 8)| (1 + 87 pl, u) =2 dya(u)

oo (0]}

where ¢ > 0 is a constant depending on 3, k, ¢y. Because of the symmetry the same
estimate holds for I and the proof of (a) is complete.
Part (b) follows immediately from (a). O

We shall also need a discrete version of inequality (22)):

Lemma 3.10. Suppose X is a mazimal §-net on M and {A¢}ecx is a companion
disjoint partition of M as in §2.2. Let 6, > 6. Then
(3.24)

e[ ) e ()

where ¢y > 1 depends only on B, kK, co.

Proof. We proceed similarly as above. Let x,y € M, x # y. We split X into two
sets: X' :={{ € X :p(z,§) <p(y,§)} and X" := X\ A", Set X' =3 .y, -+ and
"= ccqn - Now, using inequality (3.23) we get

E'Sexp{— ( 5 ) }Z |B|A£ exp{—ﬁ(2—26)(p(§—ig))ﬁ}
Scexp{— ( plz, ) }Z |B|A§| 1+6*—1p(x7£))72d71

oo o(152)).

where in the last inequality we used estimate (2.17). By the same token, the same
estimate holds for 3. O
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3.4. Spectral spaces. As elsewhere we adhere to the setting described in the
introduction. We let E), A > 0, be the spectral resolution associated with the
self-adjoint positive operator L on L? := L?*(M,du). Further, we let Fy, A > 0,
denote the spectral resolution associated with /L, i.e. FA = E)\2 As in §3.1] we
are interested in operators of the form f(v/L). Then f(VL fo A)dF)y and the
spectral projectors are defined by Ex = 1 z(L) := fo H[OJ\ (u )dE and

(325) F)\ = H[O’)\](\/Z) Z:/ ﬂ[O’A](U)dFu :/ ﬂ[()’)\](\/a)dEu
0 0
Recall the definition of the spectral spaces ¥4, 1 < p < oo, from [6]:
SRi={feLP:0(WL)f = fforall 6 € C(Ry), =1o0n [0,)]},
and for any compact K C [0, 00),
yho={felP:0(VL)f =fforalld € CF(R.), =1on K}.

We now extend this definition: Given a space Y of measurable functions on M,

Sa=SaY):={feY:0(WL)f=fforalld e CCRy), 6 =1on [0,\]}.

The space Y will usually be obvious from the context and will not be mentioned
explicitly.
We next relate different weighted LP-norms of spectral functions.

Proposition 3.11. Let 0 < p < ¢ < o0 and v € R. Then there exists a constant
¢ > 0 such that

(3.26) [IIBC- A9l < el BEATHPH 290, for g e B, A2 1.

Therefore, assuming in addition the noncollapsing condition (LT) we have X5 C X
and

(3.27) lglly < eX?V/PVD g, g e BR, A= 1.

Proof. Let g € ¥, A > 1, and set § := A~1. Let § € C§°(R,) be so that § = 1 on
[0,1]. Denote briefly H(z,y) := 8(6v/L)(x,y) as the kernel of the operator §(5v/L).
By Theorem Bl it obeys

(3.28)  |H(z,y)| < ¢eDsoraja(z,y) < cy|B(x,8)|” 1(1 + (% y)) Yo > 0.

Suppose 1 < p < co. Clearly, g(z) = 0(6VL)g(z) = [,, H 9(y)du(y), and
using (B28) with o > dp’(]v|+1/p)+d+1 (here 1/p+1/p = 1) Holder s inequality,
and () we obtain

5 < 18090 [ (1HGl1BwH ) ()

i B(z,8)| 0
< el B8 g0l [ T )

< elIB(, ) Pg( )| B(z,0)| 7

Here s := o —dp/'(]7] + 1/p) > d + 1, and for the latter inequality we used (2.9).
Therefore,

(3.29) BC.6) ()l < lllBGO ™ Pg()]p, 1 <p < oo
Thus (326) holds in the case ¢ = 0o

1/p’
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Now let 0 < p < 1. Then we use estimate ([3.29)) with p = 2 to obtain
IIBC, o9 los < €lllBC8) 1 29()l2
— ¢ /M (1B, 0)["|g(@)])* " [| B, )~ ¥1g(@)[] dyu(a))
< clIBC O gONPNBC, O g (157,

1/2

which yields the validity of [329]) for 0 < p < oo.
Finally, we derive [8.26]) in the case 0 < p < g < oo from [B29) (with ~ replaced
by v+ 1/q) as follows:

1/q

I1BC gl = ( /M (1B, )" ¥ g@))"" [|B(,6) "™~ F |g(@)) dp(x))

<clBEAM 01 ([ IBG o gw)ldnto)
< cll[B(8)" Y1 g ()

The proof of (3.20) is complete.
The noncollapsing condition (7)) yields (23]), which along with ([B:26]) leads to

B.21). 0

3.5. Kernel norms. Bounds on the LP-norms of the kernels of operators of the
form 0(6v/L) are developed in §3.6 in [6] and play an important role in the devel-
opment of frames. We present them next in the form we need them.

Theorem 3.12 ([6]). Assume that the reverse doubling condition (L8] is valid,
and let € C=(R,), 6 > 0, suppf C [0, R] for some R > 1, and §*+1(0) = 0,
v=20,1,.... Suppose that either

(1) 6(u) >1 foruel0,1] or

(i7) O(u) > 1 for u € [1,b], where b > 1 is a sufficiently large constant.
Then for 0 < p < oo, 0 < § < min{1, M}, and x € M we have

(330)  alB.o)rt < 06V ), < eal Bla,5)[YP,
where c1,co > 0 are independent of x, 4.

The constant b > 1 that appears in the above theorem will play a distinctive
role in what follows.

4. CONSTRUCTION OF FRAMES

Our goal here is to construct a pair of dual frames whose elements are band
limited and have sub-exponential space localization. This is a major step forward
compared with the frames from [6], where the elements of the second (dual) frame
have limited space localization. We shall utilize the main idea of the construction
in [6] and also adopt most of the notation from [6].

We shall first provide the main ingredients for this construction and then de-
scribe the two main steps of our scheme: (i) Construction of Frame # 1, and (ii)
Construction of a nonstandard dual Frame # 2.
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4.1. Sampling theorem and cubature formula. The main vehicle in construct-
ing frames is a sampling theorem for X3 and a cubature formula for ¥1. Their
realization relies on the nearly exponential localization of operator kernels induced
by smooth cut-off functions ¢ (Theorem BI): If ¢ € C5°(R4), suppy C [0,D],
b>1,0<p<1,and ¢ =1 on [0, 1], then there exists a constant o > 0 such that
for any § > 0 and z,y,2’ € M,

(4.1) p(6VI) (@, y)| < K(0)Dso(z,y) and

(12) 1oV (e.) ~ ¢OVD) ') < K () (A5T) Dy, ol ') <6

Here K(o) > 1 is a constant depending on ¢, o and the other parameters, but
independent of x,y, 2z’ and 4.

The above allows us to establish a Marcinkiewicz-Zygmund inequality for
1 [6, Proposition 4.1]: Given X > 1, let X5 be a mazimal 6—net on M with
§ = AL where 0 < v < 1, and suppose {Ag¢}ecx; is a companion disjoint
partition of M as described in §22. Then for any f € 38,1 < p < oo,

(43) > [ 5@ - f@Pds < Ky eI,
gex, A
and a similar estimate holds when p = co. Here K (o) is the constant from (@Il —
(E2) with o, :=2d+ 1 and ¢® > 1 depends only on cy, C*,c* from (LI) — (L4).
The needed sampling theorem takes the form [6, Theorem 4.2]: Given a con-
stant0 < e < 1, let 0 < v < 1 be so that K(o4)y*c® < e/3. Suppose X is a mazimal
d—net on M and {A¢}ecx; is a companion disjoint partition of M with & := yA™1.
Then for any f € ¥3,

(4.4) L =a)lf13 < D 1AF©F < (L +)lIf 13-

EEXs

The Marcinkiewicz-Zygmund inequality (@3] is also used for the construction
of a cubature formula [6 Theorem 4.4]: Let 0 < v < 1 be selected so that
K(o)y*c® = i. Given \ > 1, suppose X5 is a mazimal 6-net on M with § := yA~ L.
Then there exist positive constants (weights) {wg‘}ge x5 such that

(4.5) | @uta) = 3= wdite) e e s

£EXs
and (2/3)|B(§,0/2)| < wp < 2|B(&,0)], € € X;.

4.2. Construction of Frame # 1. We begin with the construction of a well-
localized frame based on the kernels of spectral operators considered in §3.2

We use Theorem to construct a cut-off function ® with the following prop-
erties: ® € C®(Ry), ®(u) =1 for u € [0,1],0 < ® < 1, and supp @ C [0, b], where
b > 1 is the constant from Theorem

Set W(u) := ®(u) — ®(bu). Clearly, 0 < ¥ < 1 and supp¥ C [b~1,b]. We also
assume that ® is selected so that W(u) > ¢ > 0 for u € [b=3/%,b%/4].

From Theorem it follows that ®(5v/L) and W(6+v/L) are integral operators
whose kernels ®(6v/L)(z,y) and ¥(6v/L)(z,y) have sub-exponential localization,

namely,

(4.6) 2(5VL)(z,y)|, [¥(6VL)(2,9)| < coEsulz,y), @,y € M,
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with

exp { — w(252)")

(1B(z, )|1B(y, 0))*/*

(4.7) Es . (z,y) :=

Here 0 < 8 < 1 is an arbitrary constant (as close to 1 as we wish), and x > 0
and ¢, > 1 are constants depending only on ,b and the constants ¢y, C*, c* from

(1) — (C4). Also, ®(6v'L)(z,y) and ¥(6v/L)(z,y) are Holder continuous, namely,
(4.8) [®(VI)(x,y) — ®EVI) (@, y)] < (67 p(y, ") Esnla,y) if ply,y') <9,
and the same holds for W(§v/L)(x,y). Furthermore, for any m > 1,

(4.9)  |L™®(SVL)(x,y)|, ™Y (VL) (x,y)| < emd 2™ Es(x,y), x,y € M.

We shall regard 8 and « as parameters of our frames, and they will be fixed from
now on.
Set

(4.10) Uo(u) := ®(u) and  V;(u):= V(b 7u), j>1.

Clearly, ¥; € C*(R4), 0 < ¥; < 1, supp Vo C [0,b], supp ¥, C "1, 07T, 5 > 1,
and >0 ¥ (u) =1 for u € Ry. By Corollary 3.9 in [6] (see also Proposition
below) we have the following Littlewood-Paley decomposition:

(4.11) f=> U;(VL)f for feLP, 1<p<oo. (L®:=UCB)
7>0

From above it follows that

1
(4.12) 5 < d Wi u) <1, uweRy.
>

As [0 (VD)FI2 = (VD) £, 95 (V) f) = (Y2(VI) . f), we obtain
LA f||2—/ SR (wd(F. S, ).

Jj=0 =0
and using ([@I2) we get
(4.13) —Ilsz <D IVDFIE < IAIE,  f e L?
7>0

At this point we introduce a constant 0 < & < 1 by
(4.14) £ 1= (8cyey?es®) 7,

where the constant ¢; > 1 is from Lemma B.I0, ¢; > 1 is from Theorem B.9] and
¢e > 11is from ([@6). Pick 0 < v < 1 so that

(4.15) K(o.)y“c® =¢/3,

where K (o,) is the constant from ([@I))-[@2) with o, :=2d 4+ 1 and ¢® > 1 is from
E3).

For any j > 0 let X; C M be a maximal §;—net on M with &; := vb~7=2 and
suppose {Aé}ge x; is a companion disjoint partition of M consisting of measurable
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sets such that B(,6,/2) C Ag C B(&,0;), £ € Xj, as in §221 By the sampling
theorem (§4.1]) and the definition of ¥; it follows that
(416)  (=9)fIF< D IAUFOF <A +a)fIF for f e

£EX;

From the definition of ¥; we have ¥;(vL)f € £2,,, for f € L2, and hence [@I3)
and ([LI0) yield

(4.17) —Ilsz <D AU (VD FEP <2015 fe L

>0 ¢ex;
Observe that

/ F)W5 (V) (€ w)dp(u)

= [ F@BD) (0 = (£ 3,(VD)(-0).
We define the system {1¢} by
(4.18) wg(:c) = ALV (VI)(,6), €€ X, >0,

Write & := U >0 Xj, where equal points from different sets &; will be regarded
as distinct elements of X, so X can be used as an index set. From the above
observation and (7)) it follows that {¢¢}ecx is a frame for L2

We next record the main properties of this system.

Proposition 4.1. (a) Localization: For any 0 < & < k there ezists a constant
¢ > 0 such that for any £ € X;, j >0,

(4.19) [te(2)] < c|B(£ T2 exp { = AV p(2, €))7}

and for any m > 1,

(4.20) L e ()] < em| B(E ™) 720%™ exp { — (W p(x, €))7}
Also, if p(z,y) < b7,

(4.21)

e () = e (y)| < EBE )72V pla, y)* exp { = k(W pl(2, €))7}, > 0.
(b) Norms: If in addition the reverse doubling condition (L8] is valid, then
i1
(4.22) [Vellp ~ [B(E,677)[» 72, 0<p<oo.

(c) Spectral localization: v¢ € X} if £ € Xy and e € Efbj,lvbjﬂ] if € € &,
Jj21,0<p<oo.
(d) The system {t¢} is a frame for L?, namely,

(4.23) ANAB <Y D (v <20fl3, Vf e L™

3>0 fEXj

Proof. From (&8)) and the inequality |B(z,b~7)| < co(1+ b p(&, x))4|B(&,b77)| (see
(Z1))) we derive for £ € X

(e ()] < | B(w, b)Y exp { = v (W p(,y))"}
< @B b )| 2 exp { — & (Y p(z,9))"},
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which confirms (£I9). Estimate ([@20) follows in the same way from (9] and
@21) follows from ([AX); [@22]) follows by Theorem BI2l The spectral localization
is obvious by the definition. Estimates (£23) follow by (I7). O

4.3. Construction of Frame # 2. Here the cardinal problem is to construct a
dual frame to {t¢} with similar space and spectral localization.

The first step in this construction is to introduce two new cut-off functions by
dilating ¥ and ¥; from §4.2

(4.24) To(u) := ®(b 'u) and Ty(u) := &b 2u) — ®(bu) = T (b~ u) — To(b%u).

Clearly, supp 'y C [0,b?], To(u) = 1 for u € [0,b], suppT'y C [b71, 6], Ty (u) =1 for
u € [1,b%],0< Ty, Iy <1, and

(425) Fo(u)\Ifo(u) = \Ifo(’u), I‘l(u)\Ill(u) = \Ill(u).
We shall also need the cut-off function ©(u) := ®(b~3u). Note that supp © C [0, b%],
O(u) =1 for u € [0,b%], and © > 0. Hence, O(u)I';(u) = I'j(u), j =0,1.

The kernels of the operators T'o(6v/L), T'1(6v/L), and ©(5v/L) inherit the lo-

calization and Holder continuity of ®(6v/L)(x,y); see EB) and @S)-E9). More
precisely, if f =Tg or f =17 or f =0, then

(4.26) |F(OVL)(,y)| < coEs(x,y),

(4.27) |fOVI)(,y) = FOVI) (3| < e(6 ply ) Bowla,y) if ply,y) <6,
and for any m € N,
(4.28) IL™ f(0VL) (%, )| < cmd 2™ Es (,y).

The next lemma will be the main tool in constructing Frame # 2.

Lemma 4.2. Given A > 1, let X5 be a mazimal §—net on M with § := yA"'b73 and
suppose {A¢tecx, is a companion disjoint partition of M consisting of measurable
sets such that B(£,0/2) C Ae C B(,9), £ € X5 (22). Set we = Flg|A§| ~
|B(£,8)]. Let T'=Tq or I' =T'1. Then there exists an operator Ty : L?> — L? of the
form T =1d + Sy such that

(a)

1
1—-2¢
b) Sy is an integral operator with kernel Sy(z,y) verifying

[ fll2 < I Tafll2 < Ifllz Vfe L

(
(429) |S)\(‘Iay)| SCE)\*I,K/Q(‘Iay% ‘I’yeM
(C S)\(L2) C Zibg sz =TIy and S)\(L2) C E[zkbfl,)\bﬂ lfr =TI.
(d) For any f € L? such that T(\"'VL)f = f, we have
)

f@) =Y wef(OTAGON@), e M,

£EXs

(4.30

where T\(-,-) is the kernel of the operator T'y := T(A~'V/L).
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Proof. By the sampling theorem in §4.I] we have
(L=a)fI3 < D [AcllF©F < L +e)llflF for f €334,

§EXs
and with we = %|A§| we obtain
(4.31) (L=29)lIfl13 < > wel O < IIfII5 for f € T30
§EXs

Write briefly ©y := ©(A~'v/L) and let ©,(-,-) be the kernel of this operator. Now
consider the positive self-adjoint operator Uy with kernel

Ux(z,y) Z weOx (2, £)OA(€, ).

§EXs
For f € ¥3,, we have (Uxf, f) = D cexs We |£(£)|? and hence, using ([E31),
(4.32) (=29 f13 <UL ) < NSN3 for f e 35

Now, write T'y := T(A™'V/L) and let T'y(x,y) be the kernel of this operator (recall
that I' =Ty or I' = T'y). We introduce one more self-adjoint kernel operator by

Ry :=T5(Id — U)\)Ty = T3 —T\U\T,.
Set V) := I'yU,I'y and denote by Vy(z,y) its kernel. Since O(u)I'(u) = I'(u), we
have
Va(z,y) Z wg/ / Tx(z,u)0x(u, £)Ox(&, v)Tx (v, y)dudv

£EXs

=Y wela (@, ETA(E, y).

§EX;s

By ([#26) and Lemma 310 we obtain

Va(z,y)| < csee® Ex-1 (2, y).
Also, by ([@26) and Theorem 9]

IT2(2, y)| < eyee® Bx-r (2, y).
These two estimates yield

[Ba(2,y)| < (c5e6® + cpeo®) Ex—1 (2,y) < 256566  Ex-1 (2, y).-
To simplify our notation we set ¢, := 2¢ycyco®. Thus we have
(4.33) |Ra (2, y)| < e Bx-1 (2, y).
From the definition of R) we derive
(Baf. f) = IDxfll3 = (UADAf,Daf)  for f e L2
Since I'y(L?) C 3,5, then ©,I'\f =T\ f, and by (@32),
(1= 20)[Dafl3 < (UNDAS. DA f) < IDafI3,  f € L%

Hence,
0< (Baf.f) < 2¢|0af 2 < 22115, f €L,
where for the last inequality we used the fact that ||I'||cc < 1. Therefore,

[Ralla2 <26 <1 and (1 —2¢)[|flla < Ad = R fll2 < [Ifll2,  f € L
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We now define T := (Id — Ry) "' =1d + Y, -, R} =:Id + S,. Clearly,

1
4.34 < ||T; <
(4.34) £l < ITxfll2 < 3=

Ifle VfeL.

IfT\f=f, then
f=T\f = Baf) =Ta(f —Taf + Vaf) = TWVif.
On the other hand, if I'y f = f, then (VAf)(2) = > ¢cn, we f(E)I'a(z, ), and hence
(4.35) @)= wef (T O)(®):
£EXs
By construction
(4.36) Sx:L? = X% D =Tgand Sx:L? = 3%, 1 s if T =T

It remains to establish the space localization of the kernel Sy (z,y) of the oper-
ator Sy. Denoting by R%(z,y) the kernel of R}, we have

1Sx(@,y)] < D |RX (2, 9).
k>1
Evidently, R} = ©,Rf©,. From this, [@26) with f = O, and the fact that
|Rxll2—2 < 2e we obtain, applying Proposition 2.4]
ECO2||R>\||]2€—>2 (25)]66602
/2 =
(1B, A V)I[B A1) (1B A)[B(y, A1)

On the other hand, repeatedly applying Theorem k — 1 times using (£33]) we
obtain

(4.37) |R§(ac,y)\ < 1/2°

(4‘38) ‘Ri(l‘ay)l < Chk_lc*kEz\*l,n(xuy)'

Taking the geometric average of [@37) and E38) (0 <a <b, a < ¢ = a < Vbc)
we get

R (2] < (G0t D2 (2eeien) 2 exp{—§ (Al y)))
A ) — 1/2

(1B, A-)||By, A1) "
S \/50027]6/2E)\*1,){/2(x7y)5

where we used the notation from 7)) and the fact that 2ec;c, = %, which follows
by the selection of € in (@I4]). Now, summing up we arrive at

|S)\(£C,y)‘ < \/ECOE)\*I,N/Q("[;Z/) Z2ik/2 < 3\/ECOE)\—1,N/2(£C,y).
E>1

This completes the proof of the lemma. |

We can now complete the construction of the dual frame. We shall utilize the
functions and operators introduced in §4.2] and above.

Write briefly I'y, := I'o(VL) and T'y, := Iy (b=7+1VL) for j > 1, \; == b=+,
Observe that since T'g(u) = 1 for u € [0,b] and I'1(u) = 1 for u € [1,b%], then
Iy (25) = 3% and Ty, (58,1 p51y) = Sf-1 451y, 4 = 1. On the other hand,
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clearly Wo(-,y) € X2 and U,(-,y) € E[zbj_l pi+1] if j > 1. Therefore, we can apply
Lemma @2 with X; and {Al}ecx, from §E2) and A = \; = b/~ to obtain

(439)  U(VI)(z,y) = Y weWi(&y) T, [Dn, (5 O)](2), we = (1+2) AL

§EX;
By ([#I8) we have 9¢(z) = |A2|1/2\I!j(§,x) for £ € X}, and we now set
(4.40) be(x) = co| AYPT Do, (L ON(), €€y, coi=(1+e)7h

Thus {¢¢ }ecx with X := U;>o Aj is the desired dual frame. Note that (£.39) takes
the form -

(4.41) U (VL) (2,y) = ) ve(y)de(a).
£EX;
We next record the main properties of the dual frame {1;5} They are similar to

the properties of {1¢}.

Theorem 4.3. (a) Representation: For any f € LP, 1 < p < oo, with L> := UCB
we have

(4.42) F=Y (Fde)e = > (frtbe)tbe in LP.
fex fex

(b) Frame: The system {1[15} as well as {¢¢} is a frame for L%, namely, there
exists a constant ¢ > 0 such that

(4.43) A< Y WP <elfl3, vfeL?

fex
(¢) Space localization: For any 0 < & < k/2, m >0, and any £ € X;, j >0,
(4.44) L e ()] < emb™™[B(E, 67772 exp { — &(V p(x, €))7},
and if p(z,y) < b7,
(4.45)  [de(w) —de(y)] < EB(E ™) |72 pla,y))* exp { — AV pla, )"}
(d) Spectral localization: 1 € Xy if £ € Xy and Pe € Efbj,zjbju] if £ € &j,

Jj21,0<p<oo.
(e) Norms: If in addition the reverse doubling condition (LG) is valid, then

(4.46) Ielly ~ B2 "% for 0<p < oc.
Proof. By the definition of 1[)5 in (40) and Lemma we get
(447) Q[}E(x) = CE‘Ag‘l/z [FAJ‘ (:c,ﬁ) + S>\j [F)\J(’g)](x)]a §€ Xja

By the proof of Lemma 4.2 Sy =3, -, Ry = Ry(Id + S)). Hence, for { € &;

L™ (w) = ce| A2 (LT, (2,€)+ L™ R, [T, (- €))(@) + L™ Ry, S, [T, (- €)](2) )
Clearly, the kernel L™ Ry, (z,y) of the operator L™ R}, is given by
L™ Ry, (w,y) = LT3, (2,y) + > wel™Tx, (2,€)T, (6, 9)
EEX;

and just as in the proof of Lemma 4.2 we get |[L™ R, (z,y)| < cb*™E,—1 (x,y).
J

K

Now, this implies ([L44]) using (£26), (£2]), (£29), Theorem B9, and (Z1)). The
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Hélder continuity estimate (£45]) follows by ([@47) using @27) and [@29). The
other claims of the theorem are as in Theorem 5.3 in [6]. ]

4.4. Frames in the case when {E } possess the polynomial property.
The construction of frames with the desired excellent space and spectral localization
is simple and elegant in the case when the spectral spaces ¥3 have the polynomial
property under multiplication: Let {Fy, A > 0} be the spectral resolution associated
with the operator /L. We say that the associated spectral spaces

B ={fel’ Rf=f}
have the polynomial property if there exists a constant a > 1 such that

(4.48) .32 cxl,, de fge¥i—=— fgexl,

The construction begins with the introduction of a pair of cut-off functions
Uy, U € C°°(R,) with the following properties:
supp U C [0,0], supp¥ C [b~1, 0], 0< Uy, ¥ <1,
To(u) >e>0, wel0,b¥4], W(u)>c>0, ue b3/ b3/,

Uo(u) =1 wel0,1],T5(u)+ Y T (b 7u) ueRy,
j>1

and the kernels of the operators ¥o(6v/L) and ¥(5v/L) have sub-exponential local-
ization and Holder continuity as in (4.6)-(3)). Above b > 1 is the constant from
Theorem The existence of functions like these follows by Theorem

Set Wj(u) := W(b~Iu). Then Y, ¥3(u) = 1, u € Ry, which leads to the
following Calderén type decomposition (see Proposition below):
(4.49) f=Y WWL)f fel’, 1<p<oo, (L™:=UCB).

Jj=0

The key observation is that the polynomial property ([4.48]) of the spectral spaces
allows us to discretize the above expansion and as a result to obtain the desired
frame. To be more specific, by construction \I'](\/Z) is a kernel operator whose
kernel has sub-exponential localization and ¥;(v/L)(z,-) € ¥yi+1. Now, choosing
X, (j > 0) to be a maximal d-net on M with & := va='b7=! ~ b7, we get from
([3) a cubature formula of the form

[ r@aut@) = 3 wer(©) tor £ €Sl
EEX;
where 2|B(¢,0/2)| < wje < 2|B(&,0)|. Since W;(vVL)(x, )W (VL)(-,y) € Xy by
([£4])), we can use the cubature formula from above to obtain
@)  GWDHEDE) = [ 9D ¥V g
= > wie (VD) (@, ¥ (VL) (£ ).
EEX;

Now, the frame elements are defined by

(4.51) Ye() = eV (VL) (2,€), €€ X;, j>0.
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As in §432] set X = Uj>0 X;. It will be convenient to use X’ as an index set, and
for this equal points from different X;’s will be regarded as distinct elements of X.

Observe that {1¢}ecx is a tight frame for L. More precisely, for any f € LP,
1 <p< oo, (L*®:=UCB) we have

(452)  f= (fbe)e inLP and ||f3 =" [(f.ve)* for fe L

fex Eex

The convergence in ([{.52) for test functions and distributions is given in Proposi-
tion below. Furthermore, the frame elements ¢ have all other properties of the
elements constructed in §4.2] (see Proposition [£T]).

5. DISTRIBUTIONS

The Besov and Triebel-Lizorkin spaces that will be developed are in general
spaces of distributions. There are some distinctions, however, between the test
functions and distributions that we shall use, depending on whether (M) < oo or
(M) = oco. We shall clarify them in this section.

5.1. Distributions in the case u(M) < co. To introduce distributions we shall
use as test functions the class D of all functions ¢ € (1, D(L™) with topology
induced by

(5.1) Prn(¢) = [IL"ll2, m >0,

or equivalently by

-2 Pi0) 1= max |L79la, m>0.

The norms Pk (¢), m = 0,1,..., are usually more convenient since they form
a directed family of norms. Another alternative is to use the norms

(5-3) P (9) = sup 1+ X)™[(Id = Ex)¢ll2, m=0,1,...,

where as before F, A > 0, is the spectral resolution associated with the operator L.
The equivalence of the norms {P}, () }n>0 and {P*(-) }m>o follows by the identity

ILmg|2 = / Nmd(Exd, ¢) — / Xmd| Erol3.

Indeed, clearly
N1 — Bx)o|3 = X2 / dIESIE < / £2md| B2 = L7

and hence P (¢) < ¢Pr (¢). On the other hand,
2J+1

1
L") = / N Exgli + 3 / N2 d| By g2

i>07%

< [lgll3 + 37 20127 | (1d — By g3,
>0

implying Py, (¢) < ¢Pyr1(9).
In the next proposition we collect some simple facts about test functions.
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Proposition 5.1. (a) D is a Fréchet space.
(b) Xx C D, A >0, and for every ¢ € D, ¢ = limy_,oc Exd in the topology of D.
(¢) If ¢ is in the Schwartz class S(R) of C™ rapidly decaying (with all their
derivatives) functions on R and o?*+1(0) = 0 for v = 0,1,..., then the kernel
o(VL)(z,y) of the operator (/L) belongs to D as a function of x and as a function

of y.

Proof. Part (a) follows by the completeness of L? and the fact that L being a
self-adjoint operator is closed (see the proof of Proposition (5.3 below).
Part (b) is also easy to prove. Indeed, for ¢ > 1 we have for any m > 1

Po(¢— Erg) = Sg%(l +u)™||(Id — E,)(Id — Et)¢)||2
uz
= sup(1 + u)™||(Id — E,)®)||2 < sup cpmpru ' <ct™t,
u>t u>t
and the claimed convergence follows. Part (c) follows by Corollary O
The space D’ of distributions on M is defined as the space of all continuous

linear functionals on D. The pairing of f € D’ and ¢ € D will be denoted by
(f, @) := f(¢); this will be consistent with the inner product (f,g) := fM fgdp in

We shall be dealing with integral operators  of the form H f(z):= [,, H v ) fdu,
where H(z,-) € D for all © € D. We set
(5.4) Hf(z) = (f. H(z,)) for feD,

where on the right f acts on H(z,y) as a function of y.

As is shown in [6], §3.7, in the case pu(M) < oo the spectrum of L is discrete
and hence the spectrum of the operator v/L is discrete as well. Furthermore, the
spectrum of /L is of the form SpecVL = {A1,Aa,... }, where 0 < A\; < Ay < ...
and \,, — co. Also, the eigenspace &, associated with each A € Spec /L is of finite
dimension, say, Ny. Let {exm, : m = 1,2,..., Ny} be an orthonormal basis for £,.
Then Ei(z,y) = Y ger<t Zﬁ;l exm(z)exm(y) is the kernel of the projector Ej.
Therefore, for any distribution f € D’,

(5.5) Ef=(f,BEuz,-)) = > Z frexm)eam ().

0<A<t m=1

Consequently, for any f € D’ we have E f € ¥y = P, -, Ex.
We collect this and some other simple facts about the distributions we introduced
above in the following:

Proposition 5.2. (a) A linear functional f belongs to D' if and only if there exist
m >0 and ¢, > 0 such that

(5.6) [(f; 0| < emPr(@)  for all ¢ €D.
Hence, for any f € D' there exist m > 0 and c¢,, > 0 such that
(5.7) [(Id = Ex)fll2 S en(L+X)7", VA1

(b) For any f € D' we have E\f € Xy, and also (Ex\f,¢) = (f, Ex$) for all
p€D.
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(¢c) For any f € D' we have f = limy_,o Fxf in the distributional sense, i.e.
(5.8) (f,¢) = lim (Exf,¢) = lim (E\f, Exg) forall ¢&D.

(d) If ¢ € C(Ry), o*t1(0) = 0 for v = 0,1,..., and supp ¢ C [0, R], then
for any 6 >0 and f € D' we have p(6v/L)f € YR/s-

Proof. Part (a) follows at once by the fact that the topology in D can be defined
by the norms P (-) from ([E3)). Part (b) follows from (B3]). For part (c) we use
Proposition 5.1 (b) and (b) from above to obtain

<f7 ¢> = t1i>1{.10<f7 Et¢> = tli)rgo<Etfa ¢> = tlizgo<Etf’ Et¢>a

which completes the proof. The proof of part (d) is similar taking into account that
the integral is actually a discrete sum. O

Basic convergence results for distributions will be given in the next subsection.

5.2. Distributions in the case u(M) = oo. In this case the class of test functions
D is defined as the set of all functions ¢ € (), D(L™) such that

(5.9) Prn,e(0) := sup (1 + p(x, 20)) |L™¢(x)| < 00 ¥m, £ > 0.
zeM

Here z¢ € M is selected arbitrarily and fixed once and for all. Clearly, the particular
selection of z¢ in the above definition is not important, since if P, ¢(¢) < oo for
one xg € M, then Py, ¢(¢) < oo for any other selection of zg € M.

It is often more convenient to have a directed family of norms. For this reason
we introduce the following norms on D:

(5.10) me(9) = m Pru().

= ax
0<r<m,0<I<¢

Note that unlike in the case pu(M) < oo, in general, ¥ ¢ D. However, there are
still sufficiently many test functions. This becomes clear from the following:

Proposition 5.3. (a) D is a Fréchet space and D C UCB.

(b) If o is in the Schwartz class S(R), ¢ real-valued, and ¥+ (0) = 0 for
v =0,1,..., then the kernel o(~/L)(z,y) of the operator o(v/L) belongs to D as
a function of x (and as a function of y). Moreover, o(~/L)¢ € D for any ¢ € D.
Also, e"t(z,-) € D and et (-,y) € D, t > 0.

Proof. To prove that D is a Fréchet space we only have to establish the completeness
of D. Let {¢;};>1 be a Cauchy sequence in D, i.e. Py, ¢(¢; — ¢pn) — 0 as j,n — o0
for all m,¢ > 0. Choose £ € N so that £ > (d + 1)/2. Then clearly for any m > 0,

L™ ¢; — L™ ¢nll2 < Prne(dj — dn) /M(l + plz,20)) 4 Ldp(x)

< ¢|B(20,1)|Pm.e(¢j — &n),

where we used ([29). Therefore, |L™¢; — L™¢,|l2 — 0 as j,n — oo, and by the
completeness of L? there exists U,,, € L? such that ||[L™¢; — ¥,,[l2 — 0 as j — oo.
Write ¢ := Uy. From ||¢; —¢ll2 = 0, [[Le; — 1|2 — 0, and the fact that L being a
self-adjoint operator is closed [41], it follows that ¢ € D(L) and ||L¢; — L¢||2 — 0.
Using the same argument inductively we conclude that ¢ € (,, D(L™) and

(5.11) |IL™¢; — L™¢lla =0 as j— oo forall m>0.
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On the other hand, |[L™¢; — L™ ¢ |lcc = Pm,o(¢; —¢n) = 0 as j,n — oo, and from
the completeness of L™ the sequence {L™¢;};>0 converges in L>. This and (G.11))
yield

(5.12) IL™¢; — L™¢lloo >0 asj— oo forall m>0.

In turn, this along with Py, ¢(¢; — ¢n) — 0 as j,n — oo implies Py, ¢(¢p; — @) = 0
as j — oo for all m, ¢ > 0, which confirms the completeness of D.

In Proposition 5.5 (a) below it will be shown that any ¢ € D can be approximated
in L°° by Hélder continuous functions, which implies that ¢ is uniformly continuous
and hence D C UCB.

For the proof of part (b), we note that if ¢ € S(R) and p*+1)(0) = 0 for
v =0,1,..., then by Corollary L™p(V/L) is an integral operator whose kernel
obeys

(5.13) [L™@(VL)(2,y)| < com|B(a, 1) (1 +p(z,y)) 7 forall o >0, m>0.

Therefore, p(vL)(x,-) € D with 2 fixed and ¢(vV'L)(-,y) € D with y fixed. These
follow by (BI3) and the identity

(5.14) " [go(\/f)(a:, 0] = L™p(VL)(z,-) for any fixed z € M.

To prove this, suppose first that ¢ € C§°(R). Then h := p(v'L)(z,-) € J, X and
hence L™h € J, £, which implies h, L™h € (), D(L*). For 0 € |, Z»,

| Emhotdut) = [ (/D)) Lm0 = (VD)L 0)(a)

M

= [p(VL)L™8(z) = [L"p(VL)]f(z) = /M[me(\/z)](xau)9(u)dﬂ(u)~
Here we used that Lm0 = L™0. Now, we derive (5.14) for ¢ € S(R) by a limiting
argument.
In going further, from above it readily follows that ¢(v/L)g € D for any g € D.
Also, Corollary B8 yields e~ *5(z,-) € D and e~ *X(-,y) € D, t > 0. O

As usual the space D’ of distributions on M is defined as the set of all continuous
linear functionals on D, and the pairing of f € D’ and ¢ € D will be denoted by

(f,0) = [(9).

We next record some basic properties of distributions in the case u(M) = oo.

Proposition 5.4. (a) A linear functional f belongs to D' if and only if there exist
m, ¢ >1 and a constant ¢ > 0 such that

(5.15) (f, @) < cPl(9) forall ¢eD.

(b) If o € C(RY), *TV(0) = 0 for v = 0,1,..., and supp p C [0, R], then
for any 6 >0 and f € D" we have p(6v/L)f € Z%/é for 0 < p < 0.

Proof. Part (a) is immediate from the definition of distributions and (b) follows by
the fact that the kernel ¢(6v/L)(x,y) of the operator (6v/L) belongs to D N YRr/s
as a function of z and as a function of y. ]

We now give our main convergence result for distributions and in LP.
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Proposition 5.5. (a) Let ¢ € C*(Ry), ¢ real-valued, suppp C [0,R], R > 0,
©(0) =1, and ) (0) =0 for v > 1. Then for any ¢ € D,

(5.16) ¢ = lim p(0VL)$p in D,
6—0
and for any f € D',

(5.17) f = lim o(6VL)f in D

(b) Let o, € C(Ry), o, ¢ real-valued, supp po C [0,b] and supp ¢ C [b~1, 1]
for some b > 1, and po(N) +3> ;54 o(™IN) =1 for \ € Ry. Set p;(\) = p(b7IN),
J=1; hence 37 ;509;(A) =1 on Ry. Then for any f € D',

(5.18) F=Y (VL) f in D.

=0

(c) Let {t¢}ecx, {1[15}56;( be the pair of frames from §442A {43l Then for any
feD,

(5.19) F= (Fde)ve= ) (five)de in D.

cex cex

Furthermore, (I10) — (&19) hold in LP for any f € LP, 1 < p < oo (L := UCB).

Proof. We shall only consider the case p(M) = oo. The case p(M) < oo is easier.
For the proof of part (a) it suffices to prove only (B.I6]), since then (BI7T) follows
by duality. To prove (5.16) we have to show that for any m, ¢ > 0,

lim Pre(¢ — 0(6VL)) = lim sup (1+ p(z, 20))!|L™[¢ — @(6VL)g)(x)| = 0.

Given m, ¢ > 0, pick the smallest k,r € N so that kK > ¢+ 5d/2 and 2r > k+d + 1.
Set w(A) ;== A72"(1 — ¢(\)). Then 1 — @(dv/A) = 62" w(5v/A)A" and hence

L™6 — p(0VID))(x) = B w(GVI) L™ b(x)
. / w(VE) (2, y) L™ b(y)du(y).
M

From the definition of w we have w € C*(R), w(”)(O) =0 for v >0, and
WP\ < eI+ A7, ANeRy, v>0.

Now, we apply Theorem [3.4] taking into account that ¥ > d+1 and 2r > k+d+1,
to conclude that the kernel w(6v/L)(z,y) of the operator w(dv/L) obeys

|B(z,0)|(1+ 6~ p(z,y))k—4/2"

\w(éﬁ)(az,yﬂ < CkDé,k(zvy) <

By ([2), 1) it readily follows that for 0 < § < 1,

|B(‘T07 1)' < 00(1 + p(l‘,xo))d|B(,’E7 1)‘ < Cgé_d(l + p(m,xo))d\B(x,é)L
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Also, since ¢ € D we have |[L™"¢(x)| < ¢(1+ p(x, z0)) ~*. Putting all of the above
together we get

(14 p(z,20)) | L™ (¢ — 9(6VL)¢] ()|
52r—d (1 + pla, z0))*+d
/ Y= d(2 o) =z n(y)
“TBo, 1)] 1+pwy 2(1+ ply, xo)) =%
052’“ UL+ pla, 29))
= (1 + p(w, z0))k—34/2
Here for the latter estimate we used the fact that k > ¢+ 5d/2 and 2r > d+ 1, and
for the former we used (2I0). This completes the proof of part (a).
To show part (b), set 6(\) := ¢o(A) + ©(b~'\) and note that > 7 _, pr(N) =
O0(b=7A) for j > 1. Then the result follows readily by part (a).
For the proof of part (c) it suffices to show that

(520)  ¢=> (¢ ve)de and ¢= ($,0)t¢ in D forall ¢€D.

£eX cex

<cd—0 as 6—0.

We shall only prove the left-hand side identity in (5.20); the proof of the right-hand
side identity is similar. Let {U;};>0 be from the definition of {¢¢} in §421 Then
> >0 ¥j(u) = 1 for u € Ry, and by part (b) ¢ = Zj>0 ;(VL)$ in D for all
¢ € D. Therefore, to prove the left-hand side identity in (5.20)) it suffices to show
that for each j > 0,

(5.21) U;(VL)p = Y (¢, 0e)be in D V¢ € D.

£EX;

By (@.41)
U;(VL)(2,y) = Y be(y)te(x), z,y € M.

¢eX;

From this and the sub-exponential space localization of 1 () and L™ (x), m > 0,

given in (A19) and [@44) (see also (B.23)-(5.24), it readily follows that

L™ ( = > ()L™ Pe(x), @y €M,
£EX;

and hence

L™U;(VL)gp =Y (the, @)L e, Vo € D.

£eX;

Clearly, to prove (5:21]) it suffices to show that for any £,m > 0 and ¢ € D,

6:2) Jim s (1+p(a) Y[ ottt i) = o

K—oo
veM €€X;: p(E,20)2 K

Given ¢, m > 0, choose 0 > ¢ + 3d + 1. From (£I9) and (£Z4) it follows that

(5.23) [We(@)| < co|B(Eb7) 721+ b p(x, €))7,
(5.24) |L™ e ()] < Comb™™B(E,b77)|72(1+ ¥ p(x, €))7, € € .
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On the other hand, since ¢ € D we have |¢(x)| < ¢(1 + p(x,x)) 7. Therefore,

du(y)
/M e (y)(y)lduly) < C/M |B(&,0=)[2/2(1 + bip(y, €))7 (1 + p(y, z0))°
. e dp(y)
< cB(& b)) /M |B(y,b=)|(1 + b9 p(y, £))°=4(1 + p(y, x0))°

c|B(&, b7/
T (L& x0)) 7

where for the second inequality we used (1)) and for the last inequality (2I2)).
From above and (5.24]),

(EVCE) D S WOl E)
gex;: p(gao)>K "M
ch¥™ (1 + p(w, x0))*
Sy (L+p(& 20))7 (L + (€, 2))7
cb?im

= 2 (L4 p(&;w0))7 =41+ bIp(€,2))° ¢

EEX; p(§0) 2K
ch2im 1 ch2im
< - <
SR 2 T vpa)y "~ 14 K
J

EEX;: p(E,30) > K

—0 as K — oo.

3

Here for the second inequality we used that 1+ p(z,z¢) < (14 p(&, 20))(1+ p(&, z))
and for the last inequality we used (2I5). The above implies (522)), and the proof
of (BI9) is complete.

The convergence in (BI7) — (BI9) in LP for f € LP follows by a standard
argument; see also Theorem 5.3 in [6]. ]

5.3. Distributions on R¢ and T? induced by L = —A. The purpose of this
subsection is to show that in the cases of M = T¢ and M = R? with L = —A (A
being the Laplace operator) the distributions defined as in §§5.I05.2] are just the
classical distributions on the torus T¢ and the tempered distributions on R?.

The case of M = T¢ = R?/Z% and L = —A is quite obvious. The eigenfunctions
of —A are e?™*® [ ¢ 7% Clearly, in this case the class of test functions D defined
in §5.1 consists of all functions ¢ € L2(T%) whose Fourier coefficients ¢(k) obey
|6(k)| < en(1+ |k|)~N for each N > 0. It is easy to see that this is necessary and
sufficient for ¢ € C°>°(T?). Therefore, D = C*°(T9) as in the classical case. For
more details; see e.g. [10]. Observe that the situation with distributions on the
unit sphere S9~1 in R is quite similar; see e.g. [34].

The case of M = R? and L = —A is not so obvious, and since we do not find
the argument in the literature we shall consider it in more detail. Note first that
in this case the class of test functions D defined in §5.2] consists of all functions

(5.25) ¢ € C®(RY) s.t. Pmi(p) := sup (1 + |z]) |A™¢(x)] < 00, Vm, L > 0.
z€R4

Recall that the Schwartz class S on R? consists of all functions ¢ € C*°(R?) such
that ||¢||a.5.00 1= sup, [r29°¢(z)| < oo for all multi-indices a, 3. We shall also need
the semi-norms ||¢||a. 5.2 := [|[720°¢| 2. It is well known that on S the semi-norms
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{l|¢|la,8,00 } are equivalent to the semi-norms {||¢||a.3,2}; see e.g. [4I], Lemma 1,
p. 141.

Proposition 5.6. The classes D (defined in §5.2)) and S on R are the same with
the same topology.

Proof. We only have to prove that D C S, since obviously S C D.

Assume ¢ € D, ie. ¢ € C®(R?) and Py, 4(¢) < oo, Vm, £ > 0. This readily
implies ||z*A™@|ls < oo for all multi-indices & and m > 0. Denoting by ¢(¢) the
Fourier transform of ¢, we infer using Plancherel’s identity that

(5.26) 16%(|€>™) |2 < 00, Va and m > 0.
We claim that this yields
(5.27) 1€%0°3]|2 < 00, Ve, B.

We shall carry out the proof by induction in |3|. Indeed, (527) when |3] = 0 is
immediate from (5:20) with || = 0. Clearly,

(5.28) Oy (1E1*™d(€)) = 2m&[€[*™ 2 3(€) + 6" 0;0(8)
and hence . . R
1EP™0;0ll2 < (105 (€™ @) |2 + 2m| €[> ]2 < oo,
where we used (5.26) and the already established (5.27]) when |8] = 0. The above
yields (B.27) for |5] = 1 and all multi-indices a.

We differentiate (5:28) and use (5.26) and that (5:27) holds for || = 0,1 and all
a’s just as above to show that (B:27)) holds when |8| = 2 and for all multi-indices «.
We complete the proof of ([B.27) by induction.

Applying the inverse Fourier transform we obtain from (B.27))

10°(27¢) |2 < 00, Va5,

In turn, just as above this leads to ||¢|la.p2 = [|[2%0%¢|2 < oo, Va,B. As was
mentioned, the semi-norms {||¢||a,3,2} are equivalent to the semi-norms {||¢|a.3,00 }-
Therefore, ||¢]la.g.00 = |7°0°¢||00 < 00, Vo, 3, and hence D C S. Clearly, the
equivalence of the semi-norms {P,, ¢(¢)} and {||@]la.8,00} follows from the above
considerations. O

6. BESOV SPACES

We shall use the well-known general idea [37.5354] of employing spectral decom-
positions induced by a self-adjoint positive operator to introduce (inhomogeneous)
Besov spaces in the general set-up of this paper. A new point in our development
is that we allow the smoothness to be negative and p < 1.

To better deal with possible anisotropic geometries we introduce two types of
Besov spaces: (i) classical Besov spaces B,, = B, (L), which for s > 0 and p > 1
can be identified as approximation spaces of linear approximation from X% in LP,
and (ii) nonclassical Besov spaces ng = B;Q(L), which for certain indices appear
in nonlinear approximation. We shall utilize real-valued functions ¢g, ¢ € C*°(R)
such that

(6.1) supp o C [0, 2], <p(()2'/+1)(0) =0 for v >0, [po(N)| > ¢>0 for X e [0,2%4],
(6.2) supp C [1/2,2], |o(\)| > ¢ >0 for A e [273/4 23/4).
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Then |po(M)|+ 30,51 [#(277A)[ > ¢ >0, A € Ry Set p;(N) := ©(279N) for j > 1.
Definition 6.1. Let s € R and 0 < p,q < o0.

(1) The Besov space B,, = B, (L) is defined as the set of all f € D’ such that

. a\1/q
(6.3) 1185, = (D (270 VIV O ) ) < oo
J=0
(74) The Besov space B;q = BZQ(L) is defined as the set of all f € D’ such that
—i\)— a\1/q

5, = (X (B2, (VD) Ol ) ) < oo

Jj=0

(6.4) /1

Above the ¢4-norm is replaced by the sup-norm if ¢ = co.

Remark 6.2. A word of caution concerning the smoothness parameter s is in order.

The spaces B, are completely independent of d, but for convenience in the defini-

tion of ||f| 5. in (64) the smoothness parameter s is normalized as if dim M = d,
rq

which, in general, is not the case. However, if |B(z,7)| ~ 7% uniformly in x € M,
like in the classical case on R%, then || f| Bz, ~ |If]

Be .
BP(I

It will be convenient to introduce (quasi-)norms on B,  and B$_, where in the

‘ : pq
spectral decomposition 27 is replaced by & with b > 1 the constant from the

definition of frames in §l (see Theorem B.I2]). Let the real-valued functions &g, ® €
C*(R) obey the conditions

(6.5) supp®q C [0,0], Po(A) =1 for A €[0,1], Bo(X) >e¢>0 for A e [0,b%4],
(6.6) supp® C [b1,b], ®(\)>c¢>0 for Ae [b~¥4 634 and @(, & > 0.
Set ®@;(A) := ®(b~I\) for j > 1. We define

o0 flsg,o = (3 (5712,VD £ ) )
j>0
and
(6.8) [ f] B, (®) = (Z <|HB(.7b*j)rs/dq)j(\/z)f(.)HLP)Q>1/q

Jj=0

with the usual modification when ¢ = oc.

Proposition 6.3. For all admissible indices || - || ps, and || - || s, (2) are equivalent
quasi-norms in By, and || - |
B;q, Consequently, the definitions of B, and B;q are independent of the particular

selection of the functions o, ¢ satisfying (6.1) —(62]).

For the proof of this theorem and in the sequel we shall need an analogue of
Peetre’s inequality which involves the maximal operator from (Z.I8]).

B, and || - |B;q(¢’) are equivalent quasi-norms in

Lemma 6.4. Lett,r >0 and v € R. Then there exists a constant ¢ > 0 such that
for any g € Xy,
1Byt H)["g(y)] 1
6.9 sup <eM(|B(,t7)g)(x), z=€ M.
I () L G
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Proof. Let g € £;. As before, let 0 € C5°(R4) and 6(A\) = 1 for A € [0,1]. Denote
briefly #s := 6(5v/L) with § = ¢! and let Hs(z,y) be its kernel. Evidently,
Hsg = g and hence g(y) = [, Hs(y, 2)g(2)du(z). For the kernel Hs(-,-) we know
from Theorem [B.] that for any o > 0,

(tp(y,u))”
|B(y, t=H)[(1 +tp(y, 2))7

(6.10)  [Hs(y,2) — Hs(u,2)| < ¢y if p(y,u) <t %
Fix 0 < e < 1. Then for y € M,

lgiy)| < inf g(u)|+  sup  |g(y) — g(u)l,

u€B(y,et™1) u€EB(y,et—1)
and hence
Bly, t-1)|" B(y,t~1)|"inf,, 0 lg(u
() = sup B \g%)\ < qup B@ ] Byt H lg(w)]
yer (L+tp(z, )™~ yem (1 +tp(z,y))*r
B(y,t=")[ sup, -1y 19(y) — g(u
s B0 e 0160) =50 _ g )
yeM (1+tp(z,y))
To estimate G1(x) we first observe that
E g ! g dp(w))”
in glu)] < (—_/ g(uw)|” u) ,
u€EB(y,et—1) |B(y,€t 1)‘ B(y,et=1) a

which implies

Bl plz,y) +etH)| 7
Gi(z) < <|B(y,et_1)|(1 + tp(m,y))d>

) 1/r
o <|B(x,p(x,y)+at—1) gy (50010 Mu)) |

Note that if u € B(y,et~!), then B(y,t ') C B(u,2t!) and B(u,t™')C B(y, 2t ).
Therefore, the doubling condition (1) yields

co |But™ 1) < [B(y,t™Y)| < o Blu,t™1)|,  we Bly,et™).
Also, since B(w,p(x,y) + Et_l) C B(y, 2p(z,y) + Et_l)7 then using (21]),
|B(z, p(z,y) +et )| < |B(y, 2p(x,y) +t7")]
< co(l+e " 2p(x,y) + et )Y By, et )|
< ce 1+ tp(x, )" Bly.et ™).

We use the above in (GII) and enlarge the set of integration in (GII) from
B(y,et™') to B(z, p(z,y) + et~ ') to bound G1(x) by

1/r
1
—d/r / —1\|y T
ce” " sup = [B(u, t=7)["|g(u)l) dp(u)
yeM <|B($7P($7y) +et 1)| B(z,p(z,y)+et—1) ( )

< Ca_d/er (lB(’ t_l)l’yg(')) ('T)
Thus
(6.12) Gi(z) < e "M, (IB(.t7H)["g(")) ().
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We next estimate G2(z). Using (6.10) we obtain

sup [g(y) —g(u)| < sup / [Hs(y, 2) = Ho(u, 2)|lg(2)|dp(z)
uwEB(y,et—1) uEB(y,et—1)
1y (tp(y, u)*lg(z)]
<c sup B(y,t™! 1/—u
u€B(y,st*1)| ( )‘ M (1+tp( ))a ()
<C€a B 7t71 71/ ‘g(z)| d 2),
= B f L T o, )
and choosing o = d/r + d|y| + d + 1 we get
|B(y,t~)|"]g(2)|
Go(z) < ce® su / du(z).
0= S Bt s (Lt b2 1+ toly, v )
Clearly,
L+tp(x,2) < (L+tp(y,2)) (1 + tp(y, 2)),
and by (Z.),

co (L+tp(y, 2)) Bzt ) < By, t™)| < co(L+tp(y, 2))?| Bz, t7H)].

We use these in the above estimate of Ga(z) to obtain

|y
() < e sup 5 / |B(z,t7)["]g(2)] du()
yeM \B(y,t N (14 tp(x, )),,,(1+tp(y7z))d+1
|B(z,t71)|"]g(2)| 1
< de” su — su
SO 2N (Lt tp(a,2)E wem |B<y,t—1>\ wr (LF tp(y, 2)) 371
< 'e*G(x),

dp(z)

where for the last inequality we used ([2.9]). From this and (612 we infer
Gla) < cem "M, (IB(t)[g()) (2) + " G(a).

Here the constants ¢ and ¢” are independent of . Consequently, choosing € so that

’e* < 1/2, we arrive at estimate ([€.9)). O

Proof of Proposition [63l. We shall only prove the equivalence of | - ||z. and
prq

Il - ||qu(<b). The proof of the equivalence of || - [|g; and || - [|ps, (#) is similar.

It is easy to see (e.g. [14]) that there exist functions @, ® € C§°(Ry) with the
properties of ®¢, ® from (GA)-([G6) such that

A +Y SO INRBTIN) =1, AeR,.
jz1
Set ®;(A) := ®(b77A), j > 1. Then ;- ®;(A)®;(A) = 1. By Proposition B3 it
follows that for any f € D/,
szij(\/f)Qy(\/f)f in 'D/.
j=0

Assume 1 < b < 2 (the case b > 2 is similar) and let j > 1. Evidently, there exist
¢ > 1 (depending only on b) and m > 1 such that [2/71 27F1] C [pm—1 pmHi+l]
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Then 27 ~ b™. Using the above we have

m-+£

pi(VL)f(x) = Z 0i(VL)®, (VL)®, (VL) f(x)

m+l

-3 / Ko ()8, (VI) £(5),

where Kj,(-,-) is the kernel of the operator ¢;(vL)®,(v/L).
Choose 0 < r < pand o > |s| +d/r +3d/2+ 1. By Theorem [3.I] we have the
following bounds on the kernels of the operators ¢;(v/L) and &, (v/L):

i (VL) (2,9)| < eDyes o (2,y) < eDyov g (2.y), |80 (VL)(2,y)| < eDyov o(@,y),
and applying (2.8)) we obtain

Ko (@,y)| < ¢ Dy-v o (2,y) < el Bz, b")| 7140 p(a, )" 7F2, m < v <m+t,
which implies

l0;(VL)®,(VL)®, (VL) f(z)| < )f ()|

1B(z, b \/ 1+bV ))v—d/?d“(y)'

Observe that supp @, C [0,b**!] and, therefore, by Proposition and Proposi-
tion 5.4, ®,(VL)f € Eyv+1. Now, using this, (LZ) and ) we get

|B(z, 2*j)|75/dls0j(\/f)f(x)l

m-£ _
e, (VL) f ()]
<CZ|Bxb |/ 1+bv( y))o—d/2 )

m-+£
™ s/dl‘I’ VL) f ()]
<CVZ |B(x, b |/ 1+bV L))o= a7 )

m—+L Cu—1\|—
[Bly, b= s/d|<1> vl [ 1By
<e 3 s T, T e g
m-£
<e 3 M (IBE OB, (VD) () ) (o),

Here for the last inequality we used Lemma and (Z9). Finally, applying the
maximal inequality (ZI9)) for individual functions (0 < r < p) we get

m+-£

I1BC. 27/ o, (VI Ol < e 7 || Mo (1IBCb~ ) 2, (VD) () )|
m—+L

<cZ I1B( o)~/ (VD) F()llp, 5> 1.

Just as above a similar estimate is proved for j = 0. Taking into account that /¢
5. < cllfll e . In the same manner
BF‘Z qu (é)

Bz (@) < CHfHB’;q' 0

one proves the estimate || f|
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Proposition 6.5. The Besov spaces B, and B;q are quasi-Banach spaces which
are continuously embedded in D’. More precisely, for all admissible indices s,p, q,
we have:

(a) If (M) < oo, then

(6.13) (0 < el fllzs, Po(9), f € Bl $€D,
provided 2m > d(m 1) — s, and
(6.14) (£, 0) < cllflig, Pr(@). f€Byy, €D,

provided 2m > max {O d(m 1) — s}
(b) If (M) = oo, then

(6.15) [(f, o) < cllf By, Prme(®), fe€ By, ¢€D,

1) —s and { > 2d, and

Bb ml((b)u fEB;q, ¢€D7

d(5 —1)| + s}

Proof. Observe first that the completeness of By, and B;q follows readily by the
continuous embedding of By, and qu in D’. We shall only prove the continuous

provided 2m > d(m

(6.16) [(f, o) < cll f]
provided 2m > max {O d(m ) — s}

embedding of B;q in D;n,f in the case when p(M) = co. All other cases are easier
and we skip the details.

Choose real-valued o, € C§°(R4) so that supppo C [0,2], ¢o(A) = 1 for
A € [0,1], suppp C [271,2], and @2(N) + >t ©?(279)) =1 for A € R;. Set
©j(A) == (277X) for j > 1. Then >i>0 @3(A\) = 1 for A € Ry and hence, using
Proposition [5.5] for any f € D',
(6.17) F=>Y_@(VL)f D

320

Also, observe that {¢;};>0 are just like the functions in the definition of B;q and
can be used to define an equivalent norm on B;q as in (6.8). From (617) we get
(618)  (f,0) =D (KS(VD)f.0) =D (@;(VD)f.9;(VL)$), ¢ €D.

Jj=20 Jj=0

We next estimate |p;(v/L)¢(x)], j > 1. To this end we set w(A) := A~2"p(N).

Then ¢, (vVA) = 272 w(277/A)A?"™ and hence
P (VD) =2 [ W@ VD) )L o)),
Clearly, w € C§°(R4) and suppw C [1/2,2]. Therefore, by Theorem B.1]
w@ VL) (2,y)| < e|Bly,279)| 7 (1 + 2 pla, ),

where £ > 2d is from the assumption in (b). On the other hand, since ¢ € D we
have |L™¢(z)| < ¢(1+ p(z,20)) "“Pim.e(¢). From the above we obtain

o du(y)
lp; (VL)p(x)| < 272™IP,, 4(9) /M 1B(y,29)|(1+ 2 p(z, ) (1 + p(y, 70))"

(6.19) < 272MIP, () (1 + plz,20)) "
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Here for the last inequality we used ([2.12) and the fact that £ > 2d.

We are now prepared to estimate the inner products in (6I8]). We consider two
cases:
Case 1: 1 < p < oo. Then applying Hélder’s inequality (1/p + 1/p’ = 1) we get

< [ 1B 2 s (VD) B 27) s (VE)o ) d(a)
(6.20) M ' 4
< B 27) =/, (VD | B 27 s (VE)olly

<elfllg, 1B, 27 %%;(VD)gl, 5> 0.
Using (6.19) we obtain for j > 1

Bz, 279)| 1
Bl
(1+ p(x, 30))"

Two cases present themselves here depending on whether s > 0 or s <0. If s > 0,
then by (ZI) we have |B(z,277)| < |B(x,1)| < co(1 + p(z,20))% B(x0,1)|, and
hence

Q= 1B, 2) 1, (VIS < 22 Pty [

dp()
(1+ p(x, zo)) =)'

Q < @2 P, (B |B(ro, 1)/ /
M

< 272 P (6) | Bz, 1)/,

where for the last inequality we used (Z9) and the fact that (¢ — s)p’ > d, which
follows from ¢ > |d(1/p — 1)| + |s|. In the case s < 0 we use the fact that

| B(wo, 1)| < co(1+ p(,20))?|B(a,1)] < g27(1 + p(x,20))!|B(,277)],
which is immediate from ([2]), [21J), to obtain

Q < 27 ICmEI D, ()P | B(zo, 1>|S”’/d/
M

< 27 ICmEID ()| Bz, 1)[P/ T

Here we again used (29) and the fact that (£+s)p’ > d due to £ > |d(1/p—1)|+]s|.
From the above estimates on @ and ([620) we get for j > 1 that
(6.21)

(i (VL) £ 05 (VL)§)| < camd@mtmintedD| By, 1)/ V2| £ 5, P, ().

It remains to consider the easier case when j = 0. Applying Theorem Bl to ¢¢
and since ¢ € D, we obtain

loo(VL)(@,y)| < | By, )| (1+p(z,y)) " and ()| <c(1+p(z,20)) “Poe(),

which as in (EI9) imply |po(VL)p(x)| < c(1 + p(z,20)) “Poe(¢p). As above this
leads to

dp(z)
(1+ p(z,20)) )"

B, DI/ (VL)glly < clBlao, 1)/ 71PPy4(9).
In turn, this and ([G20) yield ([G2I) with m = 0 for j = 0.
Summing up estimates ([6.21), taking into account (6.I8]) and the fact that 2m >
max{0, —s}, we arrive at (6.10).
Case 2: 0 < p < 1. Setting v :=s/d—1/p+ 1, we have for ¢ € D and j > 1,

(i (VD) £,0,(VD)9)| < 1B, 279)[ 70, (VL) fIlL NI B(2,279) " 05 (VL) .
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Since goj(\/f)f € Ygj+1, Proposition B.I1] yields
1B 279) "o (VL) fllx < ell| B 279)| 7P, (VI) I
= c[|B(,27)[ "%, (VI) fll

On the other hand by (6.19)
B o B(z,279)|”
R:=|B(, 2N ["0; (VL)oo < 272 P,, su ABle, 27)1
1B 27) 05 (VI)llow < 9 30 A o mo))E

As in the estimation of @ above we obtain R < ¢272™IP,, ¢(¢)|B(zo,1)[7 if v > 0
and R < 277@m+dNP . (4)|B(xo,1)|7 if v < 0. Here we used the fact that
£ > d|y| due to £ > |d(1/p — 1)| + |s|. Therefore, for j > 1,

(@i (VL) f,0;(VL)$)| < c27/ Cmamin{0dr)| B(g,, 1) Pin,e(0)-
Now we complete the proof of ([GI6]) just as in the case 1 < p < oo, taking into
account that 2m > —min{0, dvy} = max{0,d(1/p — 1) — s}. O

6.1. Heat kernel characterization of Besov spaces. We shall show that the
Besov spaces B;q and B,, can be equivalently defined by directly using the heat
kernel when p is restricted to 1 < p < co.

Definition 6.6. Given s € R, let m be the smallest m € Z, such that m > s. We
define

- ! —s m/2 — adt\1/q
113,y 2= lle™  Fllp + / [ 2l eny et g, )

S — s m _ dt
gy = BG4 gl 4 ([ Bty o)
with the usual modification when ¢ = oo

Theorem 6.7. Suppose s e R, 1 <p<oo0,0<qg<o0, andm > s, méeZy, as in
the above definition. Let f € D'. Then we have:

(a) f € B,, if and only ife "l f e LP and ||f|
then || flls;, ~ 1115, co)-

(b) f € By, if and only if |B(:, |*/de=Lf € LP and ||f]

if € B, then |1fl15,, ~ 1f1155

B3, (H) < 00. Moreover, if f € By,

Bs, ) < 0o Moreover,

Proof. We shall only prove part (b); the proof of part (a) is easier and will be
omitted. Let ¢, ¢, and ¢;, j > 1, be precisely as in the proof of Proposition
Then for any f € D" we have f =3, @?(\/f)f, and hence

|B(-, 1/2) |75/ (¢ D)™/ 2=t f = Z |B(-, t1/2)|7s/4(tLy™/2e 1L 2 VI)f = ZF
320 3>0
It is readily seen that for j > 1,
Fj = Bty e o2V L) p 2V f
= |B(-, "3~/ (2 VL)p(2 VL),
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where w(\) := (t)\24j)m/26*”‘24j<p()\). As e C™, suppp C [3,2],and 0 < p < 1
we have, by Theorem [3.1]

(6.22) [w(2 V) (2,y)| < e (#4926 | B(w, 279) |7 (1420 p(z,y)) 7, Yo > 0,
On the other hand, (L2) and 2.1)) easily imply
(6.23)  [Bla,t"/%)| 7 < e(1+ (¢47) ") (1 + 27 p(a, )| By, 279)[ /7.

To this end one has to consider four cases, depending on whether t'/2 < 277 or
t1/2 > 277 and whether s > 0 or s < 0. Combining the above with ([6.22]) we obtain
(6.24)

s . m j B(y,279)|~1 —Ii/L
|Fj(x)] < (14 (t47)72) (t47) T et /M ||Bgz, ;J_;:(l fgp(x_y))){(yly

We now choose ¢ > |s| + d + 1 and invoke Proposition [Z3] to obtain
[Fjllp < e(U+ (t49)=/2) @)™ 2 | BC,279)| iy (VI fllp 52 1
One similarly obtains the estimate
1Eolly < elllB(, 1)1~ %00 (VL) /|-
Putting the above estimates together we obtain for 0 < ¢ <1
I1BC, ¢/2)| =Ly e 1],
< e [(#)m2 4 (#7) 2| B, 279) [T, (V) £l

Jj=0

Let hj(t) = [(t47)™/2 4 (t47)m=9)/2]e="" and b; := ||| B(-,277)|~3;(VI) fllp.
Then from above

/ H|B t1/2)| S/d(tL)m/2 —thqut)l/q (/ (Zh )th>1/q

7>0

2/4 B Zh )th)l/qSC(Z(Zaj—Vbj)q)l/q

v>0 >0 v>0 >0

du(y).

Here

aj_y = max{hj(t) te [4—y—1’4—u]} < (4(j—y)m/2 +4(j—u)(m—s)/2)e_4jfu—1
and we set a, 1= (4/™/2 4 qv(m=9)/2)=4""" 1, c 7,

Three cases present themselves here, depending on whether ¢ = 00, 1 < ¢ < o0

or 0 < g < 1. The case when ¢ = oo is obvious. If 1 < ¢ < oo, we apply Young’s
inequality to the convolution of the above sequences to obtain

(S (Sown)) " e a( o) <o)
- ver 320 3>0

where we used the fact that . ., a, < c duetom >s. If 0 < ¢ <1, we apply
the ¢-triangle inequality and obtain

RIIINLED 3) SMED ' S BT O]

v>0 3520 v>035>0 VEZL 7>0 7>0
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Here we used the fact that ) ., af < c. In both cases, we get

/ H|B (-, £1/2)|~/2(t D)™/ 2¢ ,thqut) (qu)

It is easier to show that |||B(-,1)|=%/%e~Lf|, < c||f]

the footsteps of the above proof and will be omitted. Combining the above two
estimates we get || f]

B, The proof follows in

Bs (H) =
pq

We next prove an estimate in the opposite direction. We only consider the case

when 0 < g < oo; the case ¢ = oo is easier. Assume that oo, ¢, and ¢;, j > 1, are

as in the definition of B;q (Definition [6.1]). We can write

|B(2,277)|7*/ 40, (VL) f(x)
= [B(z,277)[7*/(tL) " e o2V (tL) " e f (x)

= |B(z,277)| /w2 VL) (tL)" 2 f(2),

where w()) := (EA249)=m/2e=tN*¥ o (\) and ¢ € [477,479+1]. Since supp ¢ C [1/2,2]
we have ||w||e < ¢, and by Theorem [3.]

w@IVL) (@, y)| < ol Bz, 277) 7 (1 + 27 p(2,y)) "

From @) |B(z,277)| /4 < ¢(1 + 2p(a,y)) " | By, t1/2)|72/%, t € [479,47+1),
Therefore,
(6.25)

. /2\|—s/d m/2,—t
B2 ) (D) <c [ 'iyflj).)'(l o : : ))f,f(j{)'du(y).
x,277 Tp(T,y

Choosing o > |s| + d + 1 and applying Proposition 23] we get
|| |B(’ 2—j)‘—s/d¢j(\/z)f“p < CH |B(., t1/2)|—S/d(tL)7H/2e—thHp

for t € [477,47711], and hence for j > 1,

74—+l

[1B(-,279)|/40;,(VI) f||; < C/ﬁ

Also, one easily obtains

B, DI~ “o0(VL) fllp < €lll B, 1)~/ e £l

dt
HlB t1/2)‘ s/d(tL)m/Z —thHq

Summing up the former estimates for j = 1,2,... and using the result and the
latter estimate in the definition of || f||5. we get || fllz. < ¢l f]
pPq prq

By, ()" -

Remark 6.8. From the above proof it easily follows that whenever f is a function
the terms [~ f||, and ||| B(:,1)|~*/%e~L f||, in Definition can be replaced by
11l and | B(, 1)|~*/4fl],, respectively.

Also, observe that in the case when s > 0 Theorem (a) follows readily from
the characterization of B, by means of linear approximation from P see [6], §6.1.
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6.2. Frame decomposition of Besov spaces. Our primary goal here is to show
that the Besov spaces introduced by Definition can be characterized in terms
of respective sequence norms of the frame coefficients of distributions, using the
frames from §4l

Everywhere in this subsection {t)¢ }eex, {1;5}56 x will be the pair of dual frames
from §YLALT X := (J;5,A; will denote the sets of the centers of the frame
elements and {A¢}¢cx; will be the associated partitions of M.

Our first order of business is to introduce the sequence spaces by, and Ef)q.

Definition 6.9. Let s € R and 0 < p, ¢ < oo.
(a) by, is defined as the space of all complex-valued sequences a := {a¢ }¢cx such
that

by, = (Z bjsq[z (|B(§’b—j)‘l/p—1/2|a5|)l’} q/p) 1/q .

3=>0 £EX;

(6.26) la

(b) l;;q is defined as the space of all complex-valued sequences a := {a¢}ecx such

that
b, = (Z[Z (\B(&bfj)|fs/d+1/p71/2|a£|)p} q/p)l/q -

j>0 £eX;

(6.27) la

Above as usual the /P or £ norm is replaced by the sup-norm if p = co or ¢ = co.

In our further analysis we shall use the “analysis” and “synthesis” operators
defined by

(6.28) Sy f = {(f.de)leexr and Ty :{acteexr = Y acte.
fex

Here the roles of {t)¢} and {¢)¢} can be interchanged.

Theorem 6.10. Let s € R and 0 < p,q < oo. (a) The operators Sy Bpg = bpg
and Ty : by, — By, are bounded and Ty o SJ) = Id on B,,. Consequently, for
f € D" we have f € By, if and only if {(f, Ve)beex € bpy- Moreover, if f € B,
then || fl| B;, ~ [{{f,e)}

g, ~ (00 [ s deywelr] ™)

7>0 fex;

q’

bs, and under the reverse doubling condition (L.G)

(6.29) I1/1

(b) J:he operators S, iB;q — B;f;q aZLd Ty : BZ({_) B;q are bounded and 7:1/1 0S; =
Id on B,,. Hence, [ € B, <= {(f,v¥¢)}ecx € b,. Furthermore, if f € B, , then

1£1155, ~ I, de)}

5, ~ (S (1Be.b s ewsel) ]

7>0 fEXj

bs, and under the reverse doubling condition (IL.G)

1/q

(6.30) /]

Above in (a) and (b) the roles of {1h¢} and {1b¢} can be interchanged.

To prove this theorem we need some technical results which will be presented
next.
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Definition 6.11. For any set of complex numbers {a¢}ecx; (j > 0) we define

.. |an| 4
(631) a£ = ZX m fOI‘ §€ X],

where 7 > 1 is a sufficiently large constant that will be selected later on.

Lemma 6.12. Let 0 < r < 1 and assume that 7 in definition [6.31)) of a; obeys
7 >d/r. Then for any set of complex numbers {a¢}ecx; (j > 0) we have

(6.32) Zaﬁﬂf“s < eM, ( Z |an\]l,4n)(a:)7 x € M.

feX 7]€Xj
Proof. Fix £ € X; and set Sp := {n € X; : p(&,n) < c°b7} and

Sy i =1{n € X; : oI < p(&,m) < CbTIT™Y,
where ¢® := vb~! with  being the constant from the construction of the frames in
42 Let B, := B(&,c®(b™ + 1)b77). Note that A,, C B, if n € Se, 0 < £ < m,
and hence, using (2],

[Bul _ Bl 2¢°(06™ + 1))

(0:33) A = ez =7
We have
1/
<3 Y eyl <e S0 (Y o)
m>0 NESm m>0 NESm
and using ([G33)
/
a;gczbw(/ [ faglia, 71, )
m>0 NESm
mT ‘B | 1/r r 1/r
< CZ b~ |B ‘ / |Am|) |an|ﬂAn} dﬂ(y))
1/r
<sz>0b—m(‘r d/r) \B |/ Z |an|]l,4} dp( ))
<eM (3 Jagla, ) @) 36 < oM (D faglta, ) (@),
nEX; m>0 neX;
for « € A¢, which confirms (6.32)). O

Lemma 6.13. Let 0 < p < 0o and v € R. Then for any g € Epi+2, j > 0,

O30 (3 1B sup lola el) " < ellBC.b) g o

EEX;
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Proof. Let 0 < r < p. We have

D IBE D) sup [g(x)[P|Ae]
wEAg

cex;
1B(z, b= |g(z)] \*

B, b79)[")g(x)|\”
= C/M (“ﬁ 1+ bﬂ‘p(x,y»d/r) it

< c/M [MT(IB(-,b*j)l”g)(y)]pdu(y)

<c [ [1Bws e dut,

which confirms (6.34]). Here for the first inequality we used the fact that A C
B(&,¢b77) and |B(&,b77)| ~ |B(z,b77)| if 2 € Ag, for the third we used Lemma[6.4]
and for the last inequality we used the boundedness of the maximal operator M,
on LP when r < p. |

Proof of Theorem [6.10. We shall only carry out the proof for the spaces qu. Also,
we only consider the case when p, g < oco. The other cases are similar.

We first prove the boundedness of the synthesis operator Ty, : b, — B,,. To this
end we shall first prove it for finitely supported sequences and then extend it to the
general case. Let a = {a¢}¢cx be a finitely supported sequence and set f := Tya =
> ¢ex aehe. We shall use the norm on B;q defined in (6.8]) (see Proposition [6.3).
We have

(I)j(\/Z)f = Z Z afq)j(\/Z)i/Jg with X_l = (Z)

Choose r and o so that 0 < r < p and o > |s| + d/r + 5d/2 + 1. By Theorem [31]
we have the following bound on the kernel ®;(v/L)(z,y) of the operator ®;(v/L):

‘q)](\/z)(xa y)' S CDb*j,a('/Ea y) S CDb*"",a('Ta y)
< e[B(y, b)) A+ 0" p(,y) TR, jo1<m <G+ L
On the other hand, by [@I9) it follows that
(e ()] < el B&0™™) T2 (1+0"p(w,€) 7, €€ X

Therefore, for £ € X, j—1<m < j+1,

@, (VDic(o) = | [ & (/D n)ve)inty)

du(y)

= [B(§,b=m)['/2 /M 1By, b=™)[(1+ b p(x, )7 =42 (1 + 5™ p(y, £))°

= TBEs M + bl )
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Here for the last inequality we used ([Z.11]) and that ¢ > 5d/2. From the above we
infer

Jj+1

Bz, b~ 7)| >/
Bla.b—9)| /@, <e Jael|
| ( )| ‘ ( | mzjlfezx |B £,b—m |1/2(1+bm (1, 5))0 d/2

Jj+1 —iN|—s/d—
Jagl | B(&,b~7)|~*/4~1/2
¢ Z Z (14 bmp(x, €))o—lsl=d/2 v e M.

Let Xy = {n € X 1 € Ay} and set Q¢ := |ag||B(£,067™)|7%/471/2. Then
the above yields

j+1

Bl ) e, (VD@ e Y, Y Y tlPED I

d/r+1
m=j—1n€Xy, » E€EX, 1+bm 77 g)) "

Jj+1 Jj+1
—e Y Y Qe Y Y Qlale
m=j—1neXy, » m=j—1neXx,,
Jj+1
<c y. MT( > QnﬂAn)(fﬂ)
m=j—1 NEXm

where we used the fact that o > |s| + d/r + d/2 + 1 and for the last inequality we
applied Lemma with 7 = d/r + 1. Therefore,

B, o=@ (VL) f )l

Jj+1
<o ¥ (S ol

=j—1 NEXm

j+1

o § (5 sy )

m=j—1 nEX,,

Here for the second inequality we used the maximal inequality ([2I9) and for the
last inequality that |A,| ~ |B(n,b~"™)| for n € X,,,. We insert the above in the
Besov norm from (€.8) to obtain [|f 5. (g j: - Thus

rq rq

(6.35) || Typallz: (@) < cllallg. for any finitely supported sequence a = {ac}.
Pq Pq :

Now let @ = {ac}ecx be an arbitrary sequence in ng. We arbitrarily order the

elements of {ag¢}ecx in a sequence with indices 1,2,... and denote by X7 C X

the indices in & of the first j elements of the sequence. Since [[{a¢}|l;. < oo it
rq

readily follows that {a¢}ecxi — {ac}ecn in ng as j — oo. This and ([€35]) implies
that the series E§€ x agte converges in the norm of By, and by the continuous
embedding of By, into D’ (Proposition [6.5)) it converges in D’ as well. Therefore,
Tya = Y ¢cr agte is well defined for a = {a¢} € by,. The boundedness of the
operator Ty, : by, — B, follows by a simple limiting argument from ©39).
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We now turn to the proof of the boundedness of the operator SJ) : B;q — Z);q.
Let f € By,. From (4.40) or [{.47) it follows that

(f ) = co| A2 [T, F(€) + 83, T, £(€)],

and hence
ST (BB 2 (1 5 ) < e 3 IBEH) A, £ Ael
£EX; £eX;
e Y [BE L) TS\ D O |Ael.
cex;

Since I'y, f € ¥yi+2 we can apply Lemma [6.13 to obtain

(6.36) D IBELT)T DN F(E)P Al < ell|BC,b79)| 79T, £,
£EX;
To estimate the second sum above we denote g;(z) := |B(z,b77)|~*/T'y, f(z) and

choose r and ¢ so that 0 < r < p and ¢ > |s| + d/r + 3d/2 + 1. Observe that by
Lemma 2] (b) it follows that

|S)\j (l‘,y)‘ < CDbj,a(l‘vy) < C‘B(‘xab_j)‘_l(l + bjp(xay))_a+d/2a
and hence
(6.37)
[B(&,b77)|7*/4S5, T, £(£)]

/ T, f(y)||B(€,b-9)| /41
M (1+ bjp(&y))afd/z

<c

du(y)

19;(y)] IB(€,b~9)|~!
< Cysgl\ljl (1+bip(€,y))o—Isl=3d/2-1 /M (1+ bip(€, )+t (y)
< ¢ sup ‘gj( vl < eM(g)(2), z€ Ae

vem (14 p(z,y)4m —

Here for the second inequality we used the fact that
[B(&,679)[7%* < e(1 4+ p(&,9))*|B(y, b7/,

which follows by (Z1I), for the third inequality we used o > |s| + d/r +3d/2 + 1
and ([Z9)), and for the last inequality we applied Lemma Thus, applying the
maximal inequality,

ST B(E b8y Ty, FEP A < / Pdu(z)

§EX; eX;
= [ IMAIBEB T, ()] ) < el B0 1,
From this and (€36]) we infer
S (1Bl b=/ =21, ) ) < el [BC b7 £l G2 0.

EEX;

Inserting this in the qu-norm we get [|{(f,Ve)} b <cllfllps oy < cllfllps , where
N raq pra prq
we used the fact that the functions I';, j > 0, can be used to define an equivalent
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norm in By, (see Proposition [6.3). Thus the boundedness of the operator S, is
established.
The equality Ty o S; = Id on B;q follows by Proposition ().
Assuming the reverse doubling condition (L), we have
[ellp ~ 1B, 077712
from ([A22)), which leads to ([630]). O

6.3. Embedding of Besov spaces. Here we show that the Besov spaces B, and

B, embed “correctly”.

Proposition 6.14. Let 0 < p<p; <00, 0 < q¢<q <00, —00 < 81 < 5 < 00.
Then we have the continuous embeddings

(6.38) B, C By, and B, C B3, if s/d—1/p=si/d—1/p1.

P1qa
Here for the left-hand side embedding we assume in addition the noncollapsing

condition (L.

Proof. This assertion follows easily by Proposition BIIl Let {¢;};>0 be the func-
tions from the definition of Besov spaces (Definition B.Il). Given f € B3, we

P1q1
evidently have ¢, (VL) f € $g+1, and using (3:26)
I1B(,27)[ = 0 (VI) f()lpy < el BC 27977 0(VI) ()l

< e|B(, 2797 B e (V) FOl
< elllBC, 27D (VL) ()llp,
which readily implies || f| By, | fll 5= , and hence the right-hand embedding in
P1a pa

(63]) holds. The left-hand side embedding in ([6.38) follows in the same manner
using (3:271). O

6.4. Characterization of Besov spaces via linear approximation from »!.
It is natural and easy to characterize the Besov spaces B,  with s > 0 and p > 1 by
means of linear approximation from ¥, ¢ > 1. In fact, in this case the Besov space
B, is the same as the respective approximation space A}, associated with linear
approximation from X¥. We refer the reader to [6], §3.5 and §6.1, for a detailed
account of this relationship and more.

6.5. Application of Besov spaces to nonlinear approximation. Our aim here
is to deploy the Besov spaces to nonlinear approximation. We shall consider the
nonlinear n-term approximation from the frame {,, },cx defined in §4.2 with dual

frame {1[)7,}776;( from §4.3] or the tight frame {¢,},cx from §4.41
In this part, we make the additional assumption that the reverse doubling con-

dition (6] is valid, and hence ([22) holds.
Denote by €, the nonlinear set of all functions g of the form

g= Z a§¢§7

EeN,

where A,, C X, #A,, <n, and A, may vary with g. We let 0,,(f), denote the error
of best LP-approximation to f € LP(M,du) from €, i.e.

ou(f)y = inf I1F =l
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The approximation will take place in LP; 1 < p < oco. Suppose s > 0 and let
1/7:=s/d+ 1/p. The Besov space

B} := B},
will play a prominent role.

We shall utilize the representation of functions in LP via {1y,}ycx, given in
Theorem [£.3] and Proposition For any f e LP, 1 <p < oo,

(6.39) F=> (fibe)be in LP.

fex

It is readily seen that Theorem and [|[Yell, ~ |B(&b79)|[V/P~2 for ¢ € X,
j>0,0<p< oo (see (f22)) imply the following representation of the norm in
B::

5o~ (S dewel)”” = N ().

tex

(6.40) /1

The next embedding result shows the importance of the spaces Bf. for nonlinear
n-term approximation from {%, },ecx.

Proposition 6.15. If f € Bﬁ, then f can be identified as a function f € LP and

(6.41) 171l < || 2 5 deeeO| < ell 7z,

fex

We can now give the main result in this section (Jackson estimate):
Theorem 6.16. If f € Bf., then
(6.42) on(f)p < en” /Y| f|

By N > 1.
The proofs of Proposition [6.15] and Theorem [6.16] rely on the following lemma.

Lemma 6.17. Let g = deyn agpe, where YV, C X and #)Y, < n. Suppose
lagiell, < K for € € Y, where 0 < p < co. Then ||g|, < cKn'/P.

Proof. This lemma is trivial when 0 < p < 1. Suppose 1 < p < co. As in the
definition of {¢},cx in 2 assume that {A¢}ecn, (5 > 0) is a companion to
X; disjoint partition of M such that B(&,6;/2) C As C B(€,0;), & € &;, with
§; =vb7772. Fix 0 < t < 1, e.g. t = 1/2. By the excellent space localization of 9,
given in [@I9), and 22I)) it follows that

[Ye(2)] < e(Mya)(z), =€ M, EeX,
and applying the maximal inequality (ZI9) we obtain

lglly < el D Mulagha)|l, < el D laglTa,],-
£€Yn EEY,

On the other hand, from [jagt¢|, < K and ||¢¢||, ~ \B(&b‘j)ﬁ*% it follows that
lag| < cK|A§|%7%7 and hence

(6.43) lglly < e[| D" 14el /P 1a]],
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For any £ € X we denote by X, the set of all n € X such that A,y N A¢ # () and
£(n) < L(€), where £(n), £(€) are the levels of 7, £ in X (e.g. £(§) =j if £ € &}).
Suppose £ € X; and let n € X N A&, for some v < j. Since A, N A¢ # 0, then

p(&,m) < cb. Applying Z2) we get |B(£,vb7V"2/2)| > b= B(&,vb772)|,
and also using (21]) we obtain

Al < [B(EAb™ %) < eb™ U B, b7 7%/2)]
< eb™ U1 29702, )] | B0, vb 72 /2)] < b= )4, .
Hence |A¢|/|A,| < cb~U~)¢ and therefore
(6.44) S (Al/ 14D < ¢ < .
neEXe
Let E := gy, Ae and set w(z) := min{|A¢| : £ € Vp,z € A¢} for v € E.
By (6:44) it follows that
Z |A§|_1/p]1A§(x) < cw(;v)_l/p, zeFE.
§EYVn
We use this and ([6.43) to obtain

_ _ 1/p
lall < ekl 7l = o ([ o7 @)dnto)

1/p
Sck ( D 1A /M Lag <w>du<w>) = cK(#Yn)!/7 < cKn'/?,
£EYn

which completes the proof. O

Proof of Proposition [6.15] and Theorem [6.16. The argument is quite standard, but
we shall give it for the sake of self-containment. Denote briefly a¢ := (f, 1¢) and let
{ae,, V¢, }m>1 be a rearrangement of the sequence {agt)¢ }ecx such that ||ag, e, ||, >
llag, e, llp > -+ . Denote Gy, := """ _, ae, ve,,. It suffices to show that

(6.45) If =Gl < en VT=VPIN(f) for n>1.
Assume N(f) > 0 and let M, = {m : 27N (f) < |lag, v, |l, < 27" TN (f)}.
Denote K¢ := #(U,<,M,). Then @A0) yields K, < 27, £ > 0, and hence
#FM, <27, v > 0. Let g, ==, cnq, Ce,, Ve, - Now using (6.39) and Lemma 617
we infer
||f - GKer < || ZQVHp < Z ”91/”10 < 022_VN(f)(#MV)1/p
v>L v>L v>L

< cN(f)ZT”(l*T/P) < N (f)2740=T/P) < N ()2t T=1/P),

v>L

Therefore, || f — G oo |||, < N (f)277(1/7=1/P) y¢ > 0, which implies (€.45).
The proof of Proposition is contained in the above by simply taking G,
with no terms, i.e. G,, = 0. O

A major open problem here is to prove the companion to (6.42)), the Bernstein
estimate:

(6.46) lgllze < en*/?gll, for ge,, 1<p<oo.
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This estimate would allow us to characterize the rates of nonlinear n-term approx-
imation from {¢¢}ecx in LP (1 < p < 00).

7. TRIEBEL-LIZORKIN SPACES

To introduce Triebel-Lizorkin spaces we shall use the cut-off functions ¢, ¢ €
C§°(R4) from the definition of Besov spaces (Definition B.Il). As there we set
2i(N) = @(279A) for j > 1.

The possibly anisotropic nature of the geometry of M is again the reason for
introducing two types of F-spaces.

Definition 7.1. Let se R, 0 < p < o0, and 0 < ¢ < 0.
(a) The Triebel-Lizorkin space F,, = Fj (L) is defined as the set of all f € D’
such that

(7.1) /]

< 0.

= [ ( (12 o))"

Lp

(b) The Triebel-Lizorkin space szq = I, (L) is defined as the set of all f € D’
such that

2 1la = (S (e e D))"

< 0.

Lp

Above the {2-norm is replaced by the sup-norm if ¢ = oo

As in the case of Besov spaces it will be convenient for us to use equivalent
definitions of the F-spaces which are based on spectral decompositions that utilize
b/ rather than 2/, where b > 1 is the constant from the definition of the frames in §4l
Let the functions ®¢, ® € C*° obey (6.H)-(6.6) and as before set ®;(\) := ®(b™7N)
for j > 1. We define new norms on the F-spaces by

= |(Z 0 > (w1, v o))
>0

and
p

(7.3) /]

T8 Wl = H( (1B oy VE o))"

p

Proposition 7.2. For all admissible indices || - ||z, and || - ||rs (@) are equivalent

quasi-norms on qu,

Therefore, the definitions of Fy, and szq are independent of the particular selection
Of ®o, P

and || - |

_ - ; ;- [s
Fs, and || - | Fs, (@) 0T€ equivalent quasi-norms on Fy, .

. As in the

Proof. We shall only establish the equivalence of || - [|z. ) and || - ||z

proof of Proposition [6:3 there exist functions ®, and <I> with the propertles of ®q
and ® from (EH)-(E0) such that

N+) O INRB TN =1, AeR,.
Jj=0
Setting @;(\) := ®(b=7\) for j > 1 we have 22j>0 ®;(\)®,(\) = 1, which implies
f= Z]>oq) (\/Z)‘I’y(\/z)f in D'.
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Assume 1 < b < 2 (the proof in the case b > 2 is similar) and let j > 1. Clearly,
there exist £ > 1 and m > 1 such that [2971,27F1] C [pm—1 bm+4+1]. Now, precisely
as in the proof of Proposition we have

m+£

pi(VL) f(x) = Y ¢;(VD)®,(VL)®, (VL) f(2),

and for m <v <m+ ¢,
)W) du(y).

VDRV VD )| < s [ AR

Let 0 < r < min{p, ¢} and choose ¢ > |s| + d/r + 3d/2 + 1. Then just as in the
proof of Proposition we obtain

m-+L

[Ba.279)| /o, (VD) (@) < ¢ Y M. (1BC.6) [0, (VD)) @)

and the maximal inequality ([219) to obtain

Hf”ﬁpq < CH(Z [MT(|B(,,bfu)rs/dq)y(\/z)f)(.)]q)l/q

p

<d|(3 B0 e, vD]")

v>0

= C s
) 11l 25, (@)

In the same way one proves the estimate || f] O

Fq(®)

Proposition 7.3. The F-spaces F;, and ﬁ’psq are quasi-Banach spaces which are
continuously embedded in D'. More precisely, for all admissible indices s,p,q, we
have:

(a) If (M) < oo, then

(7.5) (80 < cllflls, Pru(@), [ € Flyy 6€D,
when 2m > d(m 1) — s, and
(76) .0 < elfllgy Pal@). fe By oD,

when 2m > max {0 d(m 1) — s}

(b) If (M) = oo, then
(7.7) |< o) < cllfllrs, Prme(9), f€Fy, ¢€D,
1) —s and £ > 2d, and

FS mf(¢)’ fGF;q, ¢6Da

d(3 = 1)] +Isl}-

Proof. The proof of this proposition is essentially the same as the proof of Propo-
sition 65l One only has to observe that ||| B(z,279)|~*/%%; (VL) fll, < || f|| . and

replace || f]

(7.8) (s )] < cllf]

when 2m > max {O d(

wtpy — D)~

s by || fllz. everywhere in the proof of Proposition O
pq prq

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



178 GERARD KERKYACHARIAN AND PENCHO PETRUSHEV

7.1. Heat kernel characterization of Triebel-Lizorkin spaces. Our aim is
to show that the spaces F},, and F};, can be equivalently defined by directly using
the heat kernel when p, ¢ are restricted to 1 < p < oo and 1 < g < co.

Definition 7.4. Given s € R, let m be the smallest m € Z, such that m > s. We
define

| ] Fs (H) *= ||e—Lf||p " H (/01 [t_8/2|(tL)m/26_th(')Hq%)1/q

and

p

fenFett )] L)

10, oy = NBC DI e Bl + | / 1 [1BC, %)

with the usual modification when ¢ = oo

p

Theorem 7.5. Suppose s e R, 1 <p<oo,1<q<oo, andm>s, meEZy asin
the above definition.

(a) If f € D', then f € Fj, if and only ifeiLf € LP and || f]
Moreover, if f € Fy, then || frs, ~ [If|Fs,(

() If f e D, then fe Fg = |B(7 )\s/de_Lf € L? and | fllz: gy < 0.

then ~ [I£1

Fs,(H) < 0.

Moreover, if f € F,

pa’ Fp (H)"

Proof. We shall only prove part (b). The proof of part (a) is similar and will be
omitted. The proof bears many similarities with the proof of Theorem [6.7 and we
shall utilize some parts from the latter.

Let ¢o, ¢, and ¢;, j > 1, be Littlewood-Paley functions, just as in the proof of

Theorem 67 Then f =3, w?(\/f)f for f € D’, and hence
| ( t1/2)|7s/d(tL)m/2 7th Z‘B t1/2)|75/d(t[/)m/2 —tL 2 f— ZF
3>0 7>0
Now, precisely as in the proof of Theorem [6.7] (see ([6.24])) we obtain
|FJ(£E)| §C(1+(t4j)75)(t4j)767t4j/ | (y’ )| d|50( \/_)f(y”d/i(y)
a [B(2,279)|(1 + 2 p(a, )71
Choose r and o so that 0 < r < min{p,¢} and o > |s| + £ + d + 1, and denote

briefly h;(t) := [(t47)% + (t47)(m=)/2]e="¥ | Evidently, p(2~9VL)f € Sgs+1, and
applying Lemma we get for j > 1

Chj t 1
£ < it ), T g

X sup |B(y,27)|" ]2 VL) f ()|
yeM (14 27p(x,y))4/r

< chy ()M, (IB(.27)[Hp2 VD) ) (@),

Here we used (2.9) in estimating the integral, and M, is the maximal operator,
defined in ([ZI8). Hence

IF(@)] < by (M, (IBC,27) [ Hp,(VI)f ) (@), = 1.
Similarly as above we obtain

[Fo(w)| < eha ()M, (IB(, )" E0o(VI)f ) (@).
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Set bj(z) == M, (|B(-,279)|"d¢;(VL)f)(z). Let 1 < ¢ < oco. From the above

estimates we get
-8 Bt qdt\1/a adt\1/q
I vmeseneear ) | <d( [ [Smomo]s)

< z/ [z 1“”)1“ (5 [ S]]

v>0 7>0 v>0 35>0

p

p

Here
a;_, = max{h;(t) : t € [47 1 47V]} < (AU 4 4l 0ms)[2) ol

and we set a, = (4"™/2 + 4”(’”*5)/2)674%1, v € Z. We apply Young’s inequality
to the convolution of the above sequences to obtain

a\ 1/q 1/q 1/q
(3 (P awbi@)’) " <X an (D bi@) " <o Yobia)
v>0 >0 VETZ >0 §>0
where we used the fact that Z ez 0y < cdue tom > s. Therefore,

H(/:UB )" () e th}th)“q <CH(Zb )”qp
(3 (s ma)] )

< (X (136 s vmr0)') | <
>0

p

Here in the former inequality we used the maximal inequality (Z.19]).

It is easier to show that |||B(:,1)|~*/de L f||, < #s - The proof follows in
the footsteps of the above proof and will be omitted. Combining the above two
estimates we get || f]| P () < cllf] P, The derivation of this estimate in the case
q = oo is easier and will be omitted.

We next prove an estimate in the opposite direction. We only consider the case
when 1 < ¢ < oo; the case ¢ = oo is easier. Assume that ¢g, ¢, and ¢;, j > 1, are
as in the definition of Fj, (Definition [[.T). For j > 1, we obtain exactly as in the
proof of Theorem (see ([G.29))

s B t1/2 s/d tL m/2 —tL
|B(x,277)| /d|90](\/Z)f($)| SC/ |B(y, )= CN(L) f\(y|)|
M |B(2,277) (1 + 20 p(, y))”
Choose o > |s|+d+1 and denote briefly F(z,t) := |B(z, t'/2)| =%/ (tL)™/2e~tL f(x)].
Set Sy, = {y € M :2m~1 < 2p(z,y) < 2™}, S,, C B(z,2™ 7). Then

|B(2,279)| "/ 4); (VI) f()] < ¢ /

du(y).

B(z,277) 1Y Sm
|B(x,2m7)| 1
- F(y,t
ZIB%2 R B2 )] Sy DWW
< (MIF(,1))(x) Y 27" < o(MiF (1)) (),

m>0
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where we used ([[.2). Therefore, for any ¢t € [477,477H1] and z € M,
|B(a, 279)[ 70y (VL) f(2)| < eMy(F (-, 1))(x),

which yields
4—I+1

B2 ) e/ <e [ [MECow]' T aen
These readily imply
|( (Beeneamsen)) |
4 q /a
< (S, Pmeeon]$)",

Jj=1

_cH(/Ol o) ) sCH(/01|F<-7t>|q?)”q

Here for the latter inequality we used the maximal inequality (Z20). One easily
obtains

p

1B, )|~/ *0o(VI) fllp < cll|B(- 1) e £
F;q < CHf|

7.2. Frame decomposition of Triebel-Lizorkin spaces. Here we present the
characterization of the F-spaces F, and FIfq via the frames {t¢}ecx, {g[;g}ge;(
from §§42AMA3 We adhere to the notation from §d} in particular, X' := szo X;
will denote the sets of the centers of the frame elements and {A¢}ecx, will be the
associated partitions of M.

We first introduce the sequence spaces f,, and f;q associated with F, and ﬁ’psq,
respectively.

The above estimates imply || f|

Fs () and this completes the proof. [

Definition 7.6. Suppose s € R, 0 < p < 00, and 0 < g < o0.
(a) f5, is defined as the space of all complex-valued sequences a := {a¢ }¢cx such

that
. ~ 1/q
(7.9) lallsg, = | (0¥ D lagliac()]?) 7| <o
§>0 cex;
b) f5 is defined as the space of all complex-valued sequences a := {a¢ }ecx such
Pq §J¢
that
_ ~ 1/q
(7.10) lallz, = || (3 [14el™/lacl L4 (]) ), < .
gex

Above the ¢9-norm is replaced by the sup-norm when ¢ = co. Recall that 1 A =
|Ag|~1/2 I 4, with 14, being the characteristic function of Ae.

As in the case of Besov spaces we shall use the “analysis” and “synthesis” oper-
ators defined by

(7.11) Sy f = {{f.de)leexr and Ty :{acteexr = Y acte.
fex

Here the roles of {1¢}, {1¢} are interchangeable.
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Theorem 7.7. Let s € R, 0 < p < o0 and 0 < ¢ < oo. (a) The operators

Syt Fpg = fpq and Ty = fo, — Fj. are bounded and Tj; o Sy = 1d on Fj,.

Consequently, f € Fpy, if and only if {(f V) eex € Toar and if f € F,,, then

1£1lms, ~ IE(f. 9D Yl gz, - Furthermore,
~ 1/q
(7.12) 1£lleg, ~ H( Sov Y [ delveO") | -
>0 geX;
(b) The operators S . qu and Ty : qu — Fs are bounded and Tjo Sy, =

Id on Fs Hence, f eF S zf and only if {(f, ¢£>}56X € qu, and if f € F;,, then
1 1lEs, ~ I£(f e)

Furthermore

L~ H( [|B(&,b~9)|~*/|(f, ¢g>llwg()|}q)1/q’

Eex

(7.13)

e
Above the roles of ¢ and 1/?5 can be interchanged.

Proof. We shall only prove part (b). Also, we shall only consider the case when
q < 0o. The case ¢ = oo is similar.

This proof runs parallel to the proof of Theorem [6.10, and we shall borrow a lot
from that proof. We begin by proving the boundedness of the synthesis operator
Ty fog — F;q. To this end we shall first prove it for finitely supported sequences
and then extend it to the general case. Let a = {a¢}ecx be a finitely supported
sequence and set f :=Tya = dex agtpe. We shall use the norm on F;q defined in
[T4) (see Proposition [2).

Choose r and o so that 0 < r < min{p, ¢} and o > |s| +d/r + 3d/2 + 1. Now,
precisely as in the proof of Theorem we get

Jj+1
B, b)Y, (VE) f(x) < ¢ Y M, ( 3 QnﬂAn>(x) with X_y := 0,
m=j—1 neEXm
where Q, = |a,||B(n,b=™)|~*/9=1/2. Inserting the above in the definition of

Fj, (@) from (T4) we get

”f‘ps (@) = H( [ b J)| s/d|q) (\/—)f(')ﬂq)l/q p
<c (Z [MT( > QnﬂAn)(.)}qy/q p
m20 NEXm
<c (Z { Z QnﬂAn}q)l/qu
m>0 nEXp,
= (X 3 fmatimonb 120, ] ) < eliandiy,
m20neXm

Here for the second inequality we used the maximal inequality (Z.19) and for the last

inequality that |A;| ~ [B(n,b="™)| for n € X,. Thus ||Typal ps ) < cllal| 7. for any
prq prq

finitely supported sequence a = {a¢}. Now, just as in the proof of Theorem G101 we
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conclude that Tya = dex age is well defined for {ag}ecx € f;q and the operator
Ty fpg — FS is bounded.
We now prove the boundedness of the operator 51/3 : }7_' . Let f € F, and
choose 7 so that 0 < r < min{p, ¢}. By [@Z7) it follows that
(f1de) = cel Ag|"? [Da, £(€) + Sx, T, f(9)],
which implies

ST A de) L ac (@] < e 3 A 7Dy, £(€)]9] La, ()

£EX; EEX;

+e > A7 Sy Ty, £(€)|71 4 ().

§EX;
Now, we use the fact that I'y, f € ¥y+2 and Lemma [6.4] to obtain for x € M,

S AT FO1 T a () < Y [ sup By, b)) 7/0, f(w)]] 14, (@)

gEXj SEXJ' y6A5
By, b))~/ |, fw)]
<c sup | ; L
gz;j vede  (L+bip(z,y))¥/r ) 4¢(2)
\B(y, b=9)|~*/4|Tx. f(y) |\
7.14 - | J
( ) > C(SSAPJ (1+ bjp(x,y))d/r )

< e[M(|BC 67705, ) ()]
On the other hand, as in the proof of Theorem (see ([631)) we obtain
. By, b~/)|"*/*Tx, f ()]
A s/d Sx. 'y, <cs ‘ d - . )
| §| | Aj )\]f(g)| = Cy;}\} (1—|—b]p($,y))d/7"

and hence as above using Lemma [6.4] again,

—sq/d |B(y7bfj)|7s/d|1“>\jf(y)| q
g;j | Ae[ 7S, Ta, F (O] T a (2) < g;j (;&% R PERE ) I, (x)

< e[M(IB(b77) 74y, ) ()]

re e, £€i,

This and (ZI4) yield
D Al )L ag ()] < e[Mo(IB(,079)[ 7T, ) ()]

£eX;

Inserting this in the flfq—norm (Definition [7-6)) and using the maximal inequality

EI19) we get

19, = (32 32 [4el=1 9o 01%) |
j>O§EX
< CH(Z [MT(|B(-,b_j)\_s/drxjf)(-)]q)l/q p
>0

<o (0Bt s, s007) | = el

7>0

Fy (D)
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Hence [ {(f.9e)} 7, < el fllgg @y < clf]
functions I'j, j > 0, can be used to define an equivalent norm in F}, (see Proposi-
tion [[2). Therefore, the operator SJJ : Fyy = [fpq 1s bounded.

The identity Ty, 0 S; = Id on Fj;, follows by Proposition (c). This completes
the proof of the theorem. O

s , where we used the fact that the
prq

7.3. Identification of some Triebel-Lizorkin spaces. We next show that the
Triebel-Lizorkin spaces can be viewed as a generalization of certain Sobolev type
spaces and, in particular, of LP, 1 < p < oo.

In this part, we again make the additional assumption that the reverse doubling
condition ([L6) is valid, yielding ([22]).
Generalized Sobolev spaces. Let s € R and 1 < p < oo. The space H? is
defined as the set of all f € D’ such that

(7.15) 1z == 1 Ad + L)*2 ], < oc.

Theorem 7.8. The following identification is valid:

F;Q:Hg’, seER, 1<p<oo,

with equivalent norms, and in particular,
Fy=HJ =L, 1<p<oo.
LP-multipliers. To establish the above result we next develop LP multipliers.

Theorem 7.9. Suppose m € C*(R) for some k > d, m*TY(0) =0 forv >0
such that 2v+1 <k, and supcp, INm) ()] < 00, 0 < v < k. Then the operator

m (VL) is bounded on LP for 1 < p < co.

Proof. As before choose pg € C*(R4) so that supp o C [0,2], 0 < o < 1, and
wo(A) =1 for A € [0,1]. Let o(\) := @o(A) — wo(2X). Set ;(A) := @(279N), j > 1.
Clearly, > .50 ¢;(A) = 1 for A € Ry, and hence m(VL) = Ejzom(\/f)apj(\/Z).
Set wi(A) = m(27\)p(N), § > 1, and wo()\) := m(N\)@o(A). Then w;(277VL) =
m(vL)g;(VL), j > 0. From the hypothesis of the theorem it readily follows that
SUP R, |wj(»”)()\)\ < ¢ < oo for 0 < v < k. Then by Theorem [B] (see Remark [3:3))

(716)  |w;@7VI) (@, )| < el Bz, 27| Bly, 27)) 72 (1 + 2 pla, ),

and whenever p(y,y’) <277,

. . —k
» » c(2p(y,y')* (1 +2p(x,y))
(7.17)  |w;(279VI)(z,y) — w;(27IVL)(z,y)| < , :
e A N (e [ IPe e
We choose 0 < € < o so that d + 2¢ < k.
Denote briefly m;(z,y) := w;(277VL)(z,y) and set K(z,y) := > isomy(T,y).
We shall show that K (x,y) is well defined for z #y and | K (z, y)| <c|B(y, p(z,y))|*
and moreover K (x,y) obeys the following Hérmander condition:

)

U] K (2,9) - K(z,9/)ldu(z) < ¢, whenever ' € B(y,),
M\ B(y,26)
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for all y € M and § > 0. To this end it suffices to show that for some € > 0 (e from
above will do)

(7.19) K () = Ko/ < o B 1By, pla)

whenever p(y,y') < min{p(z,y), p(z,y")}; see [5].
Given z,y,y’ € M such that 0 < p(y,y") < min{p(z,y), p(z,y’)}, we pick £,n €

Z (£ > n) so that 2771 < p(y,y/) < 27% and 27! < p(x,y) < 27". Without loss
of generality we may assume that n > 1. Then we can write

14

K (2,y) — <Y o mi(my) —mla )+ D> e+ Y
=0

= j=n+1 G041
=0 + Q2+ Q3.

To estimate Q; we note that by @2)) |B(y,277)| > ¢(2/p(z,y))~¢|B(y, p(z,y))| and

B(,279)] 2 2 ) B, 2000 )] 2 (2 ples ) 1By, ), G <
Now, using (ZI7) we obtain

(2p(y, ")) cp(y; y
7.20) O <c < 21(27 p(x, y))
(7200 Z (1B 2By, 272 = [Bly.s Z

< (’;(éz;)) ) B (play) ~ 277,

From (20 it follows that |B(y, p(z,v))| < c(1 + 27 p(x,y))¢|B(y,277)| and
1B(y, p(z,9))| < |B(x,2p(x,y))| < e(1+27p(x, )| B(x,277)], j >n+ 1.
From these and (.I7) we get

(27p(y,y'))°
(14 27p(z,y))k—d

4
Qp < e[By. p(z, )" Y

Jj=n+1

, / € 1 1
(7.21) (p( yy))) 1By, p(z, )| > (420 p(z,y))F ©°
y')

plz, it
Py, y')\¢ 4
<e(C0 ) 1B el

where we used the fact that k —d — e > ¢ > 0 and p(x,y) ~ 27™. To estimate 3
we write

Q<Y my(z,y)l + Y myla,y')| =: Q5 + Q4.

j>t i>e
By the above estimates for |B(y, p(z,y))| and (ZI6]) we get
- 1 By, plz, )|~
7.22 Q% < c|B(y, p(z,y))| " - <c :
(122) 9% < Bl D gyt = g, o))

) 1By, ol )] 7,
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where we used the fact that p(y,y’) ~ 2. One similarly obtains

(723) QU< c(ﬁgzg)iB(y',p(x,y'))rl < c(f)(é g;/)))E|B(y7p(x,y))|_1.

Here the last inequality follows by (ZI)) by using the fact that p(z,y") ~ p(z,y),
which follows from the condition p(y,y’) < min{p(z,y), p(z,y’")}. Putting together
estimates (C20)-((23]) we obtain (ZI9). Therefore, the kernel K (-,-) satisfies the
Hormander condition (TI8]).

The estimate |K(z,y)| < > ,50|m;(z,y)] < c|By, p(z,y))|~t, z # y, follows
from (TI6) similarly as above.

We next show that for any compactly supported function f € L,

(7.24) m(VL)f(x) = /M K(z,y)f(y)du(y) for almost all x & supp f.

This and the fact that the kernel K (-,-) satisfies the Hormander condition (ZI8)
and ||m(vL)|2-2 < oo entails that m(v/L) is a generalized Calderén-Zygmund
operator and therefore m(v/L) is bounded on LP, 1 < p < oo (see [5]).

In turn, identity (C24]) readily follows from this assertion: If fi, fo € L™ are
compactly supported and p(supp f1,supp f2) > ¢ > 0, then

125 VD f) = Jim [ [ Sy ) B ) duta)

N—o00

- /M /M K (z,y)f1(y) f2(@)dply) dp(z).

The left-hand side identity in (Z20]) is the same as
N

> _(m(VL)e; (VL) fi, f2),

j=0

which follows from the fact that m(v/L)f = 2550 m(vL)p;(vVL)f in L? for each
f € L? by the spectral theorem. The right-hand side identity in (Z.25]) follows
by K(.’[,y) = ZjZO mj(xay) and ZjZO ‘mj(xay” < C|B(y,p(.’[,y))‘_1 for x # Y,
applying the Lebesgue dominated convergence theorem.

To derive (.24) from (.25) one argues as follows: Given f € L™ with compact
support and « ¢ supp f, one applies (Z28) with f, := f and f; := |B(x,6)| ' L ga.s),
where § < p(z,supp f). Then passing to the limit as § — 0 one arrives at ([T24)).
The proof is complete. O

(m(VL) f1, f2)

= lim
N—oo

Proof of Theorem [[.8. Assume first that f € H?, s € R, 1 < p < oo. Let the
functions ¢; € C°(Ry), 7 = 0,1,..., be as in the definition of Triebel-Lizorkin
and Besov spaces with this additional property: ijo pj(A) =1 for A € Ry.
Assuming that € := {¢;};>0 is an arbitrary sequence with ¢; = 1, we write

T.f = S 20, (VD) = 3 wy(VI) 1+ L)*/2f = m(VI)(1d + L)*/2f,
720 Jj=0
where w;(\) = £;275(1 + A2)7%/2¢;(\) and m(\) = > j>owj(A). Using fhe fact
that ¢;(A) = ©(277X), j > 1, with ¢ € C* and supp ¢ C [1/2,2], it is easy to see
that supy~ \)\"wj(-y)()\)\ <e¢,, v > 0, with ¢, a constant independent of j, and since
supp o C [0,2] and supp ¢; C [2971,29F1] j > 1, then sup,. o [\m®) (\)] < 2¢,.
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We now appeal to Theorem [ to obtain || 7. f||, < ¢||(Id + L)*/2f]|,, 1 < p < oo,
for any sequence ¢ := {¢;};>0 = {£1}. Finally, applying Khintchine’s inequality
(which involves the Rademacher functions) as usual we arrive at

Iz, < | (2 (271sVDO1) ) || < claa+ 225l = el

720

To prove an estimate in the opposite direction, let f € FJ,, s € R, 1 <p < oo.
We now assume that p; € C§°(Ry4), j =0,1,..., are as in the definition of Tribel-
Lizorkin spaces but with this additional property: >, e3(\) = 1for A € R,
Using this we can write

(Id+ L)*2f =Y " 277°(1d + L)*?p;(VL)2*0;(VL) f = > 0;(VL)2*p;(VL),
j=>0 3>0

where 0;(\) := 277°(14+A2)*/2p;()\). Denote Z; := {2k+r: k=0,1,...},7=0,1,

and set G, f := Y5+ 0;(VL)27*0; (VL) f. Evidently, (Id+ L)*/2f = Gof + G1f.

Let {€r};ez, be an arbitrary sequence with €;, = +1. The supports of 6; and ¢

do not overlap if j, k € Z,, j # k, and hence 9j(\/f)g0k(\/f) =0ifj,k€Z,,j#k.
Therefore,

Grf =Y enti(VL) Y 6127 0,(VD) f = me(VI) Y 520, (VL) S,
jewt jezt jezt
where m;(A) 1= >, cz+ €5:0;(A). As above we have sup, |/\"0j(»u)()\)| < ¢y, v >0,

with ¢, independent of j, and hence supysq |/\"m£'/)(/\)| < ¢, v > 0. Applying
Theorem [7.9 we get for any sequence {e;,}jez, = {1},

Gl < e 32 e e, (VD)) .

]EZ

1<p<oo.

An application of Khintchine’s inequality gives
) 2\ 1/2
1ol <l (32 (2esVDFON) ) || <ellflleg. r=0.1,
jezt

which implies ||(Id + L)*/2 f|l, < [Gofllp + [|G1f]l» <
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