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Abstract

We study nonlinean-term approximation irL,,(RZ) (0 < p < =0) from Courant elements or (discontinuous)
piecewise polynomials generated by multilevel nested triangulatiok$ which allow arbitrarily sharp angles. To
characterize the rate of approximation we introduce and develop three families of smoothness spaces generated
by multilevel nested triangulations. We call them B-spaces because they can be viewed as generalizations of
Besov spaces. We use the B-spaces to prove Jackson and Bernstein estimatesnopiecewise polynomial
approximation and consequently characterize the corresponding approximation spaces by interpolation. We
also develop methods foe-term piecewise polynomial approximation which capture the rates of the best
approximation.
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1. Introduction

Nonlinear approximation from piecewise polynomials and splines is a central theme in nonlinear
approximation theory. The ultimate problem is to characterize the rate of approximation in terms of
certain smoothness conditions. In the univariate case and in the regular dadieniensionsd > 1), this
problem has found a completely satisfactory solution involving a certain class of Besov spaces and the
machinery of Jackson—Bernstein estimates and interpolation (see [6,9,11], and also [2,5]).
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Our goal in this article is to study nonlinear approximation from piecewise polynomials over
triangulations consisting of pieces. The difficulty of this problem stems from the highly nonlinear
nature of piecewise polynomials in dimensia#is- 1. For instance, ifS; and S, are two piecewise
polynomials over two distinct triangulations ¢, 1]° consisting ofn pieces each, then, in general,

S1 + S, is a piecewise polynomial over more thaf triangles (in the univariate case, the number of
pieces is at most/d). This makes the idea of using a single smoothness space scale (like Besov spaces)
and the recipe of proving Jackson and Bernstein estimates, and interpolation (like in the univariate case)
hopeless.

In this article, we take a different approach to this problem. First of all, we modify the problem by
considering nonlineat-term approximation from piecewise polynomials generated by multilevel nested
triangulations ofR2. We consider two types of suehterm approximation:

(a) from Courant elements (continuous piecewise linear elements) and
(b) from (discontinuous) piecewise polynomials over triangles.

More precisely, we consider nested triangulati¢@s},.cz such that each level,, is a partition ofR?

and a refinement of the previous levg}_1, and define7 :=( J,,., 7,,. Each nested triangulatioft
generates a ladder of spacesCc S_; C Sop C S; C - - - (multiresolution analysis) consisting of piecewise
polynomials of a certain degree over the corresponding levels. In the case of continuous piecewise linear
functions, S,, (m € Z) is spanned by Courant elemenig supported on cellg at themth level 7.

We impose some natural mild conditions on the triangulations in order to prevent them from possible
deterioration. At the same time, these conditions allow the triangles fotm have arbitrarily sharp
angles and a lot of flexibility. After this preliminary structuring, we consider nonlinear approximation
from n-term piecewise linear functions of the fori= Z’;zlag_,wg_, or piecewise polynomials of
degree< k of the form S = 3""_,1,,; - P5;, whered; and A; may come from different levels and
locations ., denotes the characteristic function®f. Note that in both cases we hawderm nonlinear
approximation from redundant systems. So, by introducing such a multilevel structure, we make the
problem somewhat more accessible and simultaneously preserve a great deal of flexibility.

Although the approximation problem has been tamed to some extent, it still remains highly nonlinear.

It is crystal clear to us that such highly nonlinear approximation cannot be governed by a single (super)
space scale like the Besov spaces in the univariate case. For instance, it is well known that in presence
of functions supported on very “skinny” triangles or long and narrow regions the Besov spaces are
completely unsuitable and hence useless (see Section 2.5 below). Thus the second important concept
is to quantify the approximation process by using a family of smoothness spaces? €ay,depending

on the triangulations. We called them B-spaces. So, the idea is to measure the smoothness of the functions
from a family (library) of space scald®* (7))} instead of a single smoothness space scale.

The third important issue in our theory is the way we represent the functions. On the one hand, all
Courant elements as well as all polynomials restricted to triangles generated by a nested triangulation
form redundant systems. On the other hand, there are no good bases available which consist of piecewise
polynomials over general triangulations. On top of this, we want to approximdtg(i&?), 0 < p < cc.

There is, however, a good and well-known means of representing functions by using suitable linear or
nonlinear projectors onto the spadek,} (see Sections 2.3 and 2.4). This is our way of representing the
functions.

Our approximation scheme is the following:
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(i) Fora given functionf, find the “right” B-spaceB* (7;) (that means the “right” triangulatiof;) in
which f exhibits the highest smoothness (equivalently, in whidmas the sparsest representation).
(i) Find an optimal (or near optimal) representation ¢f by Courant elements (or piecewise
polynomials) generated ;.
(iii) Using this representation of, run an algorithm forn-term approximation that is capable of
achieving the rate of the bestterm approximation.

The first step in this scheme is the hardest one and we still do not have a satisfactory algorithm for
it. There is, however, an effective scalable algorithm for this step in the case of nonlinear approximation
from piecewise polynomials over dyadic partitions, see [12]. Once the triangufatismetermined, the
machinery of Jackson and Bernstein estimates combined with interpolation spaces works perfectly well.
As we advance through the implementation of the above program, we shall see that all technological
means exist or can be created so that a coherent theory can be developed. The lack of good bases
for our spaces is the main obstacle that makes some proofs nonstandard. In particular, the Bernstein
inequalities are the most troublesome and require fine analysis. We borrowed a few ideas from [12],
where similar results have been obtained in the much simpler setting of nonlinear approximation from
piecewise polynomials over dyadic boxes.

The B-spaces from this article can be considered as a generalization of Besov spaces (see Section 2.5
below). They are also a generalization of the approximation spaces from Section 3.4 in [10] (see the
references therein).

There are several aspects of our theory that we do not even touch in this article, including nonlinear
piecewise polynomial approximation in the uniform norm=t c0), interpolation of B-spaces and other
aspects of the harmonic analysis of B-spagetgrm approximation from smooth piecewise polynomials,
and numerical algorithms for nonlinear piecewise polynomial approximation and their implementation
in practice. Some of them will be tackled in a forthcoming article.

The outline of the paper is the following. Section 2 is devoted to the definition and development of
B-spaces. In Section 2.1, we introduce and study three types of nested triangulafi®svbich later
serve three different purposes. In Section 2.2, we give all necessary facts about local polynomial and
piecewise linear approximation. In Section 2.3, we introduce and develop the first family of B-spaces,
the slim B-spaces, which are later utilized for nonlin@aterm Courant element approximation. In
Section 2.4, we introduce the skinny B-spaces that are needed for nomliter@n approximation from
(discontinuous) piecewise polynomial. In Section 2.5, we introduce the fat B-spaces which are the most
immediate generalization of Besov spaces. Section 3 contains our main results about nonlinear piecewise
polynomial approximation. In Section 3.1, we give some general guiding principles and results for
nonlinearn-term approximation. In Section 3.2, we state and prove our main results concefteng
Courant element approximation except for the proof of the Bernstein inequality. In Section 3.3, we give
our results om-term piecewise polynomial approximation. Section 3.4 is devoted to discussion of some
aspects of our theory and open problems. In Appendix A, we prove the Bernstein estimates we need.
Appendix B contains the proofs of some auxiliary results.

Throughout the article, the constants are denoted by, ..., and they may vary at every occurrence.

The constants usually depend on some parameters that will be sometimes indicated explicitly. The
notation A ~ B means thatA and B are equivalent, i.e., there are two constants:,; > 0 such that
c1A < B < cpA. ForG C R?, |G| denotes the Lebesgue measur&adndi; denotes the characteristic
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(indicator) function ofG. We also use the following notatior: - [l := || - Il &2, LI°® := LI°(R?)
(0 < g <00), andL!%®:= C(R?).

2. B-spacesover triangulations

In this section, we introduce and explore three collections of smoothness spaces (B-spaces), which
will be needed in Section 3 for the characterization of the rates of nonlinear piecewise polynomial
approximation. The B-spaces can be definedR3ror on any polygonal domain ii®? as well as in
R? (d # 2). We shall restrict our attention to the case of B-spaceR?iThe B-spaces are defined using
multilevel nested triangulations which we discuss below.

2.1. Multilevel triangulations
Here we introduce several types of multilevel nested triangulations.

Weak locally regular (WLR) triangulations.We call 7 = (J,,.,, 7. a weak locally regular(WLR)
triangulation of R? with levels{7,,},.cz if the following conditions are fulfilled:

(a) Every levelT,, defines a partition oR?, that is,R? = Uaez, & and7, consists of closed triangles
with disjoint interiors.

(b) The leveld7,,},.cz Of T are nested, i.€Z,,, is a refinement of,,.

(c) Eachtriangler € 7, (m € Z) has at least two and at ma#, children (subtriangles) iff,, .1, where
My > 2 is a constant.

(d) For any compack C R? and any fixedn € Z, there is a finite collection of triangles frof, which
coversk .

(e) There exist constantsOr < p < 1 (r < 1/2) such that for eaclh € 7,, (m € Z) and any child
N €T, 0f A

rlAl <A < plAlL (2.1)

We denote by,, andE,, the sets of all vertices and edges of triangleg,inrespectively. We also set
V:=V(T) =,z VnandE :=E(T):=,,cz En-

Locally regular (LR) triangulations. We call7 = J,,., 7., alocally regular (LR) triangulation of R?
if 7 is a WLR-triangulation ofR? and satisfies the following additional conditions:

() No hanging verticegNHV) conditionn No vertex of any triangleA € 7,, lies in the interior of an
edge of another triangle from,.

(g) The valenceV, of each vertex of any triangleA € 7, (the number of the triangles frof), which
sharev as a vertex) is at mos¥,, whereNy is a constant.

(h) There exists a constant<0§ < 1 independent ofz such that for any\’, A” € 7, (m € Z) with a
common edge

SN /1A <87 (2.2)
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Forv eV, (m € Z), we denote by, :=6,(7) the cell associated with, i.e., 8, is the union of all
triangles A € 7,, which havev as a common vertex. We denote 8y, := ©,,(7) the set of all cells
generated by, and set® := & (T) :=U,,cz, On-

Strong locally regular (SLR) triangulations.We call 7 = | J,,., 7., a strong locally regular(SLR
triangulation of R? if 7 is an LR-triangulation oR? and satisfies the following additional condition:

(i) Affine transform angle conditiofATA-condition: There exists a constapt= 8(7), 0< 8 < /3,
such that ifAg € 7,,, m € Z, andA : R?> — R? is an affine transform that mags, one-to-one onto
an equilateral reference triangle, then for evarg 7,, which has at least one common vertex with
Ao and for every childA € 7,1 of Ag, we have

minanglgA(2)) = B, (2.3)
whereA(A) is the image ofA by the affine transformf\, and minangléA’) denotes the magnitude of

the minimal angle of\".
Obviously, (i) implies (2.2) with somé=5(B).

Regular (R) triangulations. By definition, 7 = J,,.;,
triangulation and/” satisfies the following condition:

T, is aregular (R) triangulationif 7 is an LR-

()) There exists a constapt= 8(7) > 0 such that the minimal angle of each triangle= 7 is > 8.
Evidently, every regular triangulation is an SLR-triangulation.

Triangulations on compact polygonal domainsiA. A set E C R? is said to be a compact polygonal
domain if E can be represented as the union of a finiteZgaif closed triangles with disjoint interiors:
E = UAE’ZE) A. Weak locally regular, locally regular, etc., triangulatidhs= Ufno>071n of such domain
E C R? are defined similarly as whefi = R?. The only essential distinctions are that the lex@ls}n>o
now are consecutive refinements of an initial (coarse) [&yahd, if a vertexw € V,, is on the boundary,
we should include irV,, as many copies af as is its multiplicity.

Remarks. It is a key observation that the collection of all SLR-triangulations with given (fixed)
parameters is invariant under affine transforms. The same is true for similar classes of LR-triangulations
or WLR-triangulations.

Each type of triangulation depends on several parameters which are not completely independent. For
instance, the parameters of an LR-triangulationMge Ny, r, p, ands. We could set, e.gMy = 1/r and
o =1—r, and eliminate these as parameters, but this would tend to obscure the actual dependence of the
estimates upon given triangulations.

We shall need to know what happens with the lex&]of a triangulationZ asm — —oo. The next
lemma answers this question.

Lemma 2.1. For each WLR-triangulatiorf” there exists a finite coveF ., of R? consisting of sets with
disjoint interiors such that each triangles € 7 and all its ancestors are contained in a gef, € 7_.. If
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Ao € T_o, thenA,, must be one of the followinghe all of R?, a half-plane, or an infinite triangléall
points on and between two rays that are not collinear and have a common begiriftiregonly possible
configurations for7_,, are the following

(a) R?only;

(b) finitely many infinite triangles with a common vertex

(c) two half-planes

(d) a half-plane and finitely many infinite triangles which cover the other half-plane and have a common
vertex lying on the boundary between the two half-planes

(e) two finite families of infinite triangles, each family covering one of two complimentary half-planes,
and such that all triangles from the same family have a common vertex lying on the boundary between
the two half-planes.

Moreover, if7 satisfies the NHV-condition, th€a) and (b) are the only possible configurations for
T -

Proof. Let A € 7,, for somem e Z. Then there exist unique trianglga ;};<,,, A; € 7;, such that
A=:0p Clp1C-. WeletAy =, 2. Clearly, if A, A” € T then eitherA, = A7, or AL

and A, have disjoint interiors. To find out which subsets®f can be realized as ., we order the
vertices of the triangle$A ;} <, in a sequencgu,}. If {v,} does not have limit points we consider
two cases. First, if for every\; there exists < j such thatA; C A?, then using condition (d) from
the definition of WLR-triangulations one can easily see that is all of R2. Alternatively, if there
exists aA j, which is not contained im? for any j < jo, then eachh;, j < jo, has an edge lying on

a given linel. Since{v,} does not have limit points, those edges grow infinitely in both directions, and
therefore the whole linemust be contained in .. Hence, since\ ,, is always convex, it must be either

a half-plane or a strip. Using thét,} does not have limit points and condition (d), one can prove that
SUP,ca,, dist(x, /) = oo, which shows that\,, cannot be a strip.

If the sequencduv,} has a limit point, say, then using condition (d) we obtain that there exists
Jo < m such thatx is a vertex of allA ; with j < jo. From condition (d), it follows that a vertex can have
only finite valence at any given level. This fact readily implies that cannot have more than one limit
point and also that ifv;} has exactly one limit point then ., is an infinite triangle.

Simple arguments utilizing condition (d) limit the possible configurations/tqy to those described
in the lemma. There are straightforward examples showing that each of those configurations can be
realized. O

Examples of triangulations and refinement schem&¥e begin with the description of atandard
refinement schembat can be used to refine a given trianglenfinitely many times. In the first step,

we select a point on each edgemfand then join each pair of new points by a line segment. This first
step gives us four disjoint triangles, sayi, A,, Az, A4 Which become the first generation of triangles

(the children ofA). In the second step, we subdivide eath in the way described in step one and
obtain the second generation of triangles. Proceeding inductively, we subdivide each triangle from a given
generation in the fashion of step one, thus producing the next generation of triangl€s(h¢tdenote

the set of all triangles from thexth generation. Thef (2) := |, 7.(2) is @ nested triangulation

of A.
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Fig. 1. A skewed cell.

Now, we describe atandard procedure for constructing triangulation§ R2. We first coverR? by
a sequence of growing triangle’sy C A1 C A, C ---, where everyA; is a child of A4, and then
refine all children of all{A;} using the standard refinement scheme described above. More precisely,
let Ag be any initial triangle. We select a triangle; so thatA is a child of A;. We similarly define
Ay D A1 sothatA, is a child of A,, etc. In this way we obtain a growing sequence of triangles. The only
additional condition that we impose ¢n}, so far, is thaR® = | 72, A,. After having constructed the
sequencgA ;}, we subdivide the children of each; (j =1, 2,...) as it was described above. We denote
by {7,.}mez the sets of triangles from each level and By= | J, ., 7,, the whole triangulation oR?.
Variety of other refinement schemes can be utilized.

meZ

How fast can the elements of triangles changé®e investigate how the elementg\(|, minanglg€A’),
and max (A"), the longest edge at’) of a triangleA’ € 7,, (m € Z) can change a4’ moves away from
a fixed triangleA” € 7, for different types of triangulation@.

First, we consider the case of an arbitramgak locally regular triangulationZ. Clearly, even if
T satisfies the NHV-condition of the LR-triangulations, it may happen tiatn\” € 7,, (m € Z) are
two adjacent triangles and at the same time each of the HatipgA”|, (max£(A"))/(maxe(A”)), and
(minanglg€A’))/(minangl€A”)) is arbitrarily large (or small) independently of the other two. This is
possible because the first common ancestax’'andA” may be at an extremely distant level, or even
andA” may not have a common ancestor at all (see Lemma 2.1). This fact makes the WLR-triangulations
unsuitable for continuous piecewise polynomial approximation.

Secondly, we consider the case of an arbitrdagally regular triangulation7. By definition (see
(2.2), if A", A" € 7,, and A" and A” have a common edge, thén'| ~ |A”|. However, it may happen
that the ratiogmax£Z(A”))/(maxé(A”)) and (minangl€A’))/(minanglg€A”)) are uncontrollably large
(or small), see Fig. 1. To show that this situation is possible we shall need the following simple lemma.

Lemma 2.2. Let UZ:_OOI,,, n € Z, satisfy the conditions of the WLR-triangulations or LR-
triangulations or SLR-triangulations with some fixed parameters. Assume also thaZ]eigetefined
uniformly by introducing the midpoints on the edges of eack 7, and connecting them by line
segmentgsee the standard refinement scheme described abideeote by7,; the set of all triangles
obtained from the refinement Bf. ThenU”+l 7., satisfies the conditions of the corresponding type of

m=—0oQ

triangulation with exactly the same parameters.

Proof. This lemma is fairly obvious and its proof will be omittedd
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Armed with this lemma, one can easily construct the claimed example. We shall give only a sketch
of it. We start from a uniform triangulatiod of R? generated by an equilateral triangle, (see
the examples of triangulations above). L&t denote the levels off for m < 0. The incomplete
triangulationU _« T, Obviously satisfies the conditions of the LR-triangulations with any parameters
O<r<p<l,r<1/4,p>1/4. We fix suchr andp. We now refineZy. We choose any two triangles
A, A" € Ty with a common edge, say We may assume thatis horizontal. It is not very hard to see
(but it is not obvious) thaf can be refined twice so the§?___ 7, satisfies the conditions of the LR-
triangulations with the already selected parametensdp, and that there are two grandchildren, say,
andAj of A" andA”, respectively, with the following properties:

(a) A, andA% have a common edge, say,C e of length(ex) = (1/4)€(e);
(b) IA | = A”I = (1/16)|2"] (= (1/16)|A"]);
(c) A% is equilateral and\ is skewed to the right (or left) at- £(e2) with ¢ =¢(r, p) > 0.

More precisely, the vertex ok, which does not belong te, is shifted to the right from the midpoint
of e, at distances - £(e;). We shall call the above aangle sharpening procedur&Ve next refineZ;
sufficiently many times, by using only midpoints, until we reach a level, Bayt which there exist two
great-grandchildren, sag; andA of A, andA7, respectively, such that; andA{ have a common
edge|A; | = [A] |, A} is equnateral,A” is similar toA7, and most |mportantly the minimal number of
edges from/,, (edges of triangles ifj,) WhICh connect an arbitrary vertex of or A7 with any vertex
of A; or A7 is sufficiently large (soA;1 andAj, are located in the middle o:f{2 U A%). By Lemma 2.2,
Uf,}__oo Zn satisfies the conditions of the LR-triangulations with the already fixed parametandr.
Since, in7Zy,, A} and A{ are surrounded by triangles that are equivalenhfoor A7, we can again

apply our angle sharpenlng procedure, followed by sufficiently many mldpomt refinements, and keep
going on in the same fashion. We use induction to complete the construction of the claimed example.

Let us consider now an arbitrasgrong locally regular triangulatioriZ . From the definition of SLR-
triangulations, it follows that ifA’, A” € 7,,, m € Z, and A’ and A” have a common vertex, then
[A'| ~ |A”|, minangl€A") ~ minangl€A”), and max (A) ~ max{(A”). However, this does not mean
that7 is regular or close to regular. It may happen that some triangl&shafve arbitrarily small angles,
while others are equilateral.

Exampleof an SLR-triangulatiory” with the property
inf minangl€A) =
NeT

We shall utiIize the idea of the construction from the previous example. As above, we assume that
T = Um_ « Zn 1s an incomplete uniform triangulation generated by an equilateral triakgl€learly,

T satisfies the conditions of the SLR-triangulations A6y = 4 and an arbitrary & B <m/3. We fixp

andM,. Choosen € 7. ltis readily seen thdly can be refined so thayn —_~ 7T, satisfies the conditions

of the SLR-triangulations with the fixed paramet@rand My, and there exists at least one child, say,

A; € T; of A such that minanglg\;) < ¢ - minanglg€A) with ¢ = ¢(8) < 1. The next step is to refine

7; several times by using only midpoints until we obtain a great-grandchild Asay 7, of A1 which

is sufficiently far from the boundary af; (in terms of number of edges fro, needed to connect it

with the boundary). By Lemma 2.2,)*_ 7, satisfies the conditions of the SLR-triangulation with

the fixed parameterg and My. After that, we apply the above angle sharpening procedure, t@nd
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then we again refine by midpoints for sufficiently many levels, etc. Inductively, we obtain the needed
triangulation.
We now introduce one more natural condition on triangulations:
Minimal angle condition(MA-condition): There exists a constatt= ¢#(7), 0 < ¥ < 1, such that if
Lo € T, m € Z, then for everyA € 7,, which has at least one common vertex with and for every
A € 7,,.1 Which is a child ofAq,
minanglgA) 1

minangleAg)

(2.4)
Lemma 2.3. If 7 is an SLR-triangulation, thef satisfies the MA-condition above with= 9 (8).
However, the MA-condition is weaker than the ATA-condition.

Proof. Suppose/ is an SLR-triangulation and l&t, € 7,,, m € Z. We may assume that the largest edge
of Ag is of length one. We introduce a coordinate syst@mx, so that the originO is at the vertex of
the sharpest angle @fy and the largest edge afj lies on the positive half of the;-axis. Without loss

of generality, we can assume thag is in the upper right quadrant @ x;x,. We select the equilateral
reference triangle\; to be in the upper right quadrant ofx,x, and have one edge coinciding with the
longest edge aof\,. Evidently, both the affine (linear in this case) transfgkmvhich mapsA, one-to-one
onto Ay and its inverséd ~ have matrices of the fon{% Z;] Suppose that the angle of, with vertex at

the origin and magnitude of /3 is transformed byA~! into an angle of magnitudg, 0 <y < /3. In
this setting, routine (but not trivial) calculations show thAat' transforms any angle of magnitude 8
into an angle of magnitude> ¢y, wherec = ¢(8) is a positive constant. We skip all details and only
note that it suffices to prove the above fact only for angles with vertex at the origin because the affine
transforms map parallel lines into parallel lines. This result impliesZhsatisfies the MA-condition.

The MA-condition does not imply the ATA-condition because the following configuration of triangles
is possible: LetA; := [(0, 0), (1, 0), (¢/2, +/3/2)], wheree > 0 is sufficiently small. Denote by,
the triangle symmetric tad\; with respect to ther;-axis. Further, letAz and A4 be the images of\;
and A, after rotation of—27 /3 about the origin, and lets, and Ag be the images of\; and A, after
rotation of 2r/3 about the origin. A triangulation containing this kind of configuration on one level can
be constructed for an arbitrary smalby starting from some level of a uniform triangulation consisting of
equilateral triangles and “sharpening” the angles near a given node in three equiangular directions while
refining the rest of the triangulations uniformly, as in the previous example. Obviously, this configuration
does not violate the MA-condition but due to the presence of sharp angles in different directions the
ATA-condition fails. O

Our next theorem provides estimates for the rate of change of the elements of triangles from a given
level of a triangulation when moving away from a fixed triangle. For these estimates, we need the
following simple lemma.

Lemma 2.4. Suppos€ is an LR-triangulation. IfA’, A” € 7,,, m € Z, and A’ and A” can be connected
by < 2" intermediate trianglegwith common verticgdrom 7,,, then there exist\1, A, € 7,,_oy,, With
a common vertex such that ¢ A; andA” C A,, whereNj is from condition(g) of LR-triangulations.
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Proof. From conditions (c) and (g) on LR-triangulations (Section 2.1), it follows that every edge of a
triangle from7,, is subdivided at least once afteNg steps of refinement. From this, we infer that if

G C R?, then 2™ (2™ (G)) C 2"2M(G), where2'(G) := {6 € ©;: 6° N G # @} (9° denotes the
interior of 6). Applying this factv times, we obtain thah” c 272" ({v}), wherev is an appropriate
vertex of A’. Then the existence af; and A, follows readily. O

Theorem 2.5. (a) Let7 be an LR-triangulation with parametefs< r < p <l and No. If A", A" € T,,,
m € Z,and A’ and A” can be connected by (n > 1) intermediate triangles frord,,, then
A/
<
|A”]
with s := 2Nglog,(p/r) andcy := 8N (p/r)?Mo,
(b) Let 7 be an SLR-triangulation with parametér< g <z /3. If A", A" €7, m € Z, and A’ and
A" can be connected by (n > 1) intermediate triangles frord,,, then

cglnﬂ < m.|n anglg€A’)

minangléA”)
with ¢ := 4Nglog,(1/9) andc, := ¥ 4"~ whereNy := [277 /8] and ¥ = ¥ (B) is the constant from the
MA-condition whose existence is established by Le@a

< an’ (2.5)

<con' (2.6)

Proof. (a) Letv € Z be such that 21 < n < 2. By Lemma 2.4, there exish,, A, € Tn—2ngy With

a common vertex such that’ c A; andA” C A,. By (2.2),8™ < |Aq]/|Az] < 87N, and by (2.1), it

follows that|A’| < p?¥|A4] and|A”| > r?NoY| A,|. Combining the above estimates, we obtain (2.5).
(b) The proof of (2.6) is quite similar to the proof of (2.5) and uses Lemma 2.3. We omitit.

2.2. Local polynomial and piecewise linear approximation
We let IT, denote the set of all algebraic polynomials in two variables of total degrée For a

function f € L,(G), G C R?, 0 < g < o0, andk > 1, we denote byE(f, G), the error ofL,(G)-
approximation tof from I7, i.e.,

Ei(f.G)q = Pigl;k If = PllL,c)- 2.7
Also, we denote by (f, G), thekth modulus of smoothness gfon G:
oi(f. G)g = sup| AL (£ )|, 6y (2.8)
heR2 4

where Al (f, x) = Ak(f,x,G) = Zﬁzo(—l)”f (’j‘.)f(x + jh) if the line segmentx, x + kh] is entirely

contained inG and Aﬁ(f, x) := 0 otherwise.
For an LR-triangulatior?” and A € 7,, (m € Z), we denote by2, the union of all trianglex\’ € 7,
which have a common vertex with, i.e.,

Q0= JIa €T A n A (2.9)
Also, we define
2= 1o eT: A N2a#0). (2.10)
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Lemma 2.6 (Whitney). Supposes := A or G := §2, for some triangleA € 7, (m € Z), whereT is an
SLR-triangulation oR?. If f € L,(G), 0 < g < oo, andk > 1, then

E(f, Gy <cax(f,G), (2.11)
with ¢ =c¢(q, k) or c =c(q, k, B), wherep is the parameter of from (2.3).
For the proof of this lemma, see Appendix B.

We shall often use the following lemma, which establishes relations between different norms of
polynomials over different sets.

LemmaZ2.7.LetP ell,k>1 and0< p,g < co.

(a) Let A’ C A be two triangles such than\| < ¢;]A’|. Then

1P, <Pl (2.12)

withe =c(p, k, c1).
(b) Supposer’ C A are two triangles such thai\'| < p|A|withO < p <1 or A’ =@. Then

~ 1/p-1
1Pz, < clPllL,avan = APV P, avan (2.13)

with constants depending only @n g, k, andp.
(c) If 7 is an LR-triangulation and\ € 7, then

1Pz, 20 2 12517 YU P L, 00 ~ 1AV P, 2 (2.14)

with constants of equivalence depending onlypog, k, Ng, andé.
(d) If P e, and A = [x1, x2, x3] C R? is a triangle, then

I1Pllz, ) ~ A "lrg%lmx,-)l, (2.15)
with constants of equivalence depending onlyon

Proof. Estimates (2.12)—(2.15) are invariant under affine transforms and hence they follow from the case
whenA is an equilateral triangle witA| = 1 by change of variables. The details will be omitted

We find useful the concept afear best approximatiowhich we borrowed from [8]. A polynomial
P, € IT; is said to be a near best, (A)-approximation tof from 7, with constantA if
If = PallL,a) S AE(f, D)y (2.16)
Note that ifg > 1, then a near begt, (A)-approximationP, = P, (f) can be easily realized by a linear
projector.

Lemma 2.8. Supposé) < g < p and P, is a near best_,(A)-approximation tof € L,(A) from IT,.
ThenP, is a near best ,(A)-approximation tof".

Proof. See Lemma 3.2 from [8] and also the proof of Lemma 2.12 in Appendixm.
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We next introduce some necessary notation.Tet | ,,., 7. be a WLR-triangulation. Fom € Z
andk > 1, we letS* := S*(7,,) denote the set of all piecewise polynomial functions d¥giof degree
<k, ie,SeSkif §= ZAeTm 1, - Po, Wherel, is the characteristic function df and P, € IT;.

Now, letT = J,,.; 7 be an LR-triangulation. Fov € V,, (m € Z), we letd, denote thecell in 7,
associated withv (Section 2.1). The NHV-condition on LR-triangulations (Section 2.1) guarantees the
existence of &ourant elemeng,, supported o, which is a continuous piecewise linear function that
takes the value one at _ ~

For m € Z, we denote byS, := S(7,) the set of all continuous piecewise linear functions over
T., 1., S, = 831 N C(R?). From the NHV-condition onZ’, eachS € S, has the representation:
S = ZUEVm S(v)¢ps, and hences,, = sparfgy: 6 € O,,}.

Throughout the rest of this section, we assume #has an LR-triangulation ofR? with parameters
My, Ny, r, p, ands (see Section 2.1).

Lemma 2.9. Supposdas}gcn,, m € Z, is a sequence of real numbers afid= Zee@m age. Let also
0 < g < 0. Then, for everyA € 7,,, we have

1/q
||S||Lq<m( > ||a9¢9||3) (2.17)

0€®,, . ACO

and, hence,
1/q
1812, @2 =~ (Z ||610<P0||Z) (2.18)
0O,

with constants of equivalence depending only;otVo, andsé. In the case; = oo, the{,-norm above is
replaced by thesupnorm.

Proof. Clearly, S(vs) = ay (vs is the “central point’ of9) and [gsll, ~ |6]Y4. Therefore, using
Lemma 2.7, (d) and the regularity @f, we have, forA € 7,,,

1/q

S ~ AT max |ag|lx~ max  ayl||9|Y4 A~ Z awell?) . O

ISy~ 1814 _max_jaol~,_max_[ale ol
0€®,,. ACO

Quasi-interpolant. We shall utilize the following well-known quasi-interpolant for constructing
projectors into spaces of continuous piecewise linear functions

On(f)=0u(£,T):=Y_(f, (o), (2.19)

96@)71
where(f, g) := [z fg and{g,} are duals ofyp,} defined by
Pg := Z 1a-Angs
A€Ty, ACO

with %, ¢ the linear polynomial which assumes valugg/9,,|Al) at v, (the “central point” of¢) and
—3/(N,,|Al) at the other two vertices at (hereN,, is the valence of,). Evidently,

(9o, Por) =800, 0,0 € O,
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It is easily seen that the quasi-interpolapy, satisfies the following:

@ On: L'lOC -8, isa linear operator. _
(b) Q,, is a projector intaS,,, i.e., 0, (S) =S for S € S,,.

Other properties will be given in the following.

Lemma2.10.If f e L',;’C, 1<n<oo,andA €7, m € Z, then

[ OO L, ) <N f Iy
with ¢ = ¢(n, Ng, 8).

Proof. Itis readily seen that
[(f+ @) | < fllzyo 1 @ally < C”f”L,,(Q)||§50||oo|9|l/n/ < CI9|_1/”I|fI|L,,(9)
and||gg ||, < c|6|Y", where ¥n’ := 1 — 1/n. Therefore, for every € 7,,,

100D, < 2o Wh@leslly < Y0 1l <clfllz@- O

0€O, 0C2n 0€B,,, 0C2A

Lemma2.11. If S€S2,0<n < oo, andA € 7, m € Z, then
|0m(S) ”Ln(A) <cllSliz,2a)

with ¢ = ¢(n, Ng, 8).

Proof. If n > 1, then the estimate follows by Lemma 2.10. LekQ; < 1. We use the estimate
lgsll, < |07, properties of LR-triangulations (Section 2.1), and Lemma 2.7, (b), to obtain

10w, <c D[S )lgsly<e Y dollaclSliLyel6l"

0€@,,0C2 0€@)y,, 0C2
_1+l _1_;’_;
<c Y 0TTSILe <c Y 1A IS Ly
0€@,,,0C2p N €Ty, NCR2p
<c Y IShLye) <cllSlLyy- O
A/E’Z;H,A/C.QA

Local piecewise linear approximation.For a givenf e L',;’C, n >0, andA € 7,,, m € Z (recall thatT

is an LR-triangulation), we define the error bf-approximation tof on §2, from S by
Sa(fn=Sa(f. Dy = Inf If = Sllz, 2. (2.20)
€Om

Similarly as in the polynomial case, we say that S, is anear bestL ,-approximation tof on £2,
from S,, with a constant if

I = Sl @ < ASA(f)y-
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Lemma 2.12. Supposé < n < n and S is a near best_ ,-approximation tof € L,(£2,) on £, from
S,. ThenS is a near besL ,-approximation tof on §2, from S

The proof of this lemma is similar to the proof of Lemma 3.2 of [8] (see also Lemma 2.8 above). For
completeness, we give it in Appendix B. _

The quasi-interpolant (defined above) is a simple and useful tool for constructing projectofs, into
with good localization properties. Fgr> 0 and f € L"’c let Pr, = Pn,(f) be a near besk,(A)-
approximation tof from I7,. Note that ifn > 1, thenPA »(-) can be realized as a linear prOJector into
the space of linear polynomials restricted anHowever, P, ,(-) is nonlinear ify < 1. Let

Sua(f) = Ln-Pa,(f) formeL.

AeT,
Clearly, S, ,(f) € S2 andS,, ,(S) = S for everyS € S2. We set
Tm n(f) = Tm n(f T) = Qm(Sm n(f)) (221)

This construction is well known and is needed when workingLip with 0 < n < 1. Evidently,
Tn(f) e S, andT,, ,7(S) SforSes,,.
The next lemma establishes the good local approximation properties of the opératarsl7,,.

Lemma2.13. (@)lf f L',;’C, 1<n<oo,andA € T,,, m >0, then

| = CuD,, n) SSalHy. (2.22)
(b)IffeL',j’C,O<ngoo,andAeZn,m>0,then
|f = T (D 1,0y S Sa (P (2.23)

The constants above depend onlysoand the parameters of.

Proof. To show that (2.23) holds, we choosg € S, for which S,(f), is attained, i.e.|f —
SA”L @20 =Sa(f)y,. Then

1 = T i = 1F = Cun(Su ), )
=|f =55 +585 = Qu(SuM) )
<cllf = Sallya + ¢ On(Sa = Su(f) ||L,,(A)
<eSalPy+¢)|Sa = Su(H| a0
<eSalfy+elf = Sallyen +ef f— Sm(f)“u,(m)

< eSalHy

where we used tha:rzm(gA) — S, on A, Lemma 2.11, and the obvious inequality — S, ()L, <
I.f — Sallz, .- Thus (2.23) is proved. The proof of (2.22) is similar and will be omitted.

Lemma2.14. (a)If f € L1°°, 1< n< oo, thenforA e T
| = Qu(H,, =0 asm— . (2.24)
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(b) If f € L%, 0<n< oo, thenforaeT

|f = TP )= O aSM— 0. (2.25)

Proof. Using (2.1) and simple geometric arguments, one can show thas iin edge of a descendant
of A, ande does not emanate from a vertexaf then|le| < (1 — r) diam(A). By condition (g) on LR-
triangulations (Section 2.1), at any given level there can be at nMse@ges starting from the vertices
of A. From conditions (c) and (g), it follows that every edgis subdivided within less thanAg levels
after its first appearance, and by (2.1) each of the piecesat length< (1 — r) diam(A). Combining
the above observations, we conclude that after less tNérieG/eIs of refinement all edges of descendants
of A will have lengths< (1 — r) diam(A). From this we derive that

max{diam(A"): A" € T,,, A" C 2.} >0 asm — oo.
Hence, || f — Su(/)llL, @, — 0 and|lf — Su(H)llL, @) — 0 @asm — oo, whereS,, () is a (the) best
L,-approximation tof on 2, from S,,. Therefore,
[ =TuCH s S el = SwlH s+ el (S = SwH) )
<l f =SuHl e +<lSn () = Su(H 0
<e|f =SuH @+l f = SuH L0, = 0

asm — oo, where we used tha®,,(S») = S, on A and Lemma 2.11. Thus (2.25) is proved. The proof
of (2.24) is similar. O

2.3. Slim B-spaces

In this section, we introduce a collection of smoothness spaces (B-spaces) which we later used for
characterization of nonlinearterm Courant element approximation. Throughout the section, we assume
that7 is an arbitrary locally regular triangulation Bf (see Section 2.1). The B-spaces will dependon
This dependence may or may not be indicated explicitly.

Definition of slim B-spaces via local approximationWe define theslim B-spaceB; (7), « > 0,
0< p,q < o0, as the set of alf € L,(R?) such that

1/pq\ 1/q
1 llsg, ) == ||f||p+(Z[2’"“( 3 SA(nz) } ) < 00, (2.26)

mez AeT, 27 |A|<2-m+1

whereSa(f), :=SA(f, T),, for A € T,,, denotes the error of ,-approximation tof on £2, from §m
(see (2.20)), and th&,-norm is replaced by the sup-nornyit= oo.
We shall further study only a specific class of slim B-spaces which are exactly the smoothness spaces
needed for nonlinear Couraht,-approximation (see Section 3.2). We assume thai0< oo anda > 0,
and definer by the identity ¥t := « + 1/p. We shall need the slim B-spad& := B¢ (7), which is a
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slightly modified version of the spadg, (7)) from above. We defin®¢ (7') as the set of all functions
f € L,(R?) (in place of f € L.(R?)) such that

1/t
1 £llge = 1 lecr = (Z(MHSA(f)f)’) < o0, (2.27)

NeT

Remark. In the above definition, the conditiofi e L,,(RZ) IS not restrictive sinceB¢ (7) is embedded

in L, (see Theorems 2.15 and 2.16 below). Its only role is to eliminate a possible comggnenhtf,

which is a piecewise polynomial on infinite trianglas, € 7_., (see Lemma 2.1). This condition can be
replaced, e.g., by the conditiofx: | f(x)| > s}| < oo for eachs > 0 (see Theorem 2.15 below). It also
can be replaced by the conditighe L. (R?) as in the definition oB% (T) (see (2.26)), which is a little

bit restrictive since the spacés,(R?) andL,(R?) (t # p) are not embedded into one another. However,
this condition is not too restrictive since our approximation tool in Section 3.2 consists of compactly
supported piecewise polynomials and hence all theorems from Section 3.2 would hold if it is used.

Evidently,
1S+ glle < f e +llgllye, T :=min{z, 1}.

Also, if || f| g« =0, thenS, (f). =0 for eachA € 7. From this, it readily follows thaf coincides with
a linear polynomial on each, € 7_. Therefore, using that € L,, we infer thatf = 0 a.e. Thus,
for a fixed LR-triangulatioriZ, | - ||e(7) is @ norm ifr > 1 and a quasi-norm if < 1. In the following
“norm” will stand for “norm” or “quasi-norm”.

We next introduce other equivalent normsafi(7) which will enable us to operate more freely with
B-spaces. Foy € LI°°(R?), n > 0, we define

1/t

N (f) = Ng, (f, T) := (Z(|A|—“+1/f—1/"SA<f)n)T)

NeT
1/t
= (Z(Iﬁl””‘””SA(f)n)t) : (2.28)
NeT

where we used that/t =« + 1/p. Clearly, Ns . (f) = || f || e -

Atomic decomposition @ (7). For f e L,,(RZ), we define

1/t

No(f)=No(f, T):= __inf (Z(w“ llcago ||t)f> : (2.29)
F=20eco covo 9eo

where the infimum is taken over all representatigns >, _, cops With convergence iiL ,(A) for each

A € 7. (The existence of such representationg dbllows by Lemma 2.14.) As will be seen in the proof

of Theorem 2.15 below

> (101 llcopollc)" < oo implies

0e®

Z|09<P0(')|

fe®

<0
p
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and henceg_,_, lcopy (-)| converges a.e. and unconditionallylig(Rz). Therefore, the order of the terms
in the series above is not essential. By Lemma 2.7, it follows that

1/t
Vo)~ it (Ylewnly) (2.30)

F=229co covs o

Definition of norms inB2(7) via projectors. We define, fom € Z,

qm = Qm - Qm—l and tm,n = T;n,n - T;n—l,n- (231)
For a given functionf e L',;’C(RZ), 1< n< oo, clearlyg,(f) € S, and we define uniquely the sequence
{bo(f)}eco,, (m € Z)from the expression

an(f)=:Y_ be(f)ps. (2.32)

6eOy,

Also, if f € L',;’C(]RZ), 0<n< oo, theny, ,(f) e S,. In this case, we defingy ,(f)}oco, bY

() =1 D bo.y(f)o. (2.33)
0e®,,
Evidently, {by(-)} and {by ,(-)} with n > 1 are linear functionals, whildb, ,(-)} are nonlinear if
O<n<l1.
We define
1/t
No(f)=No:(f, T):= (Z(wr“ o= (e n,)f) : (2.34)
0e®

whereby . (f) := bye(f) are from (2.32) (or from (2.33)) it > 1 andby . (f) are from (2.33) ifc < 1.
More generally, we define

No.y(f)=Noy(f. T):= (Z(Wll/pl/"Hbe,n(f)(Pe H,,)’)l/r. (2.35)
By Lemma 2.9, we have -
No,(f)~ (Z(|A|1/”—l/"||qm<f)||L,,(A))’)1/T if n>1, (2.36)
AeT ”
No.(f) = (Z(mﬁ/ﬂ1/"\\t,n,,7(f>”Ln(A))f) ifo<n<1, (2.37)
and, in both cases,AET
No.,(f)~ (QXO:Hbe,n(f)w@ H;)l/t. (2.38)

Our next step is to show that the slim B-spa&&(7) is embedded irL ,(R?). To do this, we invoke
Theorem 3.3, proved later in Section 3.1, which is however completely independent of this section, and
can therefore safely be used.
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Theorem 2.15. If [{x: | f(x)| > s}| < oo for eachs > 0and Ny ,(f,7) < oo for somel < n < oo, then
fELp(RZ)!

f=) bay(f)ps absolutely a.e. ok’ (2.39)
fe®

and unconditionally in_ ,(R?), and

> 1bon(Fes ()]

0e®
with ¢ depending only ow, p, n, and the parameters of.

[FAIPES <cNoy(f) (2.40)

p

Remark. Observe that the conditionx: | f(x)| > s}| < oo for eachs > 0 is satisfied iff € L, (R?) for
an arbitraryg < co.

Proof. Let us consider the case wheYy ,(f) is defined via the coefficients, ,(f) from (2.33).

We introduce the following abbreviated notatiofy, := T, ,,(f), tw := tw.,(f), be := bg,(f), and
N(f) = (Cgeo IIbagsll}) ™. Note thatNg ,(f) ~ N(f), by (2.38). Since is an LR-triangulation, the
sequencd ®,,} := {byps }oco Satisfies requirements (i) and (ii) of the general embedding Theorem 3.3
below. Therefore) ,_,, 1bows (-)| < oo a.e. onR? and

> 1bags (]| <eN (). (2.41)
Hence%@ ”
D O] <00 ae. onk? (2.42)
=
and ]
D HO|| <eN() <o (2.43)

JEZ r

Evidently, (2.39) and (2.41) imply (2.40). Therefore, it suffices to prove that (2.39) holds. To this end, we
first show that

f=To+ )Y t; absolutely a.e. o’. (2.44)
j=1

Setg :=To+Y_, t; pointwise. By (2.42), it follows thag is well defined. Clearlyg =7, + 372, 1 1;
a.e. form € Z. Hence, by (2.43),

> 50

j=m+1

On the other handf < L',;’C(]RZ) and by Lemma 2.14 we have, fare 7,

— 0 asm — oo. (2.45)
p

”g _'Tﬁ”p <

If = TallL, ) — 0 asm — oo.
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From this and (2.45), it follows that= f a.e. and hence (2.44) holds.
We shall next prove that for every, € 7_, (see Lemma 2.1) there exists a unique linear polynomial
Py, such that

0
To— Py, = Y _ t; absolutely a.e. o . (2.46)

j=—00
Using Lemma 2.7, we have that for anye 7; (j € Z)

1211 ooy < elAITP il ey S AT Y7 lbegall, < clATYPN(S). (2.47)
0e®;: ACH

SinceT is an LR-regular triangulation, it C A, A € T;, and A’ € T;, then|A| < p*=7|A’|, where
0 < p < 1is the parameter df from (2.1). Using this and (2.47), we obtain, fare 7;, k € Z,

k k
D Ml S eNOIATY? Y™ p& PP L | ATYPN(f) < 0. (2.48)

j=—00 j=—00

For A € T, we setP, =T — Z’;?w t; pointwise. By (2.42), the series converges absolutely a.e. and,

therefore,P, is well defined. ClearlyP, = T,, — Y_""___ t; for m < k and, hence, by (2.48),

J
> 150

j==00

m
< Z IjllLeay — 0 asm— —oo. (2.49)

j=—00

1T — PallLoaca) <

Loo(A)

Since allt;’s, j <k, are linear polynomials on € 7y, so is P,. Moreover, P, is the same polynomial
for all A € 7 contained in a fixed\o, € 7. Indeed, letA’, A" € T, AN/, A" C Ay, (A" and A" are
possibly from different levels). Sinc&, is an infinite union of nested triangles, there exists 7 such
thatA’, A” C A C Ay. By (2.49),

ITn — Parlliay — 0 and [T, — PallLgay — 0 asm — —oo.
HenceP, = P,. Similarly, P,» = P,. Therefore, there exists a unique linear polynon#iga|, such that

(2.46) holds.
Combining (2.44) with (2.46), we obtain

f— Py, = th absolutely a.e. orh o, A € To. (2.50)
JjeZ
Using that)_,_,1; € L,(R?) and the hypothesis of the theorem, we obtain

{x: th(x) > %H

JEL
s -P p
+ (E) th < 00,

jez. P
for eachs > 0. SinceA, is an infinite triangle or a half plane &2 and P, __ is a polynomial, this is
only possible wheneveP,_ = 0. Thus (2.39) is established.

Hx € Aot |PAm(x)‘ > s}l <

{x: |f(x)‘ > %H—i—

<

{x: |f(x)‘ > %}
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The proof of the theorem wheN,, ,(f) is defined via the coefficients; ,(f) := by (f) from (2.32)
is the same and will be omitted.O

Theorem 2.16. For f € B (7), the norms|| f | ge(7), Ns,(f) (0 <n < p), No(f), and Ng ,(f)
(0 < n < p), defined iN(2.27)—(2.29)&and (2.35)are equivalent with constants of equivalence depending
only onp, «, n, and the parameters dof.

Proof. By (2.30), (2.38), and Theorem 2.15, it follows that:
No(f) <cNoy(f). (2.51)
Clearly, if A € 7,, and A’ is the (unique) parent of in 7,,_1, we have
||tms77(f)||L,,(A) <cf f- me'i(f)HL,](A) +ef f - Tmfl)n(f)”Ln(A')

S Sa(f)y+Sa(fy,
where we used (2.23). A similar estimate holds|fgy, (1) .,), using (2.22). These imply

We next prove that iV4 (f) < oo, then
Ns ,(f)<cNg(f) forO<p<p. (2.53)

By Holder’s inequality, it follows that:

NS,,u(f)gNS,r(f)v O<pu<r.

Thus it suffices to prove (2.53) only far< u < p.
Supposef € L, andNq(f) <oo. Let f =), cops be an arbitrary representation 6f where the
convergence is il ,(A) for everyA. Recall that
1
1_1 AN
New(h = (X 818007 ) (2.54)
NeT
whereS, (f), is defined in (2.20). Evidentl§§A(g), =0forA €7, if g € §m, andSx(g), < lgllz, s -
Now, fix A € 7, n € Z. Using the above properties 8f (g),, and Theorem 3.3 with®,,} := {cops: 0 €
®, 60 C 22) (for the definition of22, see (2.10)), we obtain

SA<f);=SA<Z 209909) DY copn

Jj=n+10€0®; Jj=n+10€0®;

T

T
<

u Lu(£25)

i Z CoPo

j=nt+lgeo; 0c022

T

<c Y leswll,

w 0e®,0Cc2?

1 1
S D el T
9€@,0C22

<

where for the last inequality we used thiak ||, ~ |67, 0 < ¢ < co. Substituting the above estimate in
(2.54), we get
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1_1 1 1
N u(f)F <e Y 1Al Y= 101" llecogll?

AeT 9e0,0C22

9 T(l_l) L .
<Y ¥ (%) 0P leolle)

AT ge@, 022

P . o1\
<Y (01 Flleowll)” Y (%) 0 (2.55)

= AT 0c?

where we once switched the order of summation. By condition (g) on LR-triangulations (Section 2.1),
we have, fol € ©;,

#AeT;: 0 C22) <c(No),
and by (2.1) and (2.2)¢| < ¢(No, 8)p’|A|, if 6 C 22 with A € 7,,_; andd € ©,,. Hence, for € ©,

01\ P & el
> (B e b e 56

AeT: 0c22 Jj=0

where we used that < 1 andu < p. Finally, combining (2.56) with (2.55), we obtain

Ns ()" <D (101 leogollc)"

0e®
which implies (2.53). Evidently, (2.51) and (2.53) imply the theorerm

Remark. The following simple example shows that, in general, Theorem 2.16 is not validtgp. Let
f := @, for somed € ©. Itis not hard to see thatf || s=(1) =~ 1017 ~ |yl ,, While Ns ,(f, T) = oo, if
n = p. Therefore Ns , (f, T) is not equivalent td| f || g=(7) if n > p.

2.4. Skinny B-spaces

In this section, we define a second family of B-spaces which we shall use in Section 3.3 for the
characterization of nonlinear (discontinuous) piecewise polynomial approximation generated by nested
triangulations.

Throughout this section, we assume thais an arbitrary weak locally regular triangulation RBf
(see Section 2.1). We define thkinny B-spac@g’;(?’), a>0,0<p,qg <00, k>1, as the set of all

f € L,(R?) such that

1/pqa\ 14
1 3 () = ||f||p+(2[2'"“( > o (f, A)ﬁ) ] ) < o0, (2.57)

meZ AT, 27m|A|<2-m+1

wherewy (f, A), is the local modulus of smoothness pfdefined in (2.8).
As for the slim B-spaces, we shall explore in more details only the skinny B-spaces that are needed
in nonlinear piecewise polynomidl ,-approximation. Suppose 8 p < oo, @ > 0, k > 1, and let
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1/t := a + 1/p. We shall need the skinny B-spat*(7), which is a slight modification of8%*(7")
from above, and is defined as the set offalt L,(R?) (in place of f € L.(R?)) such that

1/t
gt = I £ otz o= (Z(mr“wk(ﬁ A»)f) <. (2.58)

NeT

Whitney's estimate (Lemma 2.6) implies

1/t
I/ Nl ek (1) = (Z(|A|_°‘Ek(f, A)r)t) , (2.59)

NeT

whereE;(f, A), is the error ofL . -approximation tof on A from I7; (see (2.7)).

If || fllge =0, thenEy(f, A), =0 for eachA € 7. From this, it readily follows thaf =1,_ - Pa_,
(Pa., € IT;) on eachA, € 7T_o. Therefore, using thaf € L ,, we infer thatf = 0 a.e. Thus|| - || g ()
is a norm ifr > 1 and a quasi-norm if < 1.

Remark. The only difference between skinny B-spaces and slim B-spaces is that the local approximation
from continuous piecewise linear functions on s&g, A € 7, is replaced by local polynomial
approximation on triangles frori. The key is that the triangles froth form a tree with respect to the
inclusion relation, while the sef@,, A € 7 do not form a tree; they overlap more significantly. This fact
allows for developing the theory of the skinny B-spaces and their application to nonlinear (discontinuous)
piecewise approximation (see Section 3.3) under less restrictive conditions on the triangulations, namely,
for weak locally regular triangulations.

Next, we introduce two other equivalent “norms”lﬁ‘j"(T). For f € LL?C(RZ), n > 0, we define

Nopy (£ T) 1= (Z(|A|°‘+Hwk<f, A)n)f)f

NeT

= (Z(mﬁ—%wk(f, A)n)’)r ~ (Z(|A|%—%Ek(f, A)n)’)r, (2.60)

NeT NeT

where we used thayt =a + 1/p. Clearly,N,, - (f, T) = [ f l| gex (7).

For eachA € 7 andn > 0, we let P, ,(f) be a near besL,(A)-approximation tof from [T
with a constantA which is the same for alh € 7 (see (2.16)). Note that iff > 1, then P, ,(f)
can be realized as a linear projector into the space of polynomials of degtemstricted onA. Let
Py y(f) = ZAeT,,, 1a - Pa,(f).Clearly, P, ,(f) is a near best,-approximation tof from S* (7) and
a projector intaSk (7). We define

pm,n(f) = pm,n(fv T) = Pm,n(f) - mel,r;(f) € S;];(T)’ (261)
and setpa ,(f) =14 - pm.,(f) for A € 7,,. We define

1/t
Ney(f. T) = (Z(|A|1/”—1/"||pﬁ,n<f)||,7)t) : (2.62)

NeT
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Using Lemma 2.7, we obtain

1z 1/t
No£ D~ (08 1))~ (Elrenrl;) (2.63)

NeT NeT

The following embedding theorem is pivotal for our theory of nonlinear piecewise polynomial
approximation.

Theorem 2.17. If |{x: |f(x)| > s}| < oo for eachs > 0 and Np ,(f,7) < oo (0 < n < 00), then
feL,R,

f=)_pun(f) absolutely a.e. ok’ (2.64)

mez

and unconditionally in_,, and

> | P ()]

mez

with ¢ depending only ow, k, p, n, and the parameters af.

ScNp,(f. T) (2.65)

p

[FAPES

Proof. Since7 is a WLR-triangulation, the sequené®,,} := {pa.,(f)}ac7 Satisfies requirements (i)
and (ii) of Theorem 3.3 below. Therefore,

> | pan(h)]

NeT

1/t
<C(Z||PA,n(f)|};) ~ cNpy(f.T) < 0o. (2.66)
p

AeT

From this, similarly as in the proof of Theorem 2.15, it follows that for evegy € 7_ ., (see Lemma 2.1)
there exists a polynomiat, € I7; such that

f—=Ps,=)_ puy(f) absolutelya.e. ot

mez

Using that|{x: | f(x)| > s}| < oo for s > 0 and (2.66), we infeP,_ = 0 and the theorem follows. O
We next give the equivalence of the skinny B-norms introduced above.

Theorem 2.18. For each f € B%(7T), the norms| f || get (7). N (f,T) O<n < p), andNp ,(f, T)
(0 < n < p) are equivalent with constants of equivalence depending onlw,0k, p, n, and the
parameters off .

Proof. The proof of this theorem is similar to (but easier than) the one of Theorem 2.16 and will be
omitted. The difference is that the role 8f(f), is now played byw,(f, A),. See also the proof of
Theorem 2.20 below. O

Remark. The following simple example shows that, in genef),,,(f, 7) is not equivalent td| f Il Be* ()
if n>p. Let f:=1, for someA € 7. It is easily seen thall f1lgu 1) = |AYP = | f]l,, while
fv;m(f;73 = oo if n 2=p-
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2.5. Fat B-spaces: The link to Besov spaces

Throughout this section, we assume tiats an arbitrary strong locally regular triangulation ®f
(Section 2.1). We define tHat B-spac@g’;(?’), a>0,0<p,g<oo,k>1,asthesetofalf L,,(RZ)
such that

1/pqq\ /g
ILf llgst (7 2= ||f||p+(2[2ma( Z wi(f, QA);) } ) <00,

meZl AeT, 27m|A|<2-m+1

whereg2, is defined in (2.9).

As in the previous sections, we shall focus our attention only on the scale of fat B-spaces which
naturally occur in nonlinear approximation, namely, the sp&¢&€7), wherex > 0,k > 1,0< p < oo,
and ¥t := « + 1/p. We define the spadg**(7) as the set of all functiong € L ,(R?) such that

1/t
I f Ipax (1) := (Z(|A|°‘a)k(f, QA)I)T) < 00, (2.67)

AeT

which is a modification of the spa@*(7") from above. By Whitney’s inequality (Lemma 2.6), we have

1/t
Il f o (1) = (Z(|A|_°‘Ek(f, QA)‘()T) ,

NeT

whereE, (f, £2,). is the error ofL.-approximation tof on 2, from 17, (see (2.7)).
Note that the use of2, in the definition of| f [|g« (7, is not crucial. It is almost obvious that, for
instance,

1/t
Il f o (1) = (Z(|9|_aa)k(f,9)r)t> .

0e®

Itis critical, however, that the neighboring sets in the collectigis} .7 Or {6 }sco OVverlap significantly.
This makes the difference between the fat and skinny B-norms.

Clearly, for f € L,(R?) andA e 7, we have the inequalitieB>(f, A); <Sa(f, T): < Ea(f, 24)1,
which yield the following comparison theorem.

Theorem 2.19. We have

I f lex 7y < N S llBek (7
and

I fllgezczy < cll fll e (1) < cll f Iez(T)-

We next introduce another normB*(7). For f € L'UOC(RZ), n > 0, we define

Ny, (f. T) = (Z(mﬁ%wk(f, .QA),?)t)T ~ (Z(|A|$%Ek(f, .QA),?)t)T. (2.68)

NeT NeT

Evidently,N,, . (f, T) = || f llget(7)-
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To prove the equivalence ¢ff ||e+ (7, andN,, ,(f, 7) for 0 < n < p, we need to introduce one more

norm inB% (7). For everyA € 7, we letP, ,(f) be a near best,-approximation tof on 2, from I,
with a constantd which is the same for a2, A € 7 (see (2.16)). We define

Pouy(f) :=Puy(£,T) =D 1p-Pay(f)
AeTy

and

Tan(f)=1o, - (Put1y(f) =Pa,(f) if AT,
The new norm is defined by

1/t
Noy(f. T) 1= (Z(mﬁ“’”" Hm.,n<f>|},7)f> : (2.69)

NeT

Clearly, sincel is an SLR-triangulation,

Noy(f. T) ~ (Z(w“ Hm,n<f>|ir)f)

NeT

1/t

(Z ||M,n<f>||;)l/r.

NeT

Theorem 2.20. For f € B (7), the norms|| f llgex (7, No (/s 7) (0<n < p), and N, ,(f,7) (0 <
n < p), defined in(2.67)—(2.69)are equivalent with constants of equivalence depending ondy, @n k,
n, and the parameters aof.
Proof. Using Holder’s inequality and the properties of the SLR-triangulations, we readily obtain
Ny (£, T)<cN,  (f,7), O0<n<up. (2.70)
As we pointed out earliel\,, . (f, 7) = | f llge (7). Therefore, it suffices to show that
N (f, T)~N;,(f,T7) foral0<pu,n<p.
From the definition of?, ,(f) andm, ,(f), it follows that for anyA” € 7,

||7TA/,n(f)H,] < C”f - IP’erl,n(f)||L,1(_(2A,) +CHf - PACn(f)”L,,(.oA/)

D DI VES JN0) B0 AT IO

AE’];,Hrl, ACQA/

<c Y E(fi20)y + cEl(f, 20y

AE’Z;,H_L AC.QA/

Substituting this estimate in the definitionsf, ,(f, 7) in (2.69), we easily obtain

Ny (fs T) <Ny (£, T), 1n>0. (2.71)
We next prove that iN,, ,(f, 7) < oo, n > 0, then
Nw,p,(fa T) <CN7T,T](fa T), T<u<p. (272)

Evidently, (2.70)—(2.72) yield the theorem.
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We introduce the following abbreviated notatidy :=Px ,,(f), P := Py, ,,(f), andmp :=mwa , (f).
We also sep,, := P11 — P, andpa :==1, - p,y =14 - wp for A € 7,,. Evidently, || pall, < lIall,, and,
hence,

1/t 1/t
(an;) <<Z|m||;) ~ Noy (£, T) < 0.

NeT NeT

It is readily seen that the sequeng,,} := {pr}re7 Satisfies conditions (i) and (ii) of Theorem 3.3.
Therefore,)" .7 loa(-)| < co a.e. onR?, and

Z|PA(’)|

NeT

<eNp, (D). (2.73)
p

On the other hand, sincg e LL?C(RZ), If —Pullz, ) — 0asm — oo for everyA € 7. Exactly as in
the proof of Theorem 2.15, it follows thgt— P, € L ,(R?) and

f=Pu= p; absolutely a.e. of? (2.74)
J

Jj=m+1

and unconditionally ian(Rz). Now, fix A" € 7,, n € Z. SincelP, is a polynomial of degree: k on
2., we have

o (fs 2a) = o (f —Par, 20 <cllf —ParllL,2,)- (2.75)
Using (2.75), (2.74), and Theorem 3.3 wit,,} :={pr: A €T, A C 25/}, we obtain

o
o R0, < clPuss = Pall} o+ Y 0115, 0,

j=n+1
o T
cllapli+e Y | Y pa| <clrwli+ce D lpall
j=n+1"AeTj, ACR2, [ AET, ACS2,
11
<c > dmali<e Yo 1Al mall,
AeT, ACS2, AeT, ACS2,,

where we used Lemma 2.7 and the properties of the SLR-triangulations. Substituting the above estimate
in the definition ofN,, ,,(f, 7), we proceed as in the proof of Theorem 2.16, to obtain (2.72).

Comparison of regular B-spaces with Besov spacéhe Besov spaceB; (L) = B (L ,,(Rz)), s >0,
1< p, g < o0, is usually defined as the set of all functiofie L,,(RZ) such that
|f|BgI(L,,) = (/
0
with the L ,-norm replaced by the sup-nornmyit= oo, wherek := [s]+1 andw ( f, t) , is thekth modulus
of smoothness of in L,(R?), i.e.,&x(f,1), :=SUpy <, 1A (f, ) ,. The norm inB; (L) is defined by

1Ay L, = I1Fllp + 1 1BycL,)-

1/q
(S wr(f, t),,)"%> < oo (2.76)
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It is well known that ifk in (2.76) is replaced by any other integers, then the resulting space would
be the same with an equivalent norm. However, the situation is different whet (see [11]). For this
reason we introduck as an independent parameter of the Besov spaces in the next definition.

In this article, we are interested in nonlinear piecewise polynomial (spline) approximatioy(itf)
(0 < p < 00). The Besov spaceB?*(L,) with « > 0 and ¥t := « + 1/p play a distinctive role in this
theory. Taking into account tha#?*(L,) is embedded ir. » and the above observation regarding the
independence df and the smoothness parameter, we naturally arrive at the following slightly modified
version of the Besov spad@® (L. ).

Assuming that 0< p < 0o, @ > 0,k > 1, and ¥t := « + 1/ p, we define the Besov spad&**(L,)
as the set of all functiong € L ,(R?) (in place of f € L,) such that

8]

1ok p = ( /

0
Notice that the B-spaces and Besov spaces are normalized differently with respect to the smoothness
parameter. Thus, e.g., the fat B-sp@%(7) corresponds to the Besov spag&*(L,).
From the properties ab,(f, 1), it readily follows that:

1/t
1 W g2e ) (Z(2Z“mwk(f, 2""),)’) : (2.78)

mez

1/t
(™ wx(f. t),)t?> < 0. (2.77)

Next, we give an equivalent norm for the Besov sp&®&*(L,) in terms of local polynomial
approximation. We leD;, denote the set of all dyadic squatesf the form

v—1 v nw—1 u
I =\ KA s A s~ 9 S Za
|: 2m 2m> X |: 2m 2m) v M
and letD! be the set of all shifts of € D/, by the vectore := (271, 2771y ie.,D! :={I +e: I €
D! }. We denoteD,, := D, U D! andD :=J, ., D.». We now introduce the following norm:

mez
1/t 1/t
N(f) = (Z(ur“wk(f, 1>T)f> ~ (Z(|I|—“Ek<f, I)T)f> : (2.79)
leD leD

whereE, (f, I). is the error ofL . (I)-approximation tof from IT,.

Lemma2.21. If f € B2¥(L,), then

NGO~ N1 f Nl gur
with constants of equivalence depending onlyor, andk.

Proof. Thislemma is well known and fairly easy to prove. Its proof hinges on the following equivalence:

1 T
a)k(f,l);wm / /|A§(f,x,1)| dx dh, (2.80)
[0, &2 1
wheret (1) := |11 andAf (f, x, 1) == 35 _o(=D (%) f (x+ jh) if [x, x+kh] C T andAf(f, x, 1) :=
0 otherwise (see [13] for the proof of (2.80) in the univariate case; the same proof applies to the
multivariate case as well). (See also [15].
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We next consider B-spaces over regular triangulations (see Section 2.1).
Theorem 2.22. If 7* is a regular triangulation them*(7*) = B?*k(L,) with equivalent norms.
Proof. This theorem is an immediate consequence of Lemma 2.21 and the following lemroma.

Lemma 2.23. Suppose7 * is a regular triangulation with minimal anglgg > 0. Then there exists
ip = ig(B) such that the following hold

(@) If I € D,, (m € Z), then there exista € 7* such thatl c £2, and|A| < 2-2"+,
(b) If A e T*and272" < |A| < 2722, then there exist$ € D,,_;, such that2, C I.

Proof. The proof of this obvious lemma will be omitted O

Exactly as in the case of B-spaces, we introduce the following norm in the BesovB§aad., ):

1 1

N, () = (Z(uﬁ%wk(f, 1),7){)( ~ (Z(uﬁ%Ek(ﬁ 1),7){)1 (2.81)

IeD IeD
which in integral form gives

T

N, (f)~ (// [20 W ey fB,(x))n]rt3dxdt> : (2.82)

0 R2

whereB; (x) :={y € R |y —x|l2 <t} or B/(x) :={y € R% ||y — x|loc < 1}.
Proposition 2.24. The normsN, (-) withO <n < p and || - ||BM ) are equivalent.

Proof. Using Lemma 2.23 as in the proof of Theorem 2.22, one can showtfiat~ N,, , (-, 7*) if 7*
is a regular triangulation. From Theorems 2.20 and 2.22, we obtain
Nw,n(" T*) ~ ” : ”B‘;‘k(T*) ~ ” : ”B,za'k(Lf)' |

Remark. This result is (in essence) well known, see [15] and the references therein. The equivalence of
N,(-) and]| - ||Bga,k(Lr) clearly shows the intimate relation of B-spaces with Besov spaces.

Our last goal in this section is to find the range for the smoothness parametdrere the Besov
B?*-spaces coincide with the corresponding slim or skinny B-spaces over regular triangulations.

Theorem 2.25. Suppos€ * is a regular triangulation ofR?, 0 < p < oo, andk > 1.

a <a<1+1/pandl/t:=a+1/p,thenf e B*(T*) if and only if f € B>*2(L,), an
(@ Ifo 1+1 dl 1 h «(T*) ifand only if 2,2 d

1f 1l 2oz, ~ 11 f e (2.83)
with constants of equivalence depending onlypon and 8 = 8(7*). This equivalence is no longer
true if« > 14 1/p. Moreover, for every € ©(7T*) anda > 1+ 1/p, we havelgy|| gaoz ; = 00,
while |lgg [ pe(7%) = ll@a | .-
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(b) f0<a <1/pandl/t:=a+1/p,thenf € B¥*(T*)if and only if f € B2*(L,), and

”f”Bfa’k(Lf) ~ ”f”l’)’?’%'f*) (284)

with constants of equivalence depending onlykomp, «, and 8 = (7 *). This equivalence is no
longer true ifa > 1/ p. Moreover, for everyhA € 7* anda > 1/p, we have||ﬂA||Bga,k = oo, while

ILallger(Ts) = 11allp-

(Lo)

Proof. (a) From Theorems 2.19 and 2.22, we h§yfé| pe(7+) < c||f||Br2a,2(Lr) for o > 0. We next show
that

I fll g2z y < cllfllpers, 10 <a<141/p. (2.85)
Let f € BX(7™"). Then by Theorems 2.15 and 2.16, and (2.38), it follows fhe&in be represented in the
form
f=) bspy absolutely a.e. oft® (2.86)
fe®

and

1/t
£ g7y ~ (Z ||b9<o9||§,) , (2.87)
0e®
where® = O (7).
DenoteZ; := {0 € ©: 2% < 9| < 2720U~D}. SinceT* is regular, straightforward calculations show
that, for eachp € @,

O|A-D/2 41+t 0 <1 < |6]|V2,
wz(ﬁﬂe,f)i“”{l | 191

161, if £ >10]Y/2,
and hence, fof € Z; andr > 0,
w2(bygy, T~ minf by |5 - 277 P by |7 - 27727, (2.88)

where we used that/t = o + 1/p.
Denote f; := Zeegj bowy. SinceT* is regular, #9 € &;: x € 8} < c(B) for x e R? and j € Z.
Therefore,

wa(f5, < Y wabags, 1), j €L (2.89)
QEE]'
From (2.88) and (2.89), we derive that for any fixed: Z
wo(f;. 27")s < Y 2T A pg 1T, if j < m, (2.90)
QEEJ'
and
waf5, 27" < e Y 2 by, i j = m. (2.91)
HEEJ'

Let A := min{z, 1}. Then, using (2.90) and (2.91), we have
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m—1

a)z(f, 2—m))rL < sz(fj’ 2—m)iL <c Z <Z 2j(al117)tm(l+r)||b0(p0”;> !
JEL j=—00 “eE&;
o 0
+cZ(Z 2—12“f||b9w9||;> :
j=m “0eE;

Substituting this in (2.78), we obtain

m B\ %
11 Ci(a—1-1 t
1 Wz, <D 2" p”( > (2 Jasimpr 3 ||b9<pe||§,> )

meZ j=—00 0z,
00 2 X
m20T —j2at T
+C§ 2 (E 2/ (E ||170§00||p) ) ,
meZ j=m 0€E;

where we used thabz — 7 —1=1t(ae —1—1/p) since ¥t =« +1/p. To estimate the above sums, we
use the well known discrete Hardy inequalities. Namely, we apply, e.g., the inequality from Lemma 3.10
of [13] to estimate the first sum and Lemma 3.4 from [7] to the second sum. We obtain

1z, <€D D Mbagally < cll f ez,
JEZL OEE;
which completes the proof of (2.85).
Using (2.88), we obtain
r d
T . — 2 T t
60l guzg,, = [ (0 non0) T

0
l61%/2

00
~ |9|(1ff)/2 / t(*2a+l)tdt+|9| t*ZOtrfldt
0 10]1/2
‘9‘1/2

~ |9|(1—f)/2 / t(—2a+l)rdt+|9|r/p‘
0

Therefore,||¢9||Bga,z(Lr) = oo if (—2a 4+ 1)t < —1 which is equivalent tax > 1 + 1/p, using that
1/t =a+1/p. Itis easily seen thatyy || g« (7+) ~ ll@s |l ,,» Which follows from the Bernstein inequality
in Theorem 3.7 as well.

(b) Simple calculations show that, (14, 1)F ~ min{|A|Y?, |A|} for A € T* andt > 0. The rest of
the proof is similar to the proof of part (a) and will be omitteda

Comparison between B-spaces over different triangulations and Besov sp&gmose7 is an
arbitrary strong locally regular triangulation Bf (Section 2.1) and & p < co. It can be proved that
there existsyg = ao(p, B, Mp) > 0 such that if O< & < ap and f € B¢(7) with 1/t :=a +1/p, then

I f o2y < cll £ 1l e ).
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We leave the proof of this result for elsewhere since it is much longer and more involved than the proof
of Theorem 2.25. Thus the fat B-norfff'||g.2(7 is equivalent to the slim B-norf| p«(7) for some
relatively small range & o < «g and becomes much larger where «g. The relationship between fat

and skinny B-spaces is quite similar. We skip the details.

It is essential for our theory that the Courant elements6 € ®(7), have infinite smoothness
(smoothness of order > 0 for every«) in the slim B-space scalBs (7). At the same time eacly
has limited smoothness < «q in the corresponding fat B-space scale.

If one compares a&B¢-space over an arbitrary triangulation with the corresponding Besov space
B2k(L,) (or two B-spaces over different triangulations with each other), then everything changes
dramatically. As was shown in Section 2.1, there exist strong locally regular triangulations with
extremely skinny Courant elements which cause problems to Besov spaces. More preciggliaelet
the Courant element associated with a éed ® which is convex, has length> 0 and widthel with
0 < ¢ < 1. Simple calculations show thaty(¢y, t)T ~ min{e~"11"7t1+7 2}, Furthermore, we have
Igoll g2z, ~ e llgall, fO0<a<1l+1/pand @l gaz ;=00 if « >1+1/p. At the same time,

@ ll B2(1) ~ ll@s|l, for eacha > 0. Therefore, even for smadl the Besov norm of a Courant element
can be huge in comparison to its,-norm. This is why the Besov spaces are completely unsuitable for
the theory ofi-term Courant element approximation in the case of nonregular triangulations.

B-spaces in dimensiong# 2.  Slim, skinny, and fat B-spaces ihdimensions { > 2) can be defined

and utilized similarly as in the two-dimensional case. We do not consider them in the present article
simply to avoid some complications that are unnecessary at this point. Of course, the B-spaces can be
defined in the univariate case as well. However, it can be shown that the univariate slim, skinny, and fat
B-spaces do not give anything better than the corresponding Besov spacegikOco and, therefore,

are useless. The point is that in the univariate case the Bernstein inequality holds with no restrictions
ona > 0 (see [11]). In the case of = oo, however, the B-spaces are different from the corresponding
Besov spaces.

3. Nonlinear piecewise polynomial approximation

In this section, we give our main results for nonlineaterm approximation irt. ,(R?) (0 < p < 00)
from: (a) Courant elements generated by LR-triangulations and (b) discontinuous piecewise polynomials
over WLR-triangulations.

3.1. Nonlineam-term approximation: General principles

We begin with a brief description of the general principles that will be guiding us in developing the
theory of nonlinearn-term approximation by piecewise polynomials.

Let X be a normed or quasi-normed function space, where the approximation will take place (in this
article, X = L,(R?), 0 < p < o). Suppose? = {gs}sco is a collection of elements iX which is, in
general, redundant, and we are interested in nonlingarm approximation fron®. We let X, denote
the nonlinear set of all functios of the form
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whereA, C ©, #A, <n, and A, varies withS. The error ofn-term approximation tgf € X from @ is
defined by

0u(f) = Jnf If = Slix.

Our main objective in this article is to describe the spaces of functions of given rateseom
approximation. More precisely, we want to characterize the approximation gjaee A (®), y > 0,
0 < g < o0, consisting of all functiong’ € X such that

o0

1/q
1
£y =1 £lx + (Z(nyo,xf))q;) <00 (3.1)

n=1

with the ¢,-norm replaced by the sup-norm 4f = co. Thus AL is the set of allf € X such that
o.(f) <cen?.

To achieve our goals, we shall use the machinery of Jackson and Bernstein estimates plus interpolation
spaces. SupposB C X is a smoothness space with a (quasi-)ndrm| 3, satisfying thea-triangle
inequality: || £ + gl < IfI% + llglls with 0 <A < 1 (in our caseB will be some B-space), and let
@ C B. The K-functional is defined by

K(f.t):=K(f.1:X,B):= gig};(llf —gllx +1liglls), >0

The interpolation spaceX, B), , (real method of interpolation) is defined as the set offall X such
that

e¢]

1/q
1, myy = N1 Fllx + ( > [2"K(f. 2'")]") <00, 0<p<y,

m=0

where thef,-norm is replaced by the sup-nornyit= co (see, e.g., [3,4]).
The well known machinery of Jackson and Bernstein estimates allows to characterize the rates of
n-term approximation fron®:

Theorem 3.1. (a) Suppose the following Jackson estimate holdeere isee > 0 such that forf € B

on(f)<en®|fllg, n=1l (3.2)
Then, forf € X,
cr,,(f)ch(f,n_“), n>1 (3.3)
(b) Suppose the following Bernstein inequality holBisere ise > 0 such that
ISlls <cn®|ISllx, forSeX,, n>1 (3.4)
Then, forf € X,
" 1/x
K(f,in™)<cen™ ([ %(Vaav(f))ki| + ||f||x>, nz>1 (3.5)
v=1
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Proof. Forthe proof of this theorem see, e.g., [13]2

An immediate consequence of Theorem 3.1 is that if the Jackson and Bernstein inequalities (3.2)
and (3.4) hold, thew,(f) =0®n"7),0< y <a, ifand only if K(f,n™%) = O(n~"). More generally,
Theorem 3.1 readily yields the following characterization of the approximation spdces):

Theorem 3.2. Suppose the Jackson and Bernstein inequalie2) and (3.4) from Theorens.1 hold.
Then

Ag(@) = (X, B)%,q, O<y<a, O0<g <00,
with equivalent norms.

General embedding theorem and Jackson estimate for nonlingsm approximation

Theorem 3.3. Supposdg®,,} is a sequence of functions in,(RY), d > 1, 0 < p < oo, which satisfies
the following additional properties wheh< p < oo:

(i) @, € Loo(RY), suppd,, C E,, with0 < |E,,| < oo, and
1P lloe < 1l En| 7@l -
(i) If x e E,, then

|E,nl 1/p
> E) <en
| |E|

E]'BX, \Ej|>|Em

where the summation is over all indicgsfor which E; satisfies the indicated conditions. Denote
(formally) f:=>", @, and assume that for sonfe< v < p

1/t
N(f):= (Z ||<bm||;) < 0. (3.6)
Then)", |®,(-)| < oo a.e. onR?, and hencey is well defined oiR?, f € L,(R?), and

> |@n()]

wherec = c(«, p, c1).
Furthermore, ifl < p < 0o, condition(3.6) can be replaced by the weaker condition

SeN(f), (3.7)

p

[FAIPES

N = [{I1@nlip} . < o0 (3.8)
where||{x,, }|l,¢, denotes the weak -norm of the sequende;, }:
H{xm}Hwer = inf{M: #{m: [Xm| > Mnfl/t} <nforn=12, .. } (3.9)

Theorem 3.4. Under the hypothesis of Theoréi8, supposd @, 172 is a rearrangement of the sequence
{®,,} such that| @S|, > @51, > ---. Denotes,, := ijl 7. Then

If = Sull, <cn *N(f) witha =1/t —1/p, (3.10)
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wherec=1if0<p<landc=c(a, p,c) if 1l < p < o0.
Furthermore, the estimate remains valid if conditi@6) is replaced by3.8)whenl < p < oo.

Proof of Theorems 3.3 and 3.4. Casel: 0 < p < 1. Sincer < p, we have

1/p 1/t
Ylea O] < (Z ||q>m||5> < (Z ||<bm||;) =N(f)
m P m m

which proves Theorem 3.3 in this case. To estimiate— S,||, we shall use the following simple
inequality: Ifx; >x,>--->0and O< 7 < p, then

00 1/p 00 1/t
( Z xf) gnl/pl/t<2x;> . (3.11)
j=1

j=n+1

The proof of this inequality is given in Appendix B. Applying (3.11) with:= [|®7]| ,, we obtain

0o oo 1/p
3 070 <( 3 nab;*nz)
P

j=n+1 j=n+1

00 1/t
< nl/P—l/f<Z||q>j||;> =n"“N(f),
j=1

which proves Theorem 3.4 in Case I.
Casell: 1 < p < co. We need the following lemma.

”f_Sn”pg

Lemma3.b. LetF := Zjej,, |®;|, where#J, < n, and||®,||, < L for j € 7,. Then
IF|l, <cLn/?

with ¢ = ¢(p, c1).

Proof. Let 1< p < oo (the casep = 1 is trivial). Using property (i) of the sequen¢e,,}, we have

D 1®lloe - 1, () S E Y 1, 0)
Jj€Tn Je€TIn

I, < <cL

p

P
We definek = Ujejn E; and&(x) :=min{|E;| andj € J, andE; > x} for x € E. Property (ii) yields
Y ieq Ej TP 1, (x) < 26 (x) 77 for x € R%. Therefore,

1/p
iF1, < ctfer ], =t [ e iar)
E

1/p
ch(Z |Ej|l/15,-(x)dX> = cL#T)Y? <cLn®?. O

j5\7n R2
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We define&, := {j and 2Z*N(f) < |2;ll, < 2-MIN(f)}). Then ngu g, ={j and | ®], >
27*N(f)} and hence, using (3.6) or (3.8), we derive

> #E, :#(U E) L 2n, (3.12)

v VK
Therefore,

#5, <Y #E, <2V, (3.13)

v
We denoteM :=3% ., #5,. By (3.12),M <2"".LetF,:=} ;- |®;|. Using Lemma 3.5 and (3.13),
we obtain
oo oo
L =Sul, <|| D Fuf < D0 IFl,
pn=m+1 p pn=m+1

s¢ Z 2EN(SIHEDY? <eN(f) Z 2—w(1=t/p)

n=m+1 pu=m+1
=cN(f)2"TP L eM YVTPN(f) = cMUN(f).

This estimate readily implies (3.10). Evidently, (3.7) is also contained in the above resuls (take0).
This completes the proofs of Theorems 3.3 and 34.

As will be seen in Sections 3.2 and 3.3, Theorem 3.4 easily gives the needed Jackson estimates for
piecewise polynomial approximation (see Theorems 3.6 and 3.10). However, there is no simple recipe
for proving Bernstein estimates (see Appendix A).

3.2. Nonlineam-term Courant element approximation

In this section, we assume thdt is a locally regular triangulation dR?. We denote byds the
collection of all Courant elemenis generated by (see Section 2.1). Notice théd; is not a basis@r
is redundant. We consider the nonlineaterm approximation ir’ ,(R?) (0 < p < oo) from &7. Our
main goal is to characterize the approximation spaces generated by this approximation.S\M& et
denote the nonlinear set consisting of all continuous piecewise linear funétiohihe form

where A, C ©(7), #4, < n, and A, may vary with S. We denote by, (f,7), the error ofL -
approximation tof € L ,(R?) from X,(7):
on(f,T)p:= inf _|If =Sl
e (T)
Throughout this section, we assume that p < co, « > 0, and ¥t :=« + 1/p, and denote by (7)

the slim B-space introduced in Section 2.3. We next prove a pair of companion Jackson and Bernstein
estimates.
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Theorem 3.6 (Jackson estimatelf. f € B2 (7), then

on(fs T)p < cn™ | flipecr) (3.14)
with ¢ depending only o, p, and the parameters of.

Remark. Estimate (3.14) remains valid [iff || s« (7, is replaced byl{||bg@s |l ,}[lwe, With {bg} from (2.32)
or (2.33) as in the definition Q¥ . (f) (see (2.34)), wherg- ||,,¢, is the weakl.-norm defined in (3.9).

Proof. By Theorem 2.15, it follows that:
f= Zbg(f)(pg absolutely a.e. o2,

0e®
where{by} are from (2.32) or (2.33). We use Theorem 3.4, (2.38), and Theorem 2.16 to obtain

1/t
u(f,T)p<cn™® (Z”be(f)(ﬂe “;) ~cn *No(f)=cn | fllper). O

0e®

Theorem 3.7 (Bernstein estimate)f S € £, (7), then
1SN B (1) < en®|I S|l (3.15)

with ¢ depending only om, p, and the parameters @f.

The proof of this theorem is more involved than the one of Theorem 3.6. We shall give it in
Appendix A.

We denote byA! := AZ(L,,,T) the approximation space generated /byerm Courant element
approximation (see (3.1)). The Jackson and Bernstein estimates from Theorems 3.6 and 3.7 yield the
following characterization of the approximation spaéé$Lp, T) (see Theorem 3.2):

Theorem 3.8.If 0 <y <« and0 < g < o0, then
AY(LpT) = (Lp. BY(D)),

with equivalent norms.

“Algorithm” for nonlinear n-term Courant element approximationOne of our primary motivations for
this work was the development of methodsdeterm Courant element approximation which capture the
rates of the best approximation. The proofs of Theorems 3.3 and 3.6 suggest the following approximation
scheme, where we assume tifat L ,(R?), 1 < p < oo, and7 is a fixed LR-triangulation oR?:

Stepl. We use the operatotg, () := g,.(f, 7) induced by the quasi-interpolant (see (2.31)) to find
the following decomposition of :

£=>"an(H=>_>" bs(fgs,

me7z mezZoe®@y,

where{by(f)} are defined by (2.32) and the identity was established by Theorem 2.15.
Step2. We order the term@&y ()@ }oco in a sequencéby, (f)ge; 1721 such that
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|66, (e |, = |bor (e, = -+
Then we define the-term approximant by

An(F)p=An(£. )= bo, (s,

j=1
This procedure becomes practically feasible in the setting of approximation of functions defined on
compact polygonal domains.
By Theorem 3.4, it follows that:
| f = Au()p]l, < cn N fllpecr-

If 0 < p <1, we use the more complicated nonlinear operaiprg ) (n < p) from (2.31) instead of
gm(f) and the coefficients, (f) := by ,, defined in (2.33). The same estimate for the error holds again
by Theorem 3.4.

These results imply that the above algorithm achieves the rates of the-bersh Courant element
approximation. We shall further elaborate on this in a forthcoming article.

n-term approximation from the library@7}. We denote by, ( /), the error ofn-term approximation
to f e LP(RZ) from the best Courant element collection, i.e.,

&n(f)p = |9f5n(fv T)p,
where the infimum is taken over all LR-triangulatiohsvith some fixed parameteidy, No, r, p, ands.
The following result is immediate from Theorem 3.6.

Theorem 3.9. Supposeénfr | f||«(7) < oo, where the infimum is taken over all LR-triangulations with
some fixed parametedy, No, r, p, ands, and letf € L,,(]RZ). Then

Gu(f)p <cn™® i[}f IS | Ba(T)s
wherec depends ow, p, and the parametersfy, No, r, p, 8.

It is anopen problento characterize the rates of approximation generate@hyf),}. The difficulty
stems from the highly nonlinear structure of approximation from the libféry} .

3.3. Nonlinear approximation from (discontinuous) piecewise polynomials

In this section, we assume tHAtis a weak locally regular triangulation & (Section 2.1). We denote
by Z¥(T), k > 1, the nonlinear set of at-term piecewise polynomial function of the form

S = Z ]lA . PA,
AeA,
where P, € Iy, A, C T, #A, < n, and A, may vary withS. We denote by, (f,7), the error of
L ,-approximation tof € L ,(R?) from Z*(7):

on(f. T)p = S irr}f(T) ILf = Sllp-

n
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We want to characterize the approximation spaces generated),(9y7),. To this end we shall
proceed according to the recipe from Section 3.1. We shall first prove Jackson and Bernstein estimates.
Throughout the rest of the section, we assume that0< oo,k > 1,0 > 0,and ¥t =« + 1/p. Recall

that B**(7) denotes for the skinny B-space introduced in Section 2.4.

Theorem 3.10 (Jackson estimatelf. f € B2¢(7), then

on(fs T)p < en™ | fliger ()
with ¢ depending only o, «, k, and the parameters & .
Remark. The conclusion of Theorem 3.10 remains valid ff|| 5.« (7, is replaced by the weak -norm

H{Pan(f)}acTllwe, Of the sequencépa ,(f)}aer, 0 < n < p, defined in (2.61) (see also (3.9) for the
definition of || - [|,,¢,).

Proof. By Theorem 2.17, we havef = ) .., p, absolutely a.e. onR? and | f|gwu) ~

(Cper Ipalll)™", wherepa := pa,(f) (0 < n < p) are from (2.61). Evidently, the sequenie;} :=
{pa}aeT Satisfies the requirements of Theorem 3.3 and, therefore,

1/t
an<f,7>,,<cn“(2npﬁ||;) <en| flgmer)- O
AeT
Theorem 3.11 (Bernstein estimate)f S € X*(7), then
151l ex 7y < en®[IS1lp (3.16)
with ¢ depending only o, «, k, and the parameters & .

We shall give the proof of this theorem together with the proof of Theorem 3.7 in Appendix A.
Now, we denote byl := A} (L,, T) the approximation space generated{by(f, 7),} (see (3.1)).
The following characterization of the approximation spagggollows by Theorems 3.10 and 3.11 (see

Theorems 3.1 and 3.2):
Theorem 3.12. If 0< y <« and0 < ¢ < oo, then
ALy, T) = (Lp, BD))

with equivalent norms.
Similarly as in the previous section, we set
O_n(f)p = ig_fall(fv T)pa

where the infimum is taken over all WLR-triangulatiofiswith some fixed parametersand p. The
following result is immediate from Theorem 3.10.

Theorem 3.13. Supposenfr || flzex (1) < 00, where the infimum is taken over all WLR-triangulations
with some fixed parametersand p, and letf € L ,(R?). Then
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on(f)p <en™ igf I f | 3o (-
It is anopen problento characterize the rates of approximation generate@hyf) ,}.

“Algorithm” for nonlinear n-term piecewise polynomial approximationWe assume that € L ,(R?),
0 < p < oo, andT is an arbitrary WLR-triangulation d&2. The proofs of Theorems 3.3 and 3.10 suggest
the following approximation scheme:

Stepl. We use the local polynomial approximation to obtain the following decompositigh of

f = me,n(f) = Z pA,n(f),

meZ AeT

wherepa ,(f) =14 - pmy(f) if A eT,, andn < p (see Theorem 2.17).
Step2. We order the termfp, ,(f)}aer in @ sequenceépy; ,(f)}72Z; such that

||pA1,n(f)||p = ||pA2"7(f)||p >

Then we define the-term approximant by

An(F)p=An(£,T)p= " pau(f).

j=1

By Theorem 3.10 and its proof, it follows that, fgre B*(T),

| £ = Al < en I fllgerry.

Haar bases generated by general triangulationg\n important point in this article is that we carry
out here nonlinean-term approximation without using bases. In the exceptional case of nonlinear
approximation from piecewise constants, however, Haar bases can be constructed and utilized for
nonlinear n-term approximation inL,, 1 < p < co. To make it simple, suppose thdt is a weak
locally regular triangulation oR? which is obtained by the standard refinement scheme described in
Section 2.1: Every trianglé. € 7 has four children obtained by choosing a point on each edge of
and joining these points by line segments. Denotenyy. .., A4 the children ofA so thatA4 is the
triangle in the middle (with its vertices on the three edgea pfWe associate with the following three
Haar functions:Hp 1 := |Aq| 71, — AN\ A1 avny, Haz =027 a, — [A3U Ag| ™00, and

Hp 3:= |03 4, — |Ag| 711 ,. The way we order the children df is not important. Clearlyf , Hx 1,

Hyx 2, and H, 3 form an orthogonal system which spans the set of all piecewise constant{s&q\@:rl.

Then

Hr = {HA,la Hp 2, HA,S}AET

is a Haar basis associated with It is easily seen thakis is an orthogonal basis ih,(R?). It can be
proved by a standard technique that is an unconditional basis fdr,(R?), 1 < p < oo, and thatH 7
characterizes the skinnty*1(7)-norm,« > 0, 1/t = o + 1/p. As a consequence, the nonlineaterm

L ,-approximation fronf{s can be characterized as above (compare with [12]). We skip the details of
these results.



216 B. Karaivanov, P. Petrushev / Appl. Comput. Harmon. Anal. 15 (2003) 177-223

3.4. Conclusions and open problems

We bring forward again the fundamental question of how to measure the smoothness of the functions.
There is a close connection between sparsity of representation and smoothness of functions that we also
wish to discuss here. As we mentioned in Section 1, we believe that in highly nonlinear approximation
as well as in some other nonlinear problems the smoothness of the functions should not be measured
using a single space scale (like Besov spaces) but by a family (library) of suitable space scales. To
explain this concept more precisely we returmtterm Courant element approximation considered in
Section 3.2. For this type of approximation, a functiprshould naturally be considered of smoothness
ordera > O if inf7 || fllz«(7) < 0o, which means that there exists an LR-triangulatibn such that
I.f |27y < oo. Then the rate of the-term L ,-approximation off from the library{®7} is at least
O(®r™). It is an open problemto develop effectlve procedures that: (a) determine (or estimate) the
maximal smoothness of a given functionf and (b) for a given functiory’, find an LR-triangulation
T; such that| f|| se(7,) ~ infr || f|| 52 (7). Another relatedpen problenis to determine whether for each
function f € L, there exists a single LR-triangulatiéfy such that the:-term L ,-approximation off
from the library{®7} can be characterized using the B-spaBg¢7 ).

An important issue for discussion is the smoothness of the approximatingbteo: {¢}oco (7).

Clearly, in nonlinear approximation, there is no saturation, which means that the corresponding
approximation spaced; are nontrivial for all O< y < oo. Therefore, the smoothness spaces to be
used should naturally be designed so that the basis funcfigsjsare infinitely smooth. This was

one of the guiding principles to us in constructing the B-spaces. For instance, the Courant elements
{pe}oco(T) are infinitely smooth with respect to thg (7)) space scale, namelps || z« (1) < cllesll,

for 0 < @ < oo (see Section 2.3). This makes it possible that our direct, inverse, and characterization
theorems impose no restrictions on the rate of approximatiendO< oo (see Sections 3.2 and 3.3).

Also, this explains the complete success of Besov spaces in the univariate nonlinear piecewise polynomial
(spline) approximation i, (p < oc). The important fact is that, any univariate piecewise polynomial
(with finitely many pieces) is infinitely smooth with respect to the corresponding Besov spaces. More
precisely, for univariate discontinuous piecewise polynomials, the Bernstein inequality holds without
any restriction on the smoothness parametdd < o < o) if p < oo (see Theorem 2.2 from [11]).

In dimensionsd > 1, however, the situation is totally different. Even for nonlinear approximation from
regular piecewise polynomials (piecewise polynomials generated by regular triangulations, in our terms),
the Besov spaces are not exactly the right smoothness spaces. Namely, the Besov spaces coincide with the
right smoothness spaces only for some range of the smoothness parantatemnstance, for nonlinear
n-term L ,-approximation from Courant elements generated by a regular triangulatidfy tiie Besov
spacesB2(L,), 1/t :=a + 1/p, 0 < p < oo, are the right spaces only for®a <1+ 1/p. In the

case of discontinuous piecewise polynomial approximation, the range i @ 1/p (see Section 2.5).

For the same reason, the fat B-spaces (Section 2.5) are not exactly the right spaces for characterization
of n-term Courant element approximation over general triangulations.

In nonlinearn-term approximation, it is natural to work with bases. Except for the simplest case
of n-term piecewise constant approximation (see the end of Section 3.3), we are not aware of good
(unconditional) bases fat ,(R?) (1 < p < o) and the B-spaces over general triangulations. However,
as was shown in the previous sections there are equally powerful means to tackle the problems.
Namely, using simple projectors into subspaces of piecewise polynomials, one can get sufficiently
sparse representations of the functions, which allow to capture the rates of the best nentierear
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spline approximation. It is aopen problemo construct good bases consisting of continuous or smooth
compactly supported piecewise polynomials (or other functions) over general triangulations.

Methods and algorithms for piecewise polynomial approximation are in demand. This was one of the
primary motivations for this work.

Appendix A
A.1. Proof of the Bernstein estimates

In this appendix, we prove Theorems 3.7 and 3.11. We recall our assumptians.<Qcc, o« > 0, and
=(a+1/p)~

Tree structure i generated byl ¢ 7. Suppose/ is a multilevel triangulation (WLR or better), and
let A Cc 7 and #4 < co. The setA induces a tree structure 1h that we want to bring forward here and
utilize in the proof later on. We shall use the parent—child relatich induced by the inclusion relation:
Each triangleA € 7, has (contains My children in7,,.1 and has a single parent®),_;.

Let Iy be the set of allA € 7 such thatA D A’ for someA’ € A. We denote byl}, the set of all
branching trianglesn I (triangles with more than one child ifp) and by, the set of alchildren in7
of branching trianglegeach of them may or may not belong/tg). Now, we extendp to I" := I U I},
We also extendd to A := AU I}, U I'y. In addition, we introduce the following subsets Bf 7 the
set of allfinal trianglesin I" (triangles inI" containing no other triangles i) and Iy, := I" \ A the
set of allchain triangles Note that each triangle\ € Iy, has exactly one child id”. Since the final
trlangles inlp belong toA, then #h, < #A and hence #; < Mo#ly, < c#A, #I7 < H#HA +#I) < c#A,
and #A < #A + #I, + #I, < c#A. Note that #7¢, can be uncontrolably larger tham#

We next introduce chains if,. By definitiond = {Ay, ..., Ay} C I'eh (€ > 1) is afinite chainin Iey if
AT DAL DDA DA forsomed), Al e A, Ay is a child ofA”, AjisachildofA;_1,j=2,...,¢,
andA) is a child of A,. Notice thatA] ¢ I', and hence\; is the only child ofA in I". We let£ denote
the set of all finite chains iiy,. Also, by definitionh ={..., A_5, A_1} C I'wnis aninfinite chainin Ity
if we have--- D A_, D A_; D Al for someA] e A, AjisachildofA;_4, j=—-1,-2,...,andA isa
child of A_;. We let £ denote the set of all infinite chains Ify,. Clearly, £ U £* consists of disjoint
chains of triangles/th = U, < cu A, @and #£ U LX) < #A.

Finally, we use the above sets to introdutregs generated byA. First, for eachA € I' \ (I, U I3),
we denote byA (A # A) the unique largest triangle from contained inA. We associate with each
Ael\ (IhZUTI}) aring K, defined byK , := A\ A. Also, we definek, := A if A e It andKy := ¥
if AeI,U (T \I'). Notice that if A € A for somex € LU L, thenA = A/. It is readily seen that
KS,NKS, =0if A, A" e AandA’ # A,

A= |J Kkn foraeA, (A.1)
NeA, NCA

and hence

Ua=J kn. (A.2)

A€A ANeA
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For the proof of both theorems, we need the following lemma.

LemmaA.l. SupposeS =) ., 14 - Pa, WhereP, € Ty (k> 1), A C T with 7 a WLR-triangulation,
and#A < oo. Then

1/t
<Z|A|‘”||S||zrm)) < c#A) (S,

AeA

with ¢ depending only o, «, and the parameters af.

Proof. We adopt all necessary notation from “Tree structur€ igenerated byl ¢ 7" developed above
with 7" and A from the hypotheses of the lemma. We may assume that

S:ZEA'PA‘

It is an important observation thatis a polynomial of degree: k on each ringk, = A \ A. Hence,
using Lemma 2.7,

ISI 2. ka2 KAl 2SI L, k) = 1A IS L, ks)- (A.3)
We shall also need the obvious estimate (see (2.1)):
N
Z X <c(p,y)<oo, y=>0. (A.4)
Ael’, ADA | |

We use (A.1)—(A.4) to obtain

S IATISIL = D 1A > ISk,

A€A AeA NeA, NCA

=D ISl D AT

NeA A€A, ADN

N
<D ISIEgp AT (E)

NeA Ael, ADA'

T/p
<e Y ISIE, k) < c(Z ||S||i1,(KA,>) HATP < cHAYSI,

NeA ANeA

where we once switched the order of summation and applied Holder's inequatity.

Proof of Theorem 3.7. Let S € £,(7) with 7 an LR-triangulation and suppose thsa&: >, 1 cos,
whereM c ©(7) and # < n. Let A be the set of all triangles € 7 which are involved in alb € M.
ThenS =) ,., Sa, WhereS, =:1, - Ps, Pa € IT,. Evidently, #1 < No#M < cn. For the rest of the
proof, we adopt all the notation from “Tree structureZingenerated byl C 77, given in the beginning
of this appendix, witil” and A from the above. In addition, we denote
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X' ={AeT, AcC2yforsomer e ANT,},
X :={AeT,: AcCR? forsomer’ e ANT,}, whereforA €T,

Qu=JIa €Ty A/nA#£p and 2% = J(A €T A'NQ2a#0).

Also, we denoteX™* := | J, ., X and X** := |, ., X*. Evidently, we have #* < 3No#A < cn and
#X** < BNZHA < cn. B
Form € Z, we denotes,, := > . v tevesy<m Co¥e- Clearly, s,, € S,, and, therefore, fons € 7,,,
Sa(8) =SalS = Sw)e < IS — SullL.2n)- (A.5)

We shall also use the obvious inequality(S). < [|S|L, (2,

Next, we estimatqsnfgm =D a7 1AIT*TSA(S)E by splitting up7 into two subsets, namelyy™
and7 \ x*.

() If Ae X, thenA C 2, for someA’ e ANT, and hence2, C £222,. From this, we find

SaOI<ISIE o= D ISlan< > ISIE
A*€T,, A*CQ2a A*eZn,A*CQi/

and hence, using (2.2),

IAITTSA)I<e > ATTISIL, ey
ATy, A*C22,

Therefore,
D IAITSAS)I< e Y 1A IS &
AeX} AeXy*

and, summing ovewn € Z, we find

Y IAITTSA®I< e Y NAITTSIE, ) < cEHX)TSIT < en®T| S (A.6)
AeX* AeX**
where we applied Lemma A.1 towith A replaced byX** which is legitimate sinc&™** > A and hence
S has the required representation.
(i) Let A € 7, \ X;. Theng2, =: [ J2, A for someA; € (TenNT,) U (T \ 1), j =1,...,na, With
na < 3Ng. We have, using (A.5),
na
Sa($)F=8a(S =S <Y IS = Sulll. (s (A7)
j=1
Note that ifA; € 7, \ I, thenS|,, = S, |, and hencelS — S, |2, 2, =0.
Supposer; € I'th N7, Itis an important observation that, in this caSQ«A]_ = SleAj = ]LKA]_ - Py,

andS,,|a, =14, - Pa,, for somePy, € ITo, whereK 5, := A; \ A; (A; € A) is the ring associated with
Aj. Using this, we find

T — _ T t :
15 = Snlzoiap =18 = Snl 3, <eISUL, g+ elPes N5,

<clSIG, g, +elB 1A HSIL, ik, - (A.8)

T ~
L:(4))
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For the last inequality in (A.8) we used that
1P, 7 Gy S <|A|11Py, [ <l Al Pa, IILw<KA>
< clAGIA;1TTP| Py, I,k < cIAjllA,;|°‘"1||S||;p(KA/), (A.9)

where we applied Lemma 2.7 and used tﬁmAj = Py, |,<Aj . From (A.7) and (A.8), we infer

. - A
D IAITSAI < ey Y (|A| “ISI & EIISIIZI,(KM

AeT\X* meZ AelTchN Ty
—T
<e Y IBITTISIE, g e Y |A|||S||LP(KA>
Aelth Aelth
= 21+ 22.

Switching the order of summation and applying (A.4), we obtain

Ti=cY ISIL.y D, 1A

NeA Aelth, ADA

N
SONERRINEED I ()

NeA Ael’, ADN

<e D AT ISI, ay < cEHATISI, (A.10)
NeA
where for the latter estimate we applied Lemma A.F tith A in place ofA.
To estimateX, we shall use the representation/gf, as a disjoint union of chaing’h = |, . £z A-

Let € £ and suppose = {A1, ..., A}, whereA) D A;D--- D Ay D A with A}, A] € A (L] ¢ T).
Then

4

D IANAITHISIL, ko SIS apagy 2 1451417

Aer Jj=1
¢

—j+1
< ”S”LP(K ,,)Zp it < C”S”L,,(K //)
j=1

If 2 € £ andA € A, thenS|g, =0 and hence{S| ., x,) =0.
Summing the above inequalities over ak L, we obtain

<c Y ISIE k) < (ZnSnL W) #ATP < c#A)|SIE, (A.11)

A*eA A*eA
where we used Holder's inequality and (A.2). Estimates (A.10) and (A.11) yield

Z |AI7*TSA(S)E < cHA)T|SIE < en® | S]]
AeT\X*
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This and (A.6) |mpIy||S||B¢,(T) en®*|ISI5,. O

Proof of Theorem 3.11. Let 7 be a WLR-triangulation and € X*(7). ThenS can be written in the
formS=> ,_,1a- Pr, WwhereP, € ITy, A C T, and #4 < n. As in the previous proof, we adopt all
the notation from “Tree structure i generated byt ¢ 7" with 7 and A from the above.

To estimate||S||gg(T) =Y aer AT (S, A)E, we shall split7 into three subsets:

() If AeT\T,thenS is apolynomial of degree: k on A and hencew (S, A), =0.
(i) If A € A, then evidentlyw, (S, A); < c|lS|l.,») and hence

D IAT T (S, A< e D IATTYSIL, () < cHAT

A€A A€A

|11, (A.12)

where for the last inequality we used Lemma A.1 (witireplaced byA).
(iii) Let A e It (recall that Ity := I' \ A). Clearly, S|k, = 1k, - P, for some P, € II;, where
K, := A\ Ais the ring associated with. Therefore,

e -1
<S5, + el AIAFTHISIE, k. (A.13)

where we used thantPAHZ & < c|A||A|°”*1||PA||zp(KA) which follows by Lemma 2.7 exactly as
in (A.9). From (A.13), we infer

DA oS, )T e Y IAITTISIE 5 e Y IANAITHISIE, k)

A€elth A€l A€l
= X7+ 27,
We estimateX; and X3 exactly as the sum&’; and ¥, were estimated in (A.10) and (A.11),
respectively. We obtain

D A (S, A)F < cHAY TSI < en*T| S5,

Aelth

Combining this estimate with (A.12), we fins||z« () < cn®*[|S]|, and the proof of Theorem 3.11 is
complete. O

Appendix B

Proof of Lemma 2.6 (Whitney. SupposeP C R? is a parallelogram ang € L, (P). Evidently, there
exists an affine transfori which mapsP one-to-one ont0, 1]2. Whitney’s estimate

Ei(f,P)g < cax(f,P)g (B.1)

is invariant under affine transforms and, hence, follows from the @ase [0, 1]°. For the proof of
Whitney’s inequality orf0, 1]?, we refer the reader to [1] (for the caseqof 1) and [14] (for the case of
O0<g<1).
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Now, having (B.1), we can prove Whitney’s estimate for a triangle as well. Fix an arbitrary triangle
A = [x1, x2, x3]. Let y1 := (xp + x3)/2, y2 := (x1 + x3)/2, and y3 := (x1 + x2)/2 be the midpoints
of its edges, and let\’" := [yy, y,, y3]. Consider now the three parallelograr®s := [x1, y3, y1, y2],
Py 1= [x2, y1. y2, y3l, andPs := [x3, y2, ys, y11. Clearly, A = |3_; P; and &’ = N5_, P;. We select
polynomials Pn, P1, Py, P3 € IT; such that||f — PallL,any = Ex(f, ANy and || f — PillL,p;) =
Ei(f,P;), for j = 1,2, 3. Evidently, sinceA” C P; and |P;| = 2|A’|, using Lemma 2.7 and (B.1),
we have
|Pj — Pall,cpy < cllPj — Parllyan < el f — Pill,an + el f — ParllL,an

<cllf = Pille,py) + cEx(f. Ay < cEx(f. Pj)g

Scax(f.Pjlg Scan(f, D)y
with ¢ = ¢(g, k). From this, we obtain

Ec(f, D) < If = Pullyoy <c ) If — Pall,py

3
j=1

3 3
<Y N = Pilliyey +¢ D I1Pa = PillL,py < cox(f, By,
j=1 j=1
where we again used (B.1). Thus (2.11) is proved for a triangle.
To prove (2.11) in the second case one can proceed similarly, using that the estimate is invariant under
affine transforms and most importantly thAtis an SLR-triangulation (see Section 2.1). We omit the
details. O

Proof of Lemma2.12. LetS € S,, be an element of bedt, -approximation tof on £2, from S,.. Using
Lemma 2.7(c) and Hélder’s inequality, we obtain

Lf = Sli,@n <l f =Sl @ +cllS = Sl
< eSal g+l a8 = Slip, 2w
< eSal g+l Ral™ Y (1 f = S, + 1f = Sliz, )
<eSa(y+ a0 f = Slie, e
<eSa(f)y+ellf = Sleyem <cSa(f)y. O

Proof of inequality (3.11). We shall use the obvious inequality
a*b’ < (a+b)’, ifO0O<a<sanda,b>0, (B.2)

which is immediate froma/b)* < (a/b + 1)* < (a/b + 1)*. Now, seta := 1/t — 1/p, s :=1/1 > «,
a:=nx},andb := Z?‘;Hl x}. Applying inequality (B.2), we find

00 1/p 00 1/p 00 1/p
(241) (w2 w) —( 2 )

j=n+1 j=n+1 j=n+1

00 1/t
=n"%"bY" ™ <n"%a + b)Y" <n_“<2x;> . O
j=1
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