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Abstract

We study nonlinearn-term approximation inLp(R2) (0< p <∞) from Courant elements or (discontinuou
piecewise polynomials generated by multilevel nested triangulations ofR2 which allow arbitrarily sharp angles. T
characterize the rate of approximation we introduce and develop three families of smoothness spaces
by multilevel nested triangulations. We call them B-spaces because they can be viewed as generaliz
Besov spaces. We use the B-spaces to prove Jackson and Bernstein estimates forn-term piecewise polynomia
approximation and consequently characterize the corresponding approximation spaces by interpola
also develop methods forn-term piecewise polynomial approximation which capture the rates of the
approximation.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear approximation from piecewise polynomials and splines is a central theme in non
approximation theory. The ultimate problem is to characterize the rate of approximation in te
certain smoothness conditions. In the univariate case and in the regular case ind dimensions (d > 1), this
problem has found a completely satisfactory solution involving a certain class of Besov spaces
machinery of Jackson–Bernstein estimates and interpolation (see [6,9,11], and also [2,5]).
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Our goal in this article is to study nonlinear approximation from piecewise polynomials
triangulations consisting ofn pieces. The difficulty of this problem stems from the highly nonlin
nature of piecewise polynomials in dimensionsd > 1. For instance, ifS1 and S2 are two piecewise
polynomials over two distinct triangulations of[0,1]2 consisting ofn pieces each, then, in gener
S1 + S2 is a piecewise polynomial over more thann2 triangles (in the univariate case, the number
pieces is at most 2n). This makes the idea of using a single smoothness space scale (like Besov
and the recipe of proving Jackson and Bernstein estimates, and interpolation (like in the univaria
hopeless.

In this article, we take a different approach to this problem. First of all, we modify the proble
considering nonlinearn-term approximation from piecewise polynomials generated by multilevel ne
triangulations ofR2. We consider two types of suchn-term approximation:

(a) from Courant elements (continuous piecewise linear elements) and
(b) from (discontinuous) piecewise polynomials over triangles.

More precisely, we consider nested triangulations{Tm}m∈Z such that each levelTm is a partition ofR2

and a refinement of the previous levelTm−1, and defineT :=⋃m∈Z
Tm. Each nested triangulationT

generates a ladder of spaces· · · ⊂ S−1⊂ S0⊂ S1⊂ · · · (multiresolution analysis) consisting of piecewi
polynomials of a certain degree over the corresponding levels. In the case of continuous piecewis
functions,Sm (m ∈ Z) is spanned by Courant elementsϕθ supported on cellsθ at themth level Tm.
We impose some natural mild conditions on the triangulations in order to prevent them from po
deterioration. At the same time, these conditions allow the triangles fromT to have arbitrarily sharp
angles and a lot of flexibility. After this preliminary structuring, we consider nonlinear approxim
from n-term piecewise linear functions of the formS = ∑n

j=1 aθj ϕθj or piecewise polynomials o
degree< k of the form S =∑n

j=1 1
j · P
j , where θj and
j may come from different levels an
locations (1
 denotes the characteristic function of
). Note that in both cases we haven-term nonlinear
approximation from redundant systems. So, by introducing such a multilevel structure, we ma
problem somewhat more accessible and simultaneously preserve a great deal of flexibility.

Although the approximation problem has been tamed to some extent, it still remains highly non
It is crystal clear to us that such highly nonlinear approximation cannot be governed by a single
space scale like the Besov spaces in the univariate case. For instance, it is well known that in p
of functions supported on very “skinny” triangles or long and narrow regions the Besov spac
completely unsuitable and hence useless (see Section 2.5 below). Thus the second importan
is to quantify the approximation process by using a family of smoothness spaces, say,Bα(T ) depending
on the triangulations. We called them B-spaces. So, the idea is to measure the smoothness of the
from a family (library) of space scales{Bα(T )}T instead of a single smoothness space scale.

The third important issue in our theory is the way we represent the functions. On the one ha
Courant elements as well as all polynomials restricted to triangles generated by a nested trian
form redundant systems. On the other hand, there are no good bases available which consist of p
polynomials over general triangulations. On top of this, we want to approximate inLp(R

2), 0< p <∞.
There is, however, a good and well-known means of representing functions by using suitable li
nonlinear projectors onto the spaces{Sm} (see Sections 2.3 and 2.4). This is our way of representing
functions.

Our approximation scheme is the following:
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(i) For a given functionf , find the “right” B-spaceBα(Tf ) (that means the “right” triangulationTf ) in
whichf exhibits the highest smoothness (equivalently, in whichf has the sparsest representatio

(ii) Find an optimal (or near optimal) representation off by Courant elements (or piecewi
polynomials) generated byTf .

(iii) Using this representation off , run an algorithm forn-term approximation that is capable
achieving the rate of the bestn-term approximation.

The first step in this scheme is the hardest one and we still do not have a satisfactory algori
it. There is, however, an effective scalable algorithm for this step in the case of nonlinear approxi
from piecewise polynomials over dyadic partitions, see [12]. Once the triangulationT is determined, the
machinery of Jackson and Bernstein estimates combined with interpolation spaces works perfec
As we advance through the implementation of the above program, we shall see that all techn
means exist or can be created so that a coherent theory can be developed. The lack of go
for our spaces is the main obstacle that makes some proofs nonstandard. In particular, the B
inequalities are the most troublesome and require fine analysis. We borrowed a few ideas fro
where similar results have been obtained in the much simpler setting of nonlinear approximatio
piecewise polynomials over dyadic boxes.

The B-spaces from this article can be considered as a generalization of Besov spaces (see Se
below). They are also a generalization of the approximation spaces from Section 3.4 in [10] (
references therein).

There are several aspects of our theory that we do not even touch in this article, including no
piecewise polynomial approximation in the uniform norm (p =∞), interpolation of B-spaces and oth
aspects of the harmonic analysis of B-spaces,n-term approximation from smooth piecewise polynomia
and numerical algorithms for nonlinear piecewise polynomial approximation and their implemen
in practice. Some of them will be tackled in a forthcoming article.

The outline of the paper is the following. Section 2 is devoted to the definition and developm
B-spaces. In Section 2.1, we introduce and study three types of nested triangulations ofR

2, which later
serve three different purposes. In Section 2.2, we give all necessary facts about local polynom
piecewise linear approximation. In Section 2.3, we introduce and develop the first family of B-s
the slim B-spaces, which are later utilized for nonlinearn-term Courant element approximation.
Section 2.4, we introduce the skinny B-spaces that are needed for nonlinearn-term approximation from
(discontinuous) piecewise polynomial. In Section 2.5, we introduce the fat B-spaces which are th
immediate generalization of Besov spaces. Section 3 contains our main results about nonlinear p
polynomial approximation. In Section 3.1, we give some general guiding principles and resu
nonlinearn-term approximation. In Section 3.2, we state and prove our main results concerningn-term
Courant element approximation except for the proof of the Bernstein inequality. In Section 3.3, w
our results onn-term piecewise polynomial approximation. Section 3.4 is devoted to discussion of
aspects of our theory and open problems. In Appendix A, we prove the Bernstein estimates w
Appendix B contains the proofs of some auxiliary results.

Throughout the article, the constants are denoted byc, c1, . . . , and they may vary at every occurrenc
The constants usually depend on some parameters that will be sometimes indicated explici
notationA ≈ B means thatA andB are equivalent, i.e., there are two constantsc1, c2 > 0 such that
c1A� B � c2A. ForG⊂R

2, |G| denotes the Lebesgue measure ofG and1G denotes the characterist
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(indicator) function ofG. We also use the following notation:‖ · ‖q := ‖ · ‖Lq(R2), L
loc
q := Lloc

q (R
2)

(0< q <∞), andLloc∞ := C(R2).

2. B-spaces over triangulations

In this section, we introduce and explore three collections of smoothness spaces (B-spaces
will be needed in Section 3 for the characterization of the rates of nonlinear piecewise polyn
approximation. The B-spaces can be defined onR

2 or on any polygonal domain inR2 as well as in
R
d (d �= 2). We shall restrict our attention to the case of B-spaces onR

2. The B-spaces are defined usi
multilevel nested triangulations which we discuss below.

2.1. Multilevel triangulations

Here we introduce several types of multilevel nested triangulations.

Weak locally regular (WLR) triangulations.We call T = ⋃
m∈Z

Tm a weak locally regular(WLR)
triangulationof R

2 with levels{Tm}m∈Z if the following conditions are fulfilled:

(a) Every levelTm defines a partition ofR2, that is,R2=⋃
∈Tm
 andTm consists of closed triangle
with disjoint interiors.

(b) The levels{Tm}m∈Z of T are nested, i.e.,Tm+1 is a refinement ofTm.
(c) Each triangle
∈ Tm (m ∈ Z) has at least two and at mostM0 children (subtriangles) inTm+1, where

M0 � 2 is a constant.
(d) For any compactK ⊂R

2 and any fixedm ∈ Z, there is a finite collection of triangles fromTm which
coversK .

(e) There exist constants 0< r < ρ < 1 (r � 1/2) such that for each
 ∈ Tm (m ∈ Z) and any child

′ ∈ Tm+1 of 


r|
|� |
′|� ρ|
|. (2.1)

We denote byVm andEm the sets of all vertices and edges of triangles inTm, respectively. We also se
V := V(T ) :=⋃m∈Z

Vm andE :=E(T ) :=⋃m∈Z
Em.

Locally regular (LR) triangulations. We callT =⋃m∈Z
Tm a locally regular (LR) triangulation of R

2

if T is a WLR-triangulation ofR2 and satisfies the following additional conditions:

(f) No hanging vertices(NHV) condition: No vertex of any triangle
 ∈ Tm lies in the interior of an
edge of another triangle fromTm.

(g) The valenceNv of each vertexv of any triangle
∈ Tm (the number of the triangles fromTm which
sharev as a vertex) is at mostN0, whereN0 is a constant.

(h) There exists a constant 0< δ � 1 independent ofm such that for any
′,
′′ ∈ Tm (m ∈ Z) with a
common edge

δ � |
′|/|
′′|� δ−1. (2.2)
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For v ∈ Vm (m ∈ Z), we denote byθv := θv(T ) the cell associated withv, i.e., θv is the union of all
triangles
 ∈ Tm which havev as a common vertex. We denote byΘm := Θm(T ) the set of all cells
generated byTm and setΘ :=Θ(T ) :=⋃m∈Z

Θm.

Strong locally regular (SLR) triangulations.We call T = ⋃
m∈Z

Tm a strong locally regular(SLR)
triangulationof R

2 if T is an LR-triangulation ofR2 and satisfies the following additional condition:

(i) Affine transform angle condition(ATA-condition): There exists a constantβ = β(T ), 0< β � π/3,
such that if
0 ∈ Tm, m ∈ Z, andA :R2→ R

2 is an affine transform that maps
0 one-to-one onto
an equilateral reference triangle, then for every
 ∈ Tm which has at least one common vertex w

0 and for every child
∈ Tm+1 of 
0, we have

minangle
(
A(
))� β, (2.3)

whereA(
) is the image of
 by the affine transformA, and minangle(
′) denotes the magnitude o
the minimal angle of
′.

Obviously, (i) implies (2.2) with someδ = δ(β).

Regular (R) triangulations. By definition,T =⋃m∈Z
Tm is a regular (R) triangulation if T is an LR-

triangulation andT satisfies the following condition:

(j) There exists a constantβ = β(T ) > 0 such that the minimal angle of each triangle
 ∈ T is � β.

Evidently, every regular triangulation is an SLR-triangulation.

Triangulations on compact polygonal domains inR
2. A setE ⊂R

2 is said to be a compact polygon
domain ifE can be represented as the union of a finite setT0 of closed triangles with disjoint interiors
E =⋃
∈T0


. Weak locally regular, locally regular, etc., triangulationsT =⋃∞
m�0Tm of such domain

E ⊂R
2 are defined similarly as whenE =R

2. The only essential distinctions are that the levels{Tm}m�0

now are consecutive refinements of an initial (coarse) levelT0 and, if a vertexv ∈ Vm is on the boundary
we should include inVm as many copies ofv as is its multiplicity.

Remarks. It is a key observation that the collection of all SLR-triangulations with given (fix
parameters is invariant under affine transforms. The same is true for similar classes of LR-triang
or WLR-triangulations.

Each type of triangulation depends on several parameters which are not completely independ
instance, the parameters of an LR-triangulation areM0,N0, r, ρ, andδ. We could set, e.g.,M0= 1/r and
ρ = 1− r , and eliminate these as parameters, but this would tend to obscure the actual dependen
estimates upon given triangulations.

We shall need to know what happens with the levelsTm of a triangulationT asm→−∞. The next
lemma answers this question.

Lemma 2.1. For each WLR-triangulationT there exists a finite coverT−∞ of R
2 consisting of sets with

disjoint interiors such that each triangle
∈ T and all its ancestors are contained in a set
∞ ∈ T−∞. If
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∞ ∈ T−∞, then
∞ must be one of the following: the all ofR2, a half-plane, or an infinite triangle(all
points on and between two rays that are not collinear and have a common beginning). The only possible
configurations forT−∞ are the following:

(a) R
2 only;

(b) finitely many infinite triangles with a common vertex;
(c) two half-planes;
(d) a half-plane and finitely many infinite triangles which cover the other half-plane and have a co

vertex lying on the boundary between the two half-planes;
(e) two finite families of infinite triangles, each family covering one of two complimentary half-pl

and such that all triangles from the same family have a common vertex lying on the boundary b
the two half-planes.

Moreover, ifT satisfies the NHV-condition, then(a) and (b) are the only possible configurations f
T−∞.

Proof. Let 
 ∈ Tm for somem ∈ Z. Then there exist unique triangles{
j }j�m, 
j ∈ Tj , such that

 =: 
m ⊂
m−1 ⊂ · · ·. We let
∞ :=⋃j�m
j . Clearly, if
′,
′′ ∈ T then either
′∞ = 
′′∞ or 
′∞
and
′′∞ have disjoint interiors. To find out which subsets ofR

2 can be realized as
∞, we order the
vertices of the triangles{
j }j�m in a sequence{vk}. If {vk} does not have limit points we consid
two cases. First, if for every
j there existsi < j such that
j ⊂ 
◦i , then using condition (d) from
the definition of WLR-triangulations one can easily see that
∞ is all of R

2. Alternatively, if there
exists a
j0 which is not contained in
◦j for any j < j0, then each
j , j � j0, has an edge lying o
a given linel. Since{vk} does not have limit points, those edges grow infinitely in both directions,
therefore the whole linel must be contained in
∞. Hence, since
∞ is always convex, it must be eith
a half-plane or a strip. Using that{vk} does not have limit points and condition (d), one can prove
supx∈
∞ dist(x, l)=∞, which shows that
∞ cannot be a strip.

If the sequence{vk} has a limit point, sayx0, then using condition (d) we obtain that there ex
j0 �m such thatx0 is a vertex of all
j with j � j0. From condition (d), it follows that a vertex can ha
only finite valence at any given level. This fact readily implies that{vk} cannot have more than one lim
point and also that if{vk} has exactly one limit point then
∞ is an infinite triangle.

Simple arguments utilizing condition (d) limit the possible configurations forT−∞ to those describe
in the lemma. There are straightforward examples showing that each of those configurations
realized. ✷
Examples of triangulations and refinement schemes.We begin with the description of astandard
refinement schemethat can be used to refine a given triangle
 infinitely many times. In the first step
we select a point on each edge of
 and then join each pair of new points by a line segment. This
step gives us four disjoint triangles, say,
1,
2,
3,
4 which become the first generation of triang
(the children of
). In the second step, we subdivide each
j in the way described in step one a
obtain the second generation of triangles. Proceeding inductively, we subdivide each triangle from
generation in the fashion of step one, thus producing the next generation of triangles. LetTm(
) denote
the set of all triangles from themth generation. ThenT (
) :=⋃∞

m=0Tm(
) is a nested triangulatio
of 
.
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Now, we describe astandard procedure for constructing triangulationsof R
2. We first coverR2 by

a sequence of growing triangles
0 ⊂ 
1 ⊂ 
2 ⊂ · · · , where every
j is a child of
j+1, and then
refine all children of all{
j } using the standard refinement scheme described above. More pre
let 
0 be any initial triangle. We select a triangle
1 so that
0 is a child of
1. We similarly define

2⊃
1 so that
1 is a child of
2, etc. In this way we obtain a growing sequence of triangles. The
additional condition that we impose on{
j }, so far, is thatR2=⋃∞

j=0
j . After having constructed th
sequence{
j }, we subdivide the children of each
j (j = 1,2, . . .) as it was described above. We den
by {Tm}m∈Z the sets of triangles from each level and byT :=⋃m∈Z

Tm the whole triangulation ofR2.
Variety of other refinement schemes can be utilized.

How fast can the elements of triangles change?We investigate how the elements (|
′|, minangle(
′),
and max*(
′), the longest edge of
′) of a triangle
′ ∈ Tm (m ∈ Z) can change as
′ moves away from
a fixed triangle
′′ ∈ Tm, for different types of triangulationsT .

First, we consider the case of an arbitraryweak locally regular triangulationT . Clearly, even if
T satisfies the NHV-condition of the LR-triangulations, it may happen that
′,
′′ ∈ Tm (m ∈ Z) are
two adjacent triangles and at the same time each of the ratios|
′|/|
′′|, (max*(
′))/(max*(
′′)), and
(minangle(
′))/(minangle(
′′)) is arbitrarily large (or small) independently of the other two. This
possible because the first common ancestor of
′ and
′′ may be at an extremely distant level, or even
′
and
′′ may not have a common ancestor at all (see Lemma 2.1). This fact makes the WLR-triangu
unsuitable for continuous piecewise polynomial approximation.

Secondly, we consider the case of an arbitrarylocally regular triangulationT . By definition (see
(2.2)), if 
′,
′′ ∈ Tm and
′ and
′′ have a common edge, then|
′| ≈ |
′′|. However, it may happe
that the ratios(max*(
′))/(max*(
′′)) and(minangle(
′))/(minangle(
′′)) are uncontrollably large
(or small), see Fig. 1. To show that this situation is possible we shall need the following simple le

Lemma 2.2. Let
⋃n
m=−∞ Tm, n ∈ Z, satisfy the conditions of the WLR-triangulations or L

triangulations or SLR-triangulations with some fixed parameters. Assume also that levelTn is refined
uniformly by introducing the midpoints on the edges of each
 ∈ Tn and connecting them by lin
segments(see the standard refinement scheme described above). Denote byTn+1 the set of all triangles
obtained from the refinement ofTn. Then

⋃n+1
m=−∞ Tm satisfies the conditions of the corresponding typ

triangulation with exactly the same parameters.

Proof. This lemma is fairly obvious and its proof will be omitted.✷
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Armed with this lemma, one can easily construct the claimed example. We shall give only a
of it. We start from a uniform triangulationT of R

2 generated by an equilateral triangle
0 (see
the examples of triangulations above). LetTm denote the levels ofT for m � 0. The incomplete
triangulation

⋃0
m=−∞ Tm obviously satisfies the conditions of the LR-triangulations with any param

0< r < ρ < 1, r < 1/4, ρ > 1/4. We fix suchr andρ. We now refineT0. We choose any two triangle

′,
′′ ∈ T0 with a common edge, saye. We may assume thate is horizontal. It is not very hard to se
(but it is not obvious) thatT0 can be refined twice so that

⋃2
m=−∞ Tm satisfies the conditions of the LR

triangulations with the already selected parametersr andρ, and that there are two grandchildren, say,
′2
and
′′2 of 
′ and
′′, respectively, with the following properties:

(a) 
′2 and
′′2 have a common edge, say,e2⊂ e of length*(e2)= (1/4)*(e);
(b) |
′2| = |
′′2| = (1/16)|
′| (= (1/16)|
′′|);
(c) 
′2 is equilateral and
′′2 is skewed to the right (or left) atε · *(e2) with ε = ε(r, ρ) > 0.

More precisely, the vertex of
′′2, which does not belong toe2, is shifted to the right from the midpoin
of e2 at distanceε · *(e2). We shall call the above anangle sharpening procedure. We next refineT2

sufficiently many times, by using only midpoints, until we reach a level, say,Ts1 at which there exist two
great-grandchildren, say,
′s1 and
′′s1 of 
′2 and
′′2, respectively, such that
′s1 and
′′s1 have a common
edge,|
′s1| = |
′′s1|,
′s1 is equilateral,
′′s1 is similar to
′′2, and most importantly the minimal number
edges fromVs1 (edges of triangles inTs1) which connect an arbitrary vertex of
′s1 or
′′s1 with any vertex
of 
′2 or
′′2 is sufficiently large (so,
′s1 and
′′s1 are located in the middle of
′2 ∪
′′2). By Lemma 2.2,⋃s1
m=−∞ Tm satisfies the conditions of the LR-triangulations with the already fixed parametersρ andr .

Since, inTs1, 
′s1 and
′′s1 are surrounded by triangles that are equivalent to
′s1 or 
′′s1, we can again
apply our angle sharpening procedure, followed by sufficiently many midpoint refinements, an
going on in the same fashion. We use induction to complete the construction of the claimed exam

Let us consider now an arbitrarystrong locally regular triangulationT . From the definition of SLR
triangulations, it follows that if
′,
′′ ∈ Tm, m ∈ Z, and
′ and
′′ have a common vertex, the
|
′| ≈ |
′′|, minangle(
′)≈minangle(
′′), and max*(
′)≈max*(
′′). However, this does not mea
thatT is regular or close to regular. It may happen that some triangles ofT have arbitrarily small angles
while others are equilateral.

Exampleof an SLR-triangulationT with the property

inf

∈T

minangle(
)= 0.

We shall utilize the idea of the construction from the previous example. As above, we assum
T =⋃0

m=−∞ Tm is an incomplete uniform triangulation generated by an equilateral triangle
0. Clearly,
T satisfies the conditions of the SLR-triangulations forM0= 4 and an arbitrary 0< β < π/3. We fixβ
andM0. Choose
∈ T0. It is readily seen thatT0 can be refined so that

⋃1
m=−∞ Tm satisfies the condition

of the SLR-triangulations with the fixed parametersβ andM0, and there exists at least one child, s

1 ∈ T1 of 
 such that minangle(
1) < q ·minangle(
) with q = q(β) < 1. The next step is to refin
T1 several times by using only midpoints until we obtain a great-grandchild, say,
s1 ∈ Ts1 of 
1 which
is sufficiently far from the boundary of
1 (in terms of number of edges fromVs1 needed to connect
with the boundary). By Lemma 2.2,

⋃s1
m=−∞ Tm satisfies the conditions of the SLR-triangulation w

the fixed parametersβ andM0. After that, we apply the above angle sharpening procedure to
s1 and
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then we again refine by midpoints for sufficiently many levels, etc. Inductively, we obtain the n
triangulation.

We now introduce one more natural condition on triangulations:
Minimal angle condition(MA-condition): There exists a constantϑ = ϑ(T ), 0< ϑ < 1, such that if


0 ∈ Tm, m ∈ Z, then for every
 ∈ Tm which has at least one common vertex with
0 and for every

 ∈ Tm+1 which is a child of
0,

ϑ � minangle(
)
minangle(
0)

� ϑ−1. (2.4)

Lemma 2.3. If T is an SLR-triangulation, thenT satisfies the MA-condition above withϑ = ϑ(β).
However, the MA-condition is weaker than the ATA-condition.

Proof. SupposeT is an SLR-triangulation and let
0 ∈ Tm,m ∈ Z. We may assume that the largest ed
of 
0 is of length one. We introduce a coordinate systemOx1x2 so that the originO is at the vertex of
the sharpest angle of
0 and the largest edge of
0 lies on the positive half of thex1-axis. Without loss
of generality, we can assume that
0 is in the upper right quadrant ofOx1x2. We select the equilatera
reference triangle
′0 to be in the upper right quadrant ofOx1x2 and have one edge coinciding with t
longest edge of
0. Evidently, both the affine (linear in this case) transformA which maps
0 one-to-one
onto
′0 and its inverseA−1 have matrices of the form

[ 1 u1
0 u2

]
. Suppose that the angle of
′0 with vertex at

the origin and magnitude ofπ/3 is transformed byA−1 into an angle of magnitudeγ , 0< γ < π/3. In
this setting, routine (but not trivial) calculations show thatA−1 transforms any angle of magnitude� β

into an angle of magnitude� cγ , wherec = c(β) is a positive constant. We skip all details and o
note that it suffices to prove the above fact only for angles with vertex at the origin because the
transforms map parallel lines into parallel lines. This result implies thatT satisfies the MA-condition.

The MA-condition does not imply the ATA-condition because the following configuration of trian
is possible: Let
1 := [(0,0), (1,0), (ε/2, ε

√
3/2)], whereε > 0 is sufficiently small. Denote by
2

the triangle symmetric to
1 with respect to thex1-axis. Further, let
3 and
4 be the images of
1

and
2 after rotation of−2π/3 about the origin, and let
5, and
6 be the images of
1 and
2 after
rotation of 2π/3 about the origin. A triangulation containing this kind of configuration on one leve
be constructed for an arbitrary smallε by starting from some level of a uniform triangulation consisting
equilateral triangles and “sharpening” the angles near a given node in three equiangular direction
refining the rest of the triangulations uniformly, as in the previous example. Obviously, this configu
does not violate the MA-condition but due to the presence of sharp angles in different directio
ATA-condition fails. ✷

Our next theorem provides estimates for the rate of change of the elements of triangles from
level of a triangulation when moving away from a fixed triangle. For these estimates, we ne
following simple lemma.

Lemma 2.4. SupposeT is an LR-triangulation. If
′,
′′ ∈ Tm,m ∈ Z, and
′ and
′′ can be connecte
by< 2ν intermediate triangles(with common vertices) from Tm, then there exist
1,
2 ∈ Tm−2N0ν with
a common vertex such that
′ ⊂
1 and
′′ ⊂ 
2, whereN0 is from condition(g) of LR-triangulations.
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Proof. From conditions (c) and (g) on LR-triangulations (Section 2.1), it follows that every edge
triangle fromTm is subdivided at least once after 2N0 steps of refinement. From this, we infer that
G ⊂ R

2, thenΩm(Ωm(G)) ⊂ Ωm−2N0(G), whereΩl(G) :=⋃{θ ∈ Θl: θ◦ ∩ G �= ∅} (θ◦ denotes the
interior of θ ). Applying this factν times, we obtain that
′′ ⊂Ωm−2N0ν({v}), wherev is an appropriate
vertex of
′. Then the existence of
1 and
2 follows readily. ✷
Theorem 2.5. (a) LetT be an LR-triangulation with parameters0< r < ρ < 1 andN0. If 
′,
′′ ∈ Tm,
m ∈ Z, and
′ and
′′ can be connected byn (n� 1) intermediate triangles fromTm, then

c−1
1 n−s � |
′|

|
′′| � c1n
s (2.5)

with s := 2N0 log2(ρ/r) andc1 := δ−N0(ρ/r)2N0.
(b) Let T be an SLR-triangulation with parameter0< β � π/3. If 
′,
′′ ∈ Tm, m ∈ Z, and
′ and


′′ can be connected byn (n� 1) intermediate triangles fromTm, then

c−1
2 n−t � minangle(
′)

min angle(
′′) � c2n
t (2.6)

with t := 4N0 log2(1/ϑ) andc2 := ϑ−4N0−1, whereN0 := [2π/β] andϑ = ϑ(β) is the constant from th
MA-condition whose existence is established by Lemma2.3.

Proof. (a) Let ν ∈ Z be such that 2ν−1 � n < 2ν . By Lemma 2.4, there exist
1,
2 ∈ Tm−2N0ν with
a common vertex such that
′ ⊂ 
1 and
′′ ⊂ 
2. By (2.2), δN0 � |
1|/|
2| � δ−N0, and by (2.1), it
follows that|
′|� ρ2N0ν|
1| and|
′′|� r2N0ν |
2|. Combining the above estimates, we obtain (2.5)

(b) The proof of (2.6) is quite similar to the proof of (2.5) and uses Lemma 2.3. We omit it.✷
2.2. Local polynomial and piecewise linear approximation

We letΠk denote the set of all algebraic polynomials in two variables of total degree< k. For a
function f ∈ Lq(G), G ⊂ R

2, 0< q �∞, andk � 1, we denote byEk(f,G)q the error ofLq(G)-
approximation tof fromΠk, i.e.,

Ek(f,G)q := inf
P∈Πk

‖f − P ‖Lq(G). (2.7)

Also, we denote byωk(f,G)q thekth modulus of smoothness off onG:

ωk(f,G)q := sup
h∈R2

∥∥8kh(f, ·)∥∥Lq(G), (2.8)

where8kh(f, x)=8kh(f, x,G) :=
∑k

j=0(−1)k+j
(
k

j

)
f (x + jh) if the line segment[x, x + kh] is entirely

contained inG and8kh(f, x) := 0 otherwise.
For an LR-triangulationT and
 ∈ Tm (m ∈ Z), we denote byΩ
 the union of all triangles
′ ∈ Tm

which have a common vertex with
, i.e.,

Ω
 :=
⋃
{
′ ∈ Tm: 
′ ∩
 �= ∅}. (2.9)

Also, we define

Ω2

 :=

⋃
{
′ ∈ Tm: 
′ ∩Ω
 �= ∅}. (2.10)
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Lemma 2.6 (Whitney).SupposeG := 
 or G :=Ω
 for some triangle
 ∈ Tm (m ∈ Z), whereT is an
SLR-triangulation ofR2. If f ∈ Lq(G), 0< q �∞, andk � 1, then

Ek(f,G)q � cωk(f,G)q (2.11)

with c= c(q, k) or c= c(q, k, β), whereβ is the parameter ofT from (2.3).

For the proof of this lemma, see Appendix B.
We shall often use the following lemma, which establishes relations between different nor

polynomials over different sets.

Lemma 2.7. LetP ∈Πk, k � 1, and0< p,q �∞.

(a) Let
′ ⊂
 be two triangles such that|
|� c1|
′|. Then

‖P ‖Lp(
) � c‖P ‖Lp(
′) (2.12)

with c= c(p, k, c1).
(b) Suppose
′ ⊂
 are two triangles such that|
′|� ρ|
| with 0< ρ < 1 or 
′ = ∅. Then

‖P ‖Lp(
) � c‖P ‖Lp(
\
′) ≈ |
|1/p−1/q‖P ‖Lq(
\
′) (2.13)

with constants depending only onp, q, k, andρ.
(c) If T is an LR-triangulation and
∈ T , then

‖P ‖Lp(Ω
) ≈ |Ω
|1/p−1/q‖P ‖Lq(Ω
) ≈ |
|1/p−1/q‖P ‖Lq(Ω
) (2.14)

with constants of equivalence depending only onp, q, k, N0, andδ.
(d) If P ∈Π2 and
= [x1, x2, x3] ⊂R

2 is a triangle, then

‖P ‖Lq(
) ≈ |
|1/q max
1�j�3

∣∣P(xj )∣∣, (2.15)

with constants of equivalence depending only onq.

Proof. Estimates (2.12)–(2.15) are invariant under affine transforms and hence they follow from th
when
 is an equilateral triangle with|
| = 1 by change of variables. The details will be omitted.✷

We find useful the concept ofnear best approximationwhich we borrowed from [8]. A polynomia
P
 ∈Πk is said to be a near bestLq(
)-approximation tof fromΠk with constantA if

‖f −P
‖Lq(
) �AEk(f,
)q. (2.16)

Note that ifq � 1, then a near bestLq(
)-approximationP
 = P
(f ) can be easily realized by a line
projector.

Lemma 2.8. Suppose0< q � p andP
 is a near bestLq(
)-approximation tof ∈ Lp(
) fromΠk.
ThenP
 is a near bestLp(
)-approximation tof .

Proof. See Lemma 3.2 from [8] and also the proof of Lemma 2.12 in Appendix B.✷
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We next introduce some necessary notation. LetT =⋃m∈Z
Tm be a WLR-triangulation. Form ∈ Z

andk � 1, we letSkm := Sk(Tm) denote the set of all piecewise polynomial functions overTm of degree
< k, i.e.,S ∈ Skm if S =∑
∈Tm 1
 · P
, where1
 is the characteristic function of
 andP
 ∈Πk.

Now, let T =⋃m∈Z
Tm be an LR-triangulation. Forv ∈ Vm (m ∈ Z), we letθv denote thecell in Tm

associated withv (Section 2.1). The NHV-condition on LR-triangulations (Section 2.1) guarantee
existence of aCourant elementϕθv supported onθv which is a continuous piecewise linear function th
takes the value one atv.

For m ∈ Z, we denote byS̃m := S̃(Tm) the set of all continuous piecewise linear functions o
Tm, i.e., S̃m = S2

m ∩ C(R2). From the NHV-condition onT , eachS ∈ S̃m has the representation
S =∑v∈Vm S(v)ϕθv and hencẽSm = span{ϕθ : θ ∈Θm}.

Throughout the rest of this section, we assume thatT is an LR-triangulation ofR2 with parameters
M0, N0, r , ρ, andδ (see Section 2.1).

Lemma 2.9. Suppose{aθ }θ∈Θm , m ∈ Z, is a sequence of real numbers andS :=∑θ∈Θm aθϕθ . Let also
0< q �∞. Then, for every
∈ Tm, we have

‖S‖Lq(
) ≈
( ∑
θ∈Θm :
⊂θ

‖aθϕθ‖qq
)1/q

(2.17)

and, hence,

‖S‖Lq(R2) ≈
(∑
θ∈Θm

‖aθϕθ‖qq
)1/q

(2.18)

with constants of equivalence depending only onq, N0, andδ. In the caseq =∞, the*q-norm above is
replaced by thesup-norm.

Proof. Clearly, S(vθ) = aθ (vθ is the “central point” ofθ ) and ‖ϕθ‖q ≈ |θ |1/q . Therefore, using
Lemma 2.7, (d) and the regularity ofT , we have, for
∈ Tm,

‖S‖Lq(
) ≈ |
|1/q max
θ∈Θm: 
⊂θ

|aθ | ≈ max
θ∈Θm: 
⊂θ

|aθ ||θ |1/q ≈
( ∑
θ∈Θm: 
⊂θ

‖aθϕθ‖qq
)1/q

. ✷

Quasi-interpolant. We shall utilize the following well-known quasi-interpolant for construct
projectors into spaces of continuous piecewise linear functions

Qm(f )=Qm(f,T ) :=
∑
θ∈Θm

〈f, ϕ̃θ〉ϕθ , (2.19)

where〈f,g〉 := ∫
R2 fg and{ϕ̃θ } are duals of{ϕθ } defined by

ϕ̃θ :=
∑


∈Tm,
⊂θ
1
 · λ̃
,θ ,

with λ̃
,θ the linear polynomial which assumes values 9/(Nvθ |
|) at vθ (the “central point” ofθ ) and
−3/(Nvθ |
|) at the other two vertices of
 (hereNvθ is the valence ofvθ ). Evidently,

〈ϕθ, ϕ̃θ ′ 〉 = δθθ ′, θ, θ ′ ∈Θm.
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It is easily seen that the quasi-interpolantQm satisfies the following:

(a) Qm :Lloc
1 → S̃m is a linear operator.

(b) Qm is a projector intõSm, i.e.,Qm(S)= S for S ∈ S̃m.

Other properties will be given in the following.

Lemma 2.10. If f ∈ Lloc
η , 1� η�∞, and
∈ Tm,m ∈ Z, then∥∥Qm(f )

∥∥
Lη(
) � c‖f ‖Lη(Ω
)

with c= c(η,N0, δ).

Proof. It is readily seen that∣∣〈f, ϕ̃θ 〉∣∣� ‖f ‖Lη(θ)‖ϕ̃θ‖η′ � c‖f ‖Lη(θ)‖ϕ̃θ‖∞|θ |1/η′ � c|θ |−1/η‖f ‖Lη(θ)
and‖ϕθ‖η � c|θ |1/η, where 1/η′ := 1− 1/η. Therefore, for every
 ∈ Tm,∥∥Qm(f )

∥∥
Lη(
) �

∑
θ∈Θm, θ⊂Ω


∣∣〈f, ϕ̃θ 〉∣∣‖ϕθ‖η � c
∑

θ∈Θm, θ⊂Ω

‖f ‖Lη(θ) � c‖f ‖Lη(Ω
). ✷

Lemma 2.11. If S ∈ S2
m, 0< η�∞, and
 ∈ Tm,m ∈ Z, then∥∥Qm(S)

∥∥
Lη(
) � c‖S‖Lη(Ω
)

with c= c(η,N0, δ).

Proof. If η � 1, then the estimate follows by Lemma 2.10. Let 0< η < 1. We use the estimat
‖ϕθ‖η � c|θ |1/η, properties of LR-triangulations (Section 2.1), and Lemma 2.7, (b), to obtain∥∥Qm(S)

∥∥
Lη(
) � c

∑
θ∈Θm, θ⊂Ω


∣∣〈S, ϕ̃θ 〉∣∣‖ϕθ‖η � c
∑

θ∈Θm, θ⊂Ω

‖ϕ̃θ‖∞‖S‖L1(θ)|θ |

1
η

� c
∑

θ∈Θm, θ⊂Ω

|θ |−1+ 1

η ‖S‖L1(θ) � c
∑


′∈Tm,
′⊂Ω

|
′|−1+ 1

η ‖S‖L1(
′)

� c
∑


′∈Tm,
′⊂Ω

‖S‖Lη(
′) � c‖S‖Lη(Ω
). ✷

Local piecewise linear approximation.For a givenf ∈ Lloc
η , η > 0, and
 ∈ Tm, m ∈ Z (recall thatT

is an LR-triangulation), we define the error ofLη-approximation tof onΩ
 from S̃m by

S
(f )η := S
(f,T )η := inf
S̃∈S̃m

‖f − S̃‖Lη(Ω
). (2.20)

Similarly as in the polynomial case, we say thatS̃ ∈ S̃m is anear bestLη-approximation tof onΩ

from S̃m with a constantA if

‖f − S̃‖Lη(Ω
) �AS
(f )η.
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Lemma 2.12. Suppose0< µ < η andS is a near bestLµ-approximation tof ∈ Lη(Ω
) onΩ
 from
S̃m. ThenS is a near bestLη-approximation tof onΩ
 from S̃m.

The proof of this lemma is similar to the proof of Lemma 3.2 of [8] (see also Lemma 2.8 above
completeness, we give it in Appendix B.

The quasi-interpolant (defined above) is a simple and useful tool for constructing projectors iS̃m
with good localization properties. Forη > 0 andf ∈ Lloc

η , let P
,η = P
,η(f ) be a near bestLη(
)-
approximation tof from Π2. Note that ifη � 1, thenP
,η(·) can be realized as a linear projector in
the space of linear polynomials restricted on
. However,P
,η(·) is nonlinear ifη < 1. Let

Sm,η(f ) :=
∑

∈Tm

1
 · P
,η(f ) for m ∈ Z.

Clearly,Sm,η(f ) ∈ S2
m andSm,η(S)= S for everyS ∈ S2

m. We set

Tm,η(f )= Tm,η(f,T ) :=Qm

(
Sm,η(f )

)
. (2.21)

This construction is well known and is needed when working inLη with 0 < η < 1. Evidently,
Tm,η(f ) ∈ S̃m andTm,η(S̃)= S̃ for S̃ ∈ S̃m.

The next lemma establishes the good local approximation properties of the operatorsQm andTm.

Lemma 2.13. (a) If f ∈ Lloc
η , 1� η�∞, and
 ∈ Tm,m� 0, then∥∥f −Qm(f )

∥∥
Lη(
) � cS
(f )η. (2.22)

(b) If f ∈Lloc
η , 0< η�∞, and
∈ Tm, m� 0, then∥∥f − Tm,η(f )∥∥Lη(
) � cS
(f )η. (2.23)

The constants above depend only onη and the parameters ofT .

Proof. To show that (2.23) holds, we choosẽS
 ∈ S̃m for which S
(f )η is attained, i.e.,‖f −
S̃
‖Lη(Ω
) = S
(f )η. Then∥∥f − Tm(f )∥∥Lη(
) = ∥∥f −Qm

(
Sm(f )

)∥∥
Lη(
)

= ∥∥f − S̃
 + S̃
 −Qm

(
Sm(f )

)∥∥
Lη(
)

� c‖f − S̃
‖Lη(
) + c
∥∥Qm

(
S̃
 − Sm(f )

)∥∥
Lη(
)

� cS
(f )η + c
∥∥S̃
 − Sm(f )∥∥Lη(Ω
)

� cS
(f )η + c‖f − S̃
‖Lη(Ω
) + c
∥∥f − Sm(f )∥∥Lη(Ω
)

� cS
(f )η,

where we used thatQm(S̃
)= S̃
 on
, Lemma 2.11, and the obvious inequality‖f − Sm(f )‖Lη(Ω
) �
‖f − S̃
‖Lη(Ω
). Thus (2.23) is proved. The proof of (2.22) is similar and will be omitted.✷
Lemma 2.14. (a) If f ∈ Lloc

η , 1� η�∞, then for
 ∈ T∥∥f −Qm(f )
∥∥ → 0 asm→∞. (2.24)

Lη(
)
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(b) If f ∈Lloc
η , 0< η�∞, then for
∈ T∥∥f − Tm(f )∥∥Lη(
)→ 0 asm→∞. (2.25)

Proof. Using (2.1) and simple geometric arguments, one can show that ife is an edge of a descenda
of 
, ande does not emanate from a vertex of
, then|e|� (1− r)diam(
). By condition (g) on LR-
triangulations (Section 2.1), at any given level there can be at most 3N0 edges starting from the vertice
of 
. From conditions (c) and (g), it follows that every edgee is subdivided within less than 2N0 levels
after its first appearance, and by (2.1) each of the pieces ofe has length� (1− r)diam(
). Combining
the above observations, we conclude that after less than 6N2

0 levels of refinement all edges of descenda
of 
 will have lengths� (1− r)diam(
). From this we derive that

max
{
diam(
′): 
′ ∈ Tm,
′ ⊂Ω


}→ 0 asm→∞.
Hence,‖f − Sm(f )‖Lη(Ω
)→ 0 and‖f − S̃m(f )‖Lη(Ω
)→ 0 asm→∞, whereS̃m(f ) is a (the) bes
Lη-approximation tof onΩ
 from S̃m. Therefore,∥∥f − Tm(f )∥∥Lη(
) � c∥∥f − S̃m(f )∥∥Lη(
) + c∥∥Qm

(
S̃m(f )− Sm(f )

)∥∥
Lη(
)

� c
∥∥f − S̃m(f )∥∥Lη(
) + c∥∥S̃m(f )− Sm(f )∥∥Lη(Ω
)

� c
∥∥f − S̃m(f )∥∥Lη(Ω
) + c∥∥f − Sm(f )∥∥Lη(Ω
)→ 0

asm→∞, where we used thatQm(S̃
)= S̃
 on
 and Lemma 2.11. Thus (2.25) is proved. The pr
of (2.24) is similar. ✷
2.3. Slim B-spaces

In this section, we introduce a collection of smoothness spaces (B-spaces) which we later u
characterization of nonlinearn-term Courant element approximation. Throughout the section, we as
thatT is an arbitrary locally regular triangulation ofR

2 (see Section 2.1). The B-spaces will depend onT .
This dependence may or may not be indicated explicitly.

Definition of slim B-spaces via local approximation.We define theslim B-spaceBαpq(T ), α > 0,
0< p,q �∞, as the set of allf ∈ Lp(R2) such that

‖f ‖Bαpq (T ) := ‖f ‖p +
(∑
m∈Z

[
2mα

( ∑

∈T , 2−m�|
|<2−m+1

S
(f )pp

)1/p]q)1/q

<∞, (2.26)

whereS
(f )q := S
(f,T )q , for 
 ∈ Tm, denotes the error ofLq -approximation tof onΩ
 from S̃m
(see (2.20)), and the*q-norm is replaced by the sup-norm ifq =∞.

We shall further study only a specific class of slim B-spaces which are exactly the smoothness
needed for nonlinear CourantLp-approximation (see Section 3.2). We assume that 0< p <∞ andα > 0,
and defineτ by the identity 1/τ := α + 1/p. We shall need the slim B-spaceBατ := Bατ (T ), which is a
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slightly modified version of the spaceBαττ (T ) from above. We defineBατ (T ) as the set of all function
f ∈ Lp(R2) (in place off ∈ Lτ(R2)) such that

‖f ‖Bατ = ‖f ‖Bατ (T ) :=
(∑

∈T

(|
|−αS
(f )τ )τ)1/τ

<∞. (2.27)

Remark. In the above definition, the conditionf ∈ Lp(R2) is not restrictive sinceBατ (T ) is embedded
in Lp (see Theorems 2.15 and 2.16 below). Its only role is to eliminate a possible componentS∞ of f ,
which is a piecewise polynomial on infinite triangles
∞ ∈ T−∞ (see Lemma 2.1). This condition can
replaced, e.g., by the condition:|{x: |f (x)|> s}|<∞ for eachs > 0 (see Theorem 2.15 below). It als
can be replaced by the conditionf ∈ Lτ(R2) as in the definition ofBαττ (T ) (see (2.26)), which is a little
bit restrictive since the spacesLp(R2) andLτ(R2) (τ �= p) are not embedded into one another. Howe
this condition is not too restrictive since our approximation tool in Section 3.2 consists of com
supported piecewise polynomials and hence all theorems from Section 3.2 would hold if it is use

Evidently,

‖f + g‖τ∗Bατ � ‖f ‖τ∗Bατ +‖g‖τ
∗
Bατ
, τ ∗ :=min{τ,1}.

Also, if ‖f ‖Bατ = 0, thenS
(f )τ = 0 for each
∈ T . From this, it readily follows thatf coincides with
a linear polynomial on each
∞ ∈ T−∞. Therefore, using thatf ∈ Lp, we infer thatf = 0 a.e. Thus
for a fixed LR-triangulationT , ‖ · ‖Bατ (T ) is a norm ifτ � 1 and a quasi-norm ifτ < 1. In the following
“norm” will stand for “norm” or “quasi-norm”.

We next introduce other equivalent norms inBατ (T ) which will enable us to operate more freely w
B-spaces. Forf ∈ Lloc

η (R
2), η > 0, we define

NS,η(f ) :=NS,η(f,T ) :=
(∑

∈T

(|
|−α+1/τ−1/η
S
(f )η

)τ)1/τ

=
(∑

∈T

(|
|1/p−1/η
S
(f )η

)τ)1/τ

, (2.28)

where we used that 1/τ = α + 1/p. Clearly,NS,τ (f )= ‖f ‖Bατ .

Atomic decomposition ofBατ (T ). Forf ∈Lp(R2), we define

NΦ(f )=NΦ(f,T ) := inf
f=∑θ∈Θ cθϕθ

(∑
θ∈Θ

(|θ |−α‖cθϕθ‖τ )τ)1/τ

, (2.29)

where the infimum is taken over all representationsf =∑θ∈Θ cθϕθ with convergence inLp(
) for each

 ∈ T . (The existence of such representations off follows by Lemma 2.14.) As will be seen in the pro
of Theorem 2.15 below∑(|θ |−α‖cθϕθ‖τ )τ <∞ implies

∥∥∥∥∑∣∣cθϕθ (·)∣∣∥∥∥∥
p

<∞

θ∈Θ θ∈Θ
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s

ce

on, and
and hence
∑

θ∈Θ |cθϕθ(·)| converges a.e. and unconditionally inLp(R2). Therefore, the order of the term
in the series above is not essential. By Lemma 2.7, it follows that

NΦ(f )≈ inf
f=∑θ∈Θ cθϕθ

(∑
θ∈Θ
‖cθϕθ‖τp

)1/τ

. (2.30)

Definition of norms inBατ (T ) via projectors. We define, form ∈ Z,

qm :=Qm −Qm−1 and tm,η := Tm,η − Tm−1,η. (2.31)

For a given functionf ∈ Lloc
η (R

2), 1� η�∞, clearlyqm(f ) ∈ S̃m and we define uniquely the sequen
{bθ (f )}θ∈Θm (m ∈ Z) from the expression

qm(f )=:
∑
θ∈Θm

bθ (f )ϕθ . (2.32)

Also, if f ∈ Lloc
η (R

2), 0< η�∞, thentm,η(f ) ∈ S̃m. In this case, we define{bθ,η(f )}θ∈Θm by

tm,η(f )=:
∑
θ∈Θm

bθ,η(f )ϕθ . (2.33)

Evidently, {bθ(·)} and {bθ,η(·)} with η � 1 are linear functionals, while{bθ,η(·)} are nonlinear if
0< η < 1.

We define

NQ,τ (f )=NQ,τ (f,T ) :=
(∑
θ∈Θ

(|θ |−α∥∥bθ,τ (f )ϕθ∥∥τ )τ)1/τ

, (2.34)

wherebθ,τ (f ) := bθ (f ) are from (2.32) (or from (2.33)) ifτ � 1 andbθ,τ (f ) are from (2.33) ifτ < 1.
More generally, we define

NQ,η(f )=NQ,η(f,T ) :=
(∑
θ∈Θ

(|θ |1/p−1/η
∥∥bθ,η(f )ϕθ∥∥η)τ)1/τ

. (2.35)

By Lemma 2.9, we have

NQ,η(f )≈
(∑

∈T

(|
|1/p−1/η
∥∥qm(f )∥∥Lη(
))τ

)1/τ

if η� 1, (2.36)

NQ,η(f )≈
(∑

∈T

(|
|1/p−1/η
∥∥tm,η(f )∥∥Lη(
))τ

)1/τ

if 0 < η < 1, (2.37)

and, in both cases,

NQ,η(f )≈
(∑
θ∈Θ

∥∥bθ,η(f )ϕθ∥∥τp)1/τ

. (2.38)

Our next step is to show that the slim B-spaceBατ (T ) is embedded inLp(R2). To do this, we invoke
Theorem 3.3, proved later in Section 3.1, which is however completely independent of this secti
can therefore safely be used.
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3.3

d, we
Theorem 2.15. If |{x: |f (x)|> s}|<∞ for eachs > 0 andNQ,η(f,T ) <∞ for some0< η�∞, then
f ∈ Lp(R2),

f =
∑
θ∈Θ

bθ,η(f )ϕθ absolutely a.e. onR2 (2.39)

and unconditionally inLp(R2), and

‖f ‖p �
∥∥∥∥∑
θ∈Θ

∣∣bθ,η(f )ϕθ (·)∣∣∥∥∥∥
p

� cNQ,η(f ) (2.40)

with c depending only onα, p, η, and the parameters ofT .

Remark. Observe that the condition:|{x: |f (x)|> s}|<∞ for eachs > 0 is satisfied iff ∈Lq(R2) for
an arbitraryq <∞.

Proof. Let us consider the case whenNQ,η(f ) is defined via the coefficientsbθ,η(f ) from (2.33).
We introduce the following abbreviated notation:Tm := Tm,η(f ), tm := tm,η(f ), bθ := bθ,η(f ), and
N(f ) := (∑θ∈Θ ‖bθϕθ‖τp)1/τ . Note thatNQ,η(f )≈N(f ), by (2.38). SinceT is an LR-triangulation, the
sequence{Φm} := {bθϕθ }θ∈Θ satisfies requirements (i) and (ii) of the general embedding Theorem
below. Therefore,

∑
θ∈Θ |bθϕθ (·)|<∞ a.e. onR2 and∥∥∥∥∑

θ∈Θ

∣∣bθϕθ(·)∣∣∥∥∥∥
p

� cN(f ). (2.41)

Hence∑
j∈Z

∣∣tj (·)∣∣<∞ a.e. onR2 (2.42)

and ∥∥∥∥∑
j∈Z

∣∣tj (·)∣∣∥∥∥∥
p

� cN(f ) <∞. (2.43)

Evidently, (2.39) and (2.41) imply (2.40). Therefore, it suffices to prove that (2.39) holds. To this en
first show that

f = T0+
∞∑
j=1

tj absolutely a.e. onR2. (2.44)

Setg := T0+∑∞
j=1 tj pointwise. By (2.42), it follows thatg is well defined. Clearly,g = Tm+∑∞

j=m+1 tj
a.e. form ∈ Z. Hence, by (2.43),

‖g − Tm‖p �
∥∥∥∥ ∞∑
j=m+1

∣∣tj (·)∣∣∥∥∥∥
p

→ 0 asm→∞. (2.45)

On the other hand,f ∈ Lloc
η (R

2) and by Lemma 2.14 we have, for
∈ T ,

‖f − Tm‖Lη(
)→ 0 asm→∞.



B. Karaivanov, P. Petrushev / Appl. Comput. Harmon. Anal. 15 (2003) 177–223 195

ial

and,

l

From this and (2.45), it follows thatg = f a.e. and hence (2.44) holds.
We shall next prove that for every
∞ ∈ T−∞ (see Lemma 2.1) there exists a unique linear polynom

P
∞ such that

T0− P
∞ =
0∑

j=−∞
tj absolutely a.e. on
∞. (2.46)

Using Lemma 2.7, we have that for any
∈ Tj (j ∈ Z)

‖tj‖L∞(
) � c|
|−1/p‖tj‖Lp(
) � c|
|−1/p
∑

θ∈Θj :
⊂θ
‖bθϕθ‖p � c|
|−1/pN(f ). (2.47)

SinceT is an LR-regular triangulation, if
 ⊂ 
′, 
 ∈ Tk, and
′ ∈ Tj , then |
| � ρk−j |
′|, where
0< ρ < 1 is the parameter ofT from (2.1). Using this and (2.47), we obtain, for
 ∈ Tk, k ∈ Z,

k∑
j=−∞

‖tj‖L∞(
) � cN(f )|
|−1/p
k∑

j=−∞
ρ(k−j)/p � c|
|−1/pN(f ) <∞. (2.48)

For
∈ Tk, we setP
 := Tk −∑k
j=−∞ tj pointwise. By (2.42), the series converges absolutely a.e.

therefore,P
 is well defined. Clearly,P
 = Tm −∑m
j=−∞ tj for m� k and, hence, by (2.48),

‖Tm − P
‖L∞(
) �
∥∥∥∥ m∑
j=−∞

∣∣tj (·)∣∣∥∥∥∥
L∞(
)

�
m∑

j=−∞
‖tj‖L∞(
)→ 0 asm→−∞. (2.49)

Since alltj ’s, j < k, are linear polynomials on
 ∈ Tk , so isP
. Moreover,P
 is the same polynomia
for all 
 ∈ T contained in a fixed
∞ ∈ T−∞. Indeed, let
′,
′′ ∈ T , 
′,
′′ ⊂ 
∞ (
′ and
′′ are
possibly from different levels). Since
∞ is an infinite union of nested triangles, there exists
∈ T such
that
′,
′′ ⊂ 
⊂
∞. By (2.49),

‖Tm − P
′‖L∞(
′)→ 0 and ‖Tm − P
‖L∞(
′)→ 0 asm→−∞.
HenceP
′ ≡ P
. Similarly,P
′′ ≡ P
. Therefore, there exists a unique linear polynomialP
∞ such that
(2.46) holds.

Combining (2.44) with (2.46), we obtain

f −P
∞ =
∑
j∈Z

tj absolutely a.e. on
∞, 
∞ ∈ T∞. (2.50)

Using that
∑

j∈Z
tj ∈ Lp(R2) and the hypothesis of the theorem, we obtain∣∣{x ∈
∞:
∣∣P
∞(x)∣∣> s}∣∣� ∣∣∣∣{x:

∣∣f (x)∣∣> s

2

}∣∣∣∣+ ∣∣∣∣{x:

∣∣∣∣∑
j∈Z

tj (x)

∣∣∣∣> s

2

}∣∣∣∣
�
∣∣∣∣{x:

∣∣f (x)∣∣> s

2

}∣∣∣∣+( s2
)−p∥∥∥∥∑

j∈Z

tj

∥∥∥∥p
p

<∞,

for eachs > 0. Since
∞ is an infinite triangle or a half plane orR2 andP
∞ is a polynomial, this is
only possible wheneverP
∞ ≡ 0. Thus (2.39) is established.
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ing

in
The proof of the theorem whenNQ,η(f ) is defined via the coefficientsbθ,η(f ) := bθ (f ) from (2.32)
is the same and will be omitted.✷
Theorem 2.16. For f ∈ Bατ (T ), the norms‖f ‖Bατ (T ), NS,η(f ) (0 < η < p), NΦ(f ), and NQ,η(f )
(0< η < p), defined in(2.27)–(2.29)and (2.35)are equivalent with constants of equivalence depend
only onp, α, η, and the parameters ofT .

Proof. By (2.30), (2.38), and Theorem 2.15, it follows that:

NΦ(f )� cNQ,η(f ). (2.51)

Clearly, if
 ∈ Tm and
′ is the (unique) parent of
 in Tm−1, we have∥∥tm,η(f )∥∥Lη(
) � c
∥∥f − Tm,η(f )∥∥Lη(
) + c∥∥f − Tm−1,η(f )

∥∥
Lη(
′)

� cS
(f )η + cS
′(f )η,
where we used (2.23). A similar estimate holds for‖qm(f )‖Lη(
), using (2.22). These imply

NQ,η(f )� cNS,η(f ). (2.52)

We next prove that ifNΦ(f ) <∞, then

NS,µ(f )� cNΦ(f ) for 0<µ< p. (2.53)

By Hölder’s inequality, it follows that:

NS,µ(f )�NS,τ (f ), 0<µ� τ.

Thus it suffices to prove (2.53) only forτ < µ <p.
Supposef ∈ Lp andNΦ(f ) <∞. Let f =∑θ∈Θ cθϕθ be an arbitrary representation off , where the

convergence is inLp(
) for every
. Recall that

NS,µ(f ) :=
(∑

∈T

(|
| 1
p− 1

µS
(f )µ
)τ) 1

τ

, (2.54)

whereS
(f )µ is defined in (2.20). Evidently,S
(g)µ = 0 for
∈ Tm if g ∈ S̃m, andS
(g)µ � ‖g‖Lµ(Ω
).
Now, fix
∈ Tn, n ∈ Z. Using the above properties ofS
(g)µ and Theorem 3.3 with{Φm} := {cθϕθ : θ ∈
Θ,θ ⊂Ω2
} (for the definition ofΩ2
, see (2.10)), we obtain

S
(f )τµ = S


( ∞∑
j=n+1

∑
θ∈Θj

cθϕθ

)τ
µ

�
∥∥∥∥∥

∞∑
j=n+1

∑
θ∈Θj

cθϕθ

∥∥∥∥∥
τ

Lµ(Ω
)

�
∥∥∥∥∥

∞∑
j=n+1

∑
θ∈Θj , θ⊂Ω2


cθϕθ

∥∥∥∥∥
τ

µ

� c
∑

θ∈Θ,θ⊂Ω2


‖cθϕθ‖τµ

� c
∑

θ∈Θ,θ⊂Ω2


|θ |τ ( 1
µ− 1

τ )‖cθϕθ‖ττ ,

where for the last inequality we used that‖ϕθ‖q ≈ |θ |1/q , 0< q �∞. Substituting the above estimate
(2.54), we get
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n 2.1),

for the
nested

l

needed
NS,µ(f )
τ � c

∑

∈T

|
|τ ( 1
p
− 1
µ
)

∑
θ∈Θ,θ⊂Ω2


|θ |τ ( 1
µ
− 1
τ
)‖cθϕθ‖ττ

� c
∑

∈T

∑
θ∈Θ,θ⊂Ω2


( |θ |
|
|

)τ ( 1
µ− 1

p )(|θ | 1
p− 1

τ ‖cθϕθ‖τ
)τ

� c
∑
θ∈Θ

(|θ | 1
p− 1

τ ‖cθϕθ‖τ
)τ ∑

∈T : θ⊂Ω2


( |θ |
|
|

)τ ( 1
µ− 1

p )

, (2.55)

where we once switched the order of summation. By condition (g) on LR-triangulations (Sectio
we have, forθ ∈Θj ,

#{
 ∈ Tj : θ ⊂Ω2

}� c(N0),

and by (2.1) and (2.2),|θ |� c(N0, δ)ρ
j |
|, if θ ⊂Ω2


 with 
∈ Tm−j andθ ∈Θm. Hence, forθ ∈Θ ,

∑

∈T : θ⊂Ω2


( |θ |
|
|

)τ ( 1
µ− 1

p )

� c

∞∑
j=0

ρ
jτ( 1

µ
− 1
p
) � c <∞, (2.56)

where we used thatρ < 1 andµ< p. Finally, combining (2.56) with (2.55), we obtain

NS,µ(f )
τ � c

∑
θ∈Θ

(|θ |−α‖cθϕθ‖τ )τ ,
which implies (2.53). Evidently, (2.51) and (2.53) imply the theorem.✷
Remark. The following simple example shows that, in general, Theorem 2.16 is not valid forη� p. Let
f := ϕθ for someθ ∈Θ . It is not hard to see that‖f ‖Bατ (T ) ≈ |θ |1/p ≈ ‖ϕθ‖p, whileNS,η(f,T )=∞, if
η� p. Therefore,NS,η(f,T ) is not equivalent to‖f ‖Bατ (T ) if η� p.

2.4. Skinny B-spaces

In this section, we define a second family of B-spaces which we shall use in Section 3.3
characterization of nonlinear (discontinuous) piecewise polynomial approximation generated by
triangulations.

Throughout this section, we assume thatT is an arbitrary weak locally regular triangulation ofR
2

(see Section 2.1). We define theskinny B-spaceBαkpq(T ), α > 0, 0< p,q �∞, k � 1, as the set of al
f ∈ Lp(R2) such that

‖f ‖Bαkpq (T ) := ‖f ‖p +
(∑
m∈Z

[
2mα

( ∑

∈T ,2−m�|
|<2−m+1

ωk(f,
)pp
)1/p]q)1/q

<∞, (2.57)

whereωk(f,
)p is the local modulus of smoothness off , defined in (2.8).
As for the slim B-spaces, we shall explore in more details only the skinny B-spaces that are

in nonlinear piecewise polynomialLp-approximation. Suppose 0< p < ∞, α > 0, k � 1, and let
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mation
l
e
act
nuous)
namely,
1/τ := α + 1/p. We shall need the skinny B-spaceBαkτ (T ), which is a slight modification ofBαkττ (T )
from above, and is defined as the set of allf ∈ Lp(R2) (in place off ∈Lτ(R2)) such that

‖f ‖Bαkτ = ‖f ‖Bαkτ (T ) :=
(∑

∈T

(|
|−αωk(f,
)τ )τ)1/τ

<∞. (2.58)

Whitney’s estimate (Lemma 2.6) implies

‖f ‖Bαkτ (T ) ≈
(∑

∈T

(|
|−αEk(f,
)τ )τ)1/τ

, (2.59)

whereEk(f,
)q is the error ofLτ -approximation tof on
 fromΠk (see (2.7)).
If ‖f ‖Bαk = 0, thenEk(f,
)τ = 0 for each
 ∈ T . From this, it readily follows thatf = 1
∞ · P
∞

(P
∞ ∈Πk) on each
∞ ∈ T−∞. Therefore, using thatf ∈Lp, we infer thatf = 0 a.e. Thus,‖ · ‖Bαkτ (T )
is a norm ifτ � 1 and a quasi-norm ifτ < 1.

Remark. The only difference between skinny B-spaces and slim B-spaces is that the local approxi
from continuous piecewise linear functions on setsΩ
, 
 ∈ T , is replaced by local polynomia
approximation on triangles fromT . The key is that the triangles fromT form a tree with respect to th
inclusion relation, while the setsΩ
,
 ∈ T do not form a tree; they overlap more significantly. This f
allows for developing the theory of the skinny B-spaces and their application to nonlinear (disconti
piecewise approximation (see Section 3.3) under less restrictive conditions on the triangulations,
for weak locally regular triangulations.

Next, we introduce two other equivalent “norms” inBαkτ (T ). Forf ∈Lloc
η (R

2), η > 0, we define

Nω,η(f,T ) :=
(∑

∈T

(|
|−α+ 1
τ
− 1
η ωk(f,
)η

)τ) 1
τ

=
(∑

∈T

(|
| 1
p− 1

η ωk(f,
)η
)τ) 1

τ

≈
(∑

∈T

(|
| 1
p− 1

η Ek(f,
)η
)τ) 1

τ

, (2.60)

where we used that 1/τ = α + 1/p. Clearly,Nω,τ (f,T )= ‖f ‖Bαkτ (T ).
For each
 ∈ T and η > 0, we letP
,η(f ) be a near bestLη(
)-approximation tof from Πk

with a constantA which is the same for all
 ∈ T (see (2.16)). Note that ifη � 1, thenP
,η(f )
can be realized as a linear projector into the space of polynomials of degree< k restricted on
. Let
Pm,η(f ) :=∑
∈Tm 1
 ·P
,η(f ). Clearly,Pm,η(f ) is a near bestLη-approximation tof from Skm(T ) and
a projector intoSkm(T ). We define

pm,η(f ) := pm,η(f,T ) := Pm,η(f )− Pm−1,η(f ) ∈ Skm(T ), (2.61)

and setp
,η(f ) := 1
 · pm,η(f ) for 
∈ Tm. We define

NP,η(f,T ) :=
(∑(|
|1/p−1/η‖p
,η(f )‖η

)τ)1/τ

. (2.62)


∈T
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Using Lemma 2.7, we obtain

NP,η(f,T )≈
(∑

∈T

(|
|−α∥∥p
,η(f )∥∥τ )τ)1/τ

≈
(∑

∈T

∥∥p
,η(f )∥∥τp)1/τ

. (2.63)

The following embedding theorem is pivotal for our theory of nonlinear piecewise polyno
approximation.

Theorem 2.17. If |{x: |f (x)| > s}| < ∞ for each s > 0 and NP,η(f,T ) <∞ (0 < η � ∞), then
f ∈ Lp(R2),

f =
∑
m∈Z

pm,η(f ) absolutely a.e. onR2 (2.64)

and unconditionally inLp, and

‖f ‖p �
∥∥∥∥∑
m∈Z

∣∣pm,η(f )∣∣∥∥∥∥
p

� cNP,η(f,T ) (2.65)

with c depending only onα, k, p, η, and the parameters ofT .

Proof. SinceT is a WLR-triangulation, the sequence{Φm} := {p
,η(f )}
∈T satisfies requirements (
and (ii) of Theorem 3.3 below. Therefore,∥∥∥∥∑


∈T

∣∣p
,η(f )∣∣∥∥∥∥
p

� c

(∑

∈T

∥∥p
,η(f )∥∥τp)1/τ

≈ cNP,η(f,T ) <∞. (2.66)

From this, similarly as in the proof of Theorem 2.15, it follows that for every
∞ ∈ T−∞ (see Lemma 2.1
there exists a polynomialP
∞ ∈Πk such that

f −P
∞ =
∑
m∈Z

pm,η(f ) absolutely a.e. on
∞.

Using that|{x: |f (x)|> s}|<∞ for s > 0 and (2.66), we inferP
∞ ≡ 0 and the theorem follows.✷
We next give the equivalence of the skinny B-norms introduced above.

Theorem 2.18. For eachf ∈ Bαkτ (T ), the norms‖f ‖Bαkτ (T ), Nω,η(f,T ) (0< η < p), andNP,η(f,T )
(0 < η < p) are equivalent with constants of equivalence depending only onα, k, p, η, and the
parameters ofT .

Proof. The proof of this theorem is similar to (but easier than) the one of Theorem 2.16 and w
omitted. The difference is that the role ofS
(f )µ is now played byωk(f,
)µ. See also the proof o
Theorem 2.20 below. ✷
Remark. The following simple example shows that, in general,Nω,η(f,T ) is not equivalent to‖f ‖Bαkτ (T )
if η � p. Let f := 1
 for some
 ∈ T . It is easily seen that‖f ‖Bαkτ (T ) ≈ |
|1/p = ‖f ‖p, while
Nω,η(f,T )=∞ if η� p.
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2.5. Fat B-spaces: The link to Besov spaces

Throughout this section, we assume thatT is an arbitrary strong locally regular triangulation ofR
2

(Section 2.1). We define thefat B-spaceBαkpq(T ), α > 0, 0<p,q �∞, k � 1, as the set of allf ∈Lp(R2)

such that

‖f ‖Bαkpq (T ) := ‖f ‖p +
(∑
m∈Z

[
2mα

( ∑

∈T ,2−m�|
|<2−m+1

ωk(f,Ω
)pp

)1/p]q)1/q

<∞,

whereΩ
 is defined in (2.9).
As in the previous sections, we shall focus our attention only on the scale of fat B-spaces

naturally occur in nonlinear approximation, namely, the spacesB
αk
τ (T ), whereα > 0, k � 1, 0< p <∞,

and 1/τ := α + 1/p. We define the spaceBαkτ (T ) as the set of all functionsf ∈Lp(R2) such that

‖f ‖Bαkτ (T ) :=
(∑

∈T

(|
|−αωk(f,Ω
)τ )τ)1/τ

<∞, (2.67)

which is a modification of the spaceBαkττ (T ) from above. By Whitney’s inequality (Lemma 2.6), we ha

‖f ‖Bαkτ (T ) ≈
(∑

∈T

(|
|−αEk(f,Ω
)τ )τ)1/τ

,

whereEk(f,Ω
)τ is the error ofLτ -approximation tof onΩ
 fromΠk (see (2.7)).
Note that the use ofΩ
 in the definition of‖f ‖Bαkτ (T ) is not crucial. It is almost obvious that, fo

instance,

‖f ‖Bαkτ (T ) ≈
(∑
θ∈Θ

(|θ |−αωk(f, θ)τ )τ)1/τ

.

It is critical, however, that the neighboring sets in the collections{Ω
}
∈T or {θ}θ∈Θ overlap significantly.
This makes the difference between the fat and skinny B-norms.

Clearly, forf ∈ Lτ(R2) and
 ∈ T , we have the inequalitiesE2(f,
)τ � S
(f,T )τ � E2(f,Ω
)τ ,
which yield the following comparison theorem.

Theorem 2.19. We have

‖f ‖Bαkτ (T ) � ‖f ‖Bαkτ (T )

and

‖f ‖Bα2
τ (T ) � c‖f ‖Bατ (T ) � c‖f ‖Bα2

τ (T ).

We next introduce another norm inBαkτ (T ). Forf ∈Lloc
η (R

2), η > 0, we define

Nω,η(f,T ) :=
(∑

∈T

(|
| 1
p− 1

η ωk(f,Ω
)η
)τ) 1

τ

≈
(∑

∈T

(|
| 1
p− 1

η Ek(f,Ω
)η
)τ) 1

τ

. (2.68)

Evidently,Nω,τ (f,T )= ‖f ‖Bαk(T ).
τ
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re
To prove the equivalence of‖f ‖Bαkτ (T ) andNω,η(f,T ) for 0< η < p, we need to introduce one mo
norm inB

αk
τ (T ). For every
∈ T , we letP
,η(f ) be a near bestLη-approximation tof onΩ
 fromΠk

with a constantA which is the same for allΩ
,
∈ T (see (2.16)). We define

Pm,η(f ) := Pm,η(f,T ) :=
∑

∈Tm

1
 · P
,η(f )

and

π
,η(f ) := 1Ω
 ·
(
Pm+1,η(f )− P
,η(f )

)
if 
∈ Tm.

The new norm is defined by

Nπ,η(f,T ) :=
(∑

∈T

(|
|1/p−1/η
∥∥π
,η(f )∥∥η)τ)1/τ

. (2.69)

Clearly, sinceT is an SLR-triangulation,

Nπ,η(f,T )≈
(∑

∈T

(|
|−α∥∥π
,η(f )∥∥τ )τ)1/τ

≈
(∑

∈T

∥∥π
,η(f )∥∥τp)1/τ

.

Theorem 2.20. For f ∈ B
αk
τ (T ), the norms‖f ‖Bαkτ (T ), Nω,η(f,T ) (0< η < p), and Nπ,η(f,T ) (0<

η < p), defined in(2.67)–(2.69)are equivalent with constants of equivalence depending only onα, p, k,
η, and the parameters ofT .

Proof. Using Hölder’s inequality and the properties of the SLR-triangulations, we readily obtain

Nω,η(f,T )� cNω,µ(f,T ), 0< η <µ. (2.70)

As we pointed out earlier,Nω,τ (f,T )= ‖f ‖Bαkτ (T ). Therefore, it suffices to show that

Nω,µ(f,T )≈Nπ,η(f,T ) for all 0<µ,η < p.

From the definition ofP
,η(f ) andπ
,η(f ), it follows that for any
′ ∈ Tm∥∥π
′,η(f )∥∥η � c
∥∥f − Pm+1,η(f )

∥∥
Lη(Ω
′ )

+ c∥∥f − P
′,η(f )
∥∥
Lη(Ω
′ )

� c
∑


∈Tm+1,
⊂Ω
′

∥∥f − P
,η(f )
∥∥
Lη(
) + cEk(f,Ω
′)η

� c
∑


∈Tm+1,
⊂Ω
′
Ek(f,Ω
)η + cEk(f,Ω
′)η.

Substituting this estimate in the definition ofNπ,η(f,T ) in (2.69), we easily obtain

Nπ,η(f,T )� cNω,η(f,T ), η > 0. (2.71)

We next prove that ifNπ,η(f,T ) <∞, η > 0, then

Nω,µ(f,T )� cNπ,η(f,T ), τ < µ< p. (2.72)

Evidently, (2.70)–(2.72) yield the theorem.
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3.

estimate
We introduce the following abbreviated notation:P
 := P
,η(f ), Pm := Pm,η(f ), andπ
 := π
,η(f ).
We also setρm := Pm+1−Pm andρ
 := 1
 · ρm = 1
 · π
 for 
∈ Tm. Evidently,‖ρ
‖p � ‖π
‖p, and,
hence,(∑


∈T
‖ρ
‖τp

)1/τ

�
(∑

∈T

‖π
‖τp
)1/τ

≈Nπ,η(f,T ) <∞.

It is readily seen that the sequence{Φm} := {ρ
}
∈T satisfies conditions (i) and (ii) of Theorem 3.
Therefore,

∑

∈T |ρ
(·)|<∞ a.e. onR2, and∥∥∥∥∑


∈T

∣∣ρ
(·)∣∣∥∥∥∥
p

� cNπ,η(f,T ). (2.73)

On the other hand, sincef ∈ Lloc
η (R

2), ‖f − Pm‖Lη(
)→ 0 asm→∞ for every
 ∈ T . Exactly as in
the proof of Theorem 2.15, it follows thatf − Pm+1 ∈Lp(R2) and

f − Pm+1=
∞∑

j=m+1

ρj absolutely a.e. onR2 (2.74)

and unconditionally inLp(R2). Now, fix 
′ ∈ Tn, n ∈ Z. SinceP
′ is a polynomial of degree< k on
Ω
′ , we have

ωk(f,Ω
′)µ = ωk(f − P
′,Ω
′)µ � c‖f − P
′‖Lµ(Ω
′ ). (2.75)

Using (2.75), (2.74), and Theorem 3.3 with{Φm} := {ρ
: 
 ∈ T ,
⊂Ω
′}, we obtain

ωk(f,Ω
′)τµ � c‖Pn+1− P
′‖τLµ(Ω
′ ) + c
∞∑

j=n+1

‖ρj‖τLµ(Ω
′ )

� c‖π
′‖τµ + c
∞∑

j=n+1

∥∥∥∥ ∑

∈Tj ,
⊂Ω
′

ρ

∥∥∥∥τ
µ

� c‖π
′‖τµ + c
∑


∈T ,
⊂Ω
′
‖ρ
‖τµ

� c
∑


∈T ,
⊂Ω
′
‖π
‖τµ � c

∑

∈T ,
⊂Ω
′

|
|τ ( 1
µ− 1

η )‖π
‖τη,

where we used Lemma 2.7 and the properties of the SLR-triangulations. Substituting the above
in the definition ofNω,µ(f,T ), we proceed as in the proof of Theorem 2.16, to obtain (2.72).✷
Comparison of regular B-spaces with Besov spaces.The Besov spaceBsq(Lp) = Bsq(Lp(R2)), s > 0,
1 � p,q �∞, is usually defined as the set of all functionsf ∈Lp(R2) such that

|f |Bsq(Lp) :=
( ∞∫

0

(
t−sωk(f, t)p

)q dt

t

)1/q

<∞ (2.76)

with theLq -norm replaced by the sup-norm ifq =∞, wherek := [s]+1 andωk(f, t)p is thekth modulus
of smoothness off in Lp(R2), i.e.,ωk(f, t)p := sup|h|�t ‖8kh(f, ·)‖p. The norm inBsq(Lp) is defined by

‖f ‖Bs (Lp) := ‖f ‖p + |f |Bs (Lp).
q q
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It is well known that ifk in (2.76) is replaced by any other integer> s, then the resulting space wou
be the same with an equivalent norm. However, the situation is different whenp < 1 (see [11]). For this
reason we introducek as an independent parameter of the Besov spaces in the next definition.

In this article, we are interested in nonlinear piecewise polynomial (spline) approximation inLp(R
2)

(0< p <∞). The Besov spacesB2α
τ (Lτ) with α > 0 and 1/τ := α + 1/p play a distinctive role in this

theory. Taking into account thatB2α
τ (Lτ ) is embedded inLp and the above observation regarding

independence ofk and the smoothness parameter, we naturally arrive at the following slightly mo
version of the Besov spaceB2α

τ (Lτ ).
Assuming that 0< p <∞, α > 0, k � 1, and 1/τ := α + 1/p, we define the Besov spaceB2α,k

τ (Lτ )

as the set of all functionsf ∈ Lp(R2) (in place off ∈Lτ ) such that

‖f ‖
B

2α,k
τ (Lτ )

:=
( ∞∫

0

(
t−2αωk(f, t)τ

)τ dt

t

)1/τ

<∞. (2.77)

Notice that the B-spaces and Besov spaces are normalized differently with respect to the smo
parameter. Thus, e.g., the fat B-spaceB

αk
τ (T ) corresponds to the Besov spaceB2α,k

τ (Lτ ).
From the properties ofωk(f, t)τ , it readily follows that:

‖f ‖
B

2α,k
τ (Lτ )

≈
(∑
m∈Z

(
22αmωk

(
f,2−m

)
τ

)τ)1/τ

. (2.78)

Next, we give an equivalent norm for the Besov spaceB2α,k
τ (Lτ ) in terms of local polynomia

approximation. We letD′m denote the set of all dyadic squaresI of the form

I =
[
ν − 1

2m
,
ν

2m

)
×
[
µ− 1

2m
,
µ

2m

)
, ν,µ ∈ Z,

and letD′′m be the set of all shifts ofI ∈D′m by the vectore := (2−m−1,2−m−1), i.e.,D′′m := {I + e: I ∈
D′m}. We denoteDm :=D′m ∪D′′m andD :=⋃m∈Z

Dm. We now introduce the following norm:

N(f ) :=
(∑
I∈D

(|I |−αωk(f, I )τ)τ)1/τ

≈
(∑
I∈D

(|I |−αEk(f, I )τ)τ)1/τ

, (2.79)

whereEk(f, I )τ is the error ofLτ(I )-approximation tof fromΠk .

Lemma 2.21. If f ∈ B2α,k
τ (Lτ ), then

N(f )≈ ‖f ‖
B

2α,k
τ (Lτ )

with constants of equivalence depending only onp, α, andk.

Proof. This lemma is well known and fairly easy to prove. Its proof hinges on the following equival

ωk(f, I )
τ
τ ≈

1

|I |
∫

[0, *(I )]2

∫
I

∣∣8kh(f, x, I )∣∣τ dx dh, (2.80)

where*(I ) := |I |1/2 and8kh(f, x, I ) :=
∑k

j=0(−1)k+j
(
k

j

)
f (x+jh) if [x, x+kh] ⊂ I and8kh(f, x, I ) :=

0 otherwise (see [13] for the proof of (2.80) in the univariate case; the same proof applies
multivariate case as well). (See also [15].)✷
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We next consider B-spaces over regular triangulations (see Section 2.1).

Theorem 2.22. If T ∗ is a regular triangulation thenBαkτ (T ∗)= B2α,k
τ (Lτ ) with equivalent norms.

Proof. This theorem is an immediate consequence of Lemma 2.21 and the following lemma.✷
Lemma 2.23. SupposeT ∗ is a regular triangulation with minimal angleβ > 0. Then there exist
i0= i0(β) such that the following hold:

(a) If I ∈Dm (m ∈ Z), then there exists
∈ T ∗ such thatI ⊂Ω
 and |
|� 2−2m+i0.
(b) If 
∈ T ∗ and2−2m � |
|< 2−2m+2, then there existsI ∈Dm−i0 such thatΩ
 ⊂ I .

Proof. The proof of this obvious lemma will be omitted.✷
Exactly as in the case of B-spaces, we introduce the following norm in the Besov spaceB2α,k

τ (Lτ ):

Nη(f ) :=
(∑
I∈D

(|I | 1
p− 1

η ωk(f, I )η
)τ) 1

τ

≈
(∑
I∈D

(|I | 1
p− 1

η Ek(f, I )η
)τ) 1

τ

(2.81)

which in integral form gives

Nη(f )≈
( ∞∫

0

∫
R2

[
t
2( 1
p− 1

η )ωk
(
f,Bt(x)

)
η

]τ
t−3 dx dt

) 1
τ

, (2.82)

whereBt(x) := {y ∈R
2: ‖y − x‖2 � t} or Bt(x) := {y ∈R

2: ‖y − x‖∞ � t}.
Proposition 2.24. The normsNη(·) with 0< η < p and‖ · ‖

B
2α,k
τ (Lτ )

are equivalent.

Proof. Using Lemma 2.23 as in the proof of Theorem 2.22, one can show thatNη(·)≈Nω,η(·,T ∗) if T ∗
is a regular triangulation. From Theorems 2.20 and 2.22, we obtain

Nω,η(·,T ∗)≈ ‖ · ‖Bαkτ (T ∗) ≈ ‖ · ‖B2α,k
τ (Lτ )

. ✷
Remark. This result is (in essence) well known, see [15] and the references therein. The equival
Nη(·) and‖ · ‖

B
2α,k
τ (Lτ )

clearly shows the intimate relation of B-spaces with Besov spaces.

Our last goal in this section is to find the range for the smoothness parameterα, where the Besov
B2α
τ -spaces coincide with the corresponding slim or skinny B-spaces over regular triangulations.

Theorem 2.25. SupposeT ∗ is a regular triangulation ofR2, 0< p <∞, andk � 1.

(a) If 0< α < 1+ 1/p and1/τ := α+ 1/p, thenf ∈ Bατ (T ∗) if and only iff ∈ B2α,2
τ (Lτ ), and

‖f ‖
B

2α,2
τ (Lτ )

≈ ‖f ‖Bατ (T ∗) (2.83)

with constants of equivalence depending only onp, α andβ = β(T ∗). This equivalence is no longe
true if α � 1+ 1/p. Moreover, for everyθ ∈Θ(T ∗) andα � 1+ 1/p, we have‖ϕθ‖B2α,2

τ (Lτ )
=∞,

while‖ϕθ‖Bα(T ∗) ≈ ‖ϕθ‖p.

τ
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(b) If 0< α < 1/p and1/τ := α+ 1/p, thenf ∈ Bα,kτ (T ∗) if and only iff ∈ B2α,k
τ (Lτ ), and

‖f ‖
B

2α,k
τ (Lτ )

≈ ‖f ‖Bαkτ (T ∗) (2.84)

with constants of equivalence depending only onk, p, α, andβ = β(T ∗). This equivalence is n
longer true ifα � 1/p. Moreover, for every
∈ T ∗ andα � 1/p, we have‖1
‖B2α,k

τ (Lτ )
=∞, while

‖1
‖Bαkτ (T ∗) ≈ ‖1
‖p.

Proof. (a) From Theorems 2.19 and 2.22, we have‖f ‖Bατ (T ∗) � c‖f ‖
B

2α,2
τ (Lτ )

for α > 0. We next show
that

‖f ‖
B

2α,2
τ (Lτ )

� c ‖f ‖Bατ (T ∗), if 0 < α < 1+ 1/p. (2.85)

Let f ∈ Bατ (T ∗). Then by Theorems 2.15 and 2.16, and (2.38), it follows thatf can be represented in th
form

f =
∑
θ∈Θ

bθϕθ absolutely a.e. onR2 (2.86)

and

‖f ‖Bατ (T ∗) ≈
(∑
θ∈Θ
‖bθϕθ‖τp

)1/τ

, (2.87)

whereΘ :=Θ(T ∗).
DenoteΞj := {θ ∈Θ: 2−2j � |θ |< 2−2(j−1)}. SinceT ∗ is regular, straightforward calculations sho

that, for eachθ ∈Θ ,

ω2(ϕθ , t)
τ
τ ≈

{ |θ |(1−τ )/2 · t1+τ , if 0 < t < |θ |1/2,
|θ |, if t � |θ |1/2,

and hence, forθ ∈Ξj andt > 0,

ω2(bθϕθ , t)
τ
τ ≈min

{‖bθϕθ‖τp · 2−j (α−1−1/p)τ t1+τ ,‖bθϕθ‖τp · 2−j2ατ}, (2.88)

where we used that 1/τ = α + 1/p.
Denotefj :=∑

θ∈Ξj bθϕθ . SinceT ∗ is regular, #{θ ∈ Ξj : x ∈ θ} � c(β) for x ∈ R
2 and j ∈ Z.

Therefore,

ω2(fj , t)
τ
τ � c

∑
θ∈Ξj

ω2(bθϕθ , t)
τ
τ , j ∈ Z. (2.89)

From (2.88) and (2.89), we derive that for any fixedm ∈ Z

ω2
(
fj,2

−m)τ
τ
� c

∑
θ∈Ξj

2−j (α−1−1/p)τ · 2−m(1+τ )‖bθϕθ‖τp, if j < m, (2.90)

and

ω2
(
fj,2

−m)τ
τ
� c

∑
θ∈Ξj

2−j2ατ‖bθϕθ‖τp, if j �m. (2.91)

Let λ :=min{τ,1}. Then, using (2.90) and (2.91), we have
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y

t

ω2
(
f,2−m

)λ
τ
�
∑
j∈Z

ω2
(
fj ,2

−m)λ
τ
� c

m−1∑
j=−∞

(∑
θ∈Ξj

2−j (α−1− 1
p )τ−m(1+τ )‖bθϕθ‖τp

) λ
τ

+ c
∞∑
j=m

(∑
θ∈Ξj

2−j2ατ‖bθϕθ‖τp
) λ

τ

.

Substituting this in (2.78), we obtain

‖f ‖τ
B

2α,2
τ (Lτ )

� c
∑
m∈Z

2m(α−1− 1
p
)τ

(
m∑

j=−∞

(
2−j (α−1− 1

p
)τ
∑
θ∈Ξj

‖bθϕθ‖τp
) λ

τ

) τ
λ

+ c
∑
m∈Z

2m2ατ

( ∞∑
j=m

2−j2ατ

(∑
θ∈Ξj

‖bθϕθ‖τp
) λ

τ

) τ
λ

,

where we used that 2ατ − τ −1= τ(α−1−1/p) since 1/τ = α+1/p. To estimate the above sums, w
use the well known discrete Hardy inequalities. Namely, we apply, e.g., the inequality from Lemm
of [13] to estimate the first sum and Lemma 3.4 from [7] to the second sum. We obtain

‖f ‖τ
B

2α,2
τ (Lτ )

� c
∑
j∈Z

∑
θ∈Ξj

‖bθϕθ‖τp � c‖f ‖τBατ (T ∗),

which completes the proof of (2.85).
Using (2.88), we obtain

‖ϕθ‖τ
B

2α,2
τ (Lτ )

:=
∞∫

0

(
t−2αω2(ϕθ , t)τ

)τ dt

t

≈ |θ |(1−τ )/2
|θ |1/2∫
0

t (−2α+1)τ dt + |θ |
∞∫

|θ |1/2
t−2ατ−1 dt

≈ |θ |(1−τ )/2
|θ |1/2∫
0

t (−2α+1)τ dt + |θ |τ/p.

Therefore,‖ϕθ‖B2α,2
τ (Lτ )

= ∞ if (−2α + 1)τ � −1 which is equivalent toα � 1 + 1/p, using that
1/τ = α + 1/p. It is easily seen that‖ϕθ‖Bατ (T ∗) ≈ ‖ϕθ‖p, which follows from the Bernstein inequalit
in Theorem 3.7 as well.

(b) Simple calculations show thatωk(1
, t)ττ ≈min{|
|1/2t, |
|} for 
 ∈ T ∗ and t > 0. The rest of
the proof is similar to the proof of part (a) and will be omitted.✷
Comparison between B-spaces over different triangulations and Besov spaces.SupposeT is an
arbitrary strong locally regular triangulation ofR

2 (Section 2.1) and 0< p <∞. It can be proved tha
there existsα0= α0(p,β,M0) > 0 such that if 0< α < α0 andf ∈ Bατ (T ) with 1/τ := α+ 1/p, then

‖f ‖Bα2(T ) � c‖f ‖Bα(T ).
τ τ



B. Karaivanov, P. Petrushev / Appl. Comput. Harmon. Anal. 15 (2003) 177–223 207

e proof

t

s

pace
anges

with
t

e
,
nt
e for

article
s can be
and fat
,
rictions
ding

omials

g the

(in this
We leave the proof of this result for elsewhere since it is much longer and more involved than th
of Theorem 2.25. Thus the fat B-norm‖f ‖Bα2

τ (T ) is equivalent to the slim B-norm‖f ‖Bατ (T ) for some
relatively small range 0< α < α0 and becomes much larger whenα � α0. The relationship between fa
and skinny B-spaces is quite similar. We skip the details.

It is essential for our theory that the Courant elementsϕθ , θ ∈ Θ(T ), have infinite smoothnes
(smoothness of orderα > 0 for everyα) in the slim B-space scaleBατ (T ). At the same time eachϕθ
has limited smoothnessα < α0 in the corresponding fat B-space scale.

If one compares aBατ -space over an arbitrary triangulation with the corresponding Besov s
B2α,k
τ (Lτ ) (or two B-spaces over different triangulations with each other), then everything ch

dramatically. As was shown in Section 2.1, there exist strong locally regular triangulations
extremely skinny Courant elements which cause problems to Besov spaces. More precisely, leϕθ be
the Courant element associated with a cellθ ∈ Θ which is convex, has lengthl > 0 and widthεl with
0 < ε < 1. Simple calculations show thatω2(ϕθ , t)

τ
τ ≈ min{ε−τ l1−τ t1+τ , εl2}. Furthermore, we hav

‖ϕθ‖B2α,2
τ (Lτ )

≈ ε−α‖ϕθ‖p if 0 < α < 1+ 1/p and‖ϕθ‖B2α,2
τ (Lτ )

=∞ if α � 1+ 1/p. At the same time
‖ϕθ‖Bατ (T ) ≈ ‖ϕθ‖p for eachα > 0. Therefore, even for smallα the Besov norm of a Courant eleme
can be huge in comparison to itsLp-norm. This is why the Besov spaces are completely unsuitabl
the theory ofn-term Courant element approximation in the case of nonregular triangulations.

B-spaces in dimensionsd �= 2. Slim, skinny, and fat B-spaces ind dimensions (d > 2) can be defined
and utilized similarly as in the two-dimensional case. We do not consider them in the present
simply to avoid some complications that are unnecessary at this point. Of course, the B-space
defined in the univariate case as well. However, it can be shown that the univariate slim, skinny,
B-spaces do not give anything better than the corresponding Besov spaces if 0< p <∞ and, therefore
are useless. The point is that in the univariate case the Bernstein inequality holds with no rest
on α > 0 (see [11]). In the case ofp =∞, however, the B-spaces are different from the correspon
Besov spaces.

3. Nonlinear piecewise polynomial approximation

In this section, we give our main results for nonlinearn-term approximation inLp(R2) (0< p <∞)
from: (a) Courant elements generated by LR-triangulations and (b) discontinuous piecewise polyn
over WLR-triangulations.

3.1. Nonlinearn-term approximation: General principles

We begin with a brief description of the general principles that will be guiding us in developin
theory of nonlinearn-term approximation by piecewise polynomials.

LetX be a normed or quasi-normed function space, where the approximation will take place
article,X = Lp(R2), 0< p <∞). SupposeΦ = {ϕθ }θ∈Θ is a collection of elements inX which is, in
general, redundant, and we are interested in nonlinearn-term approximation fromΦ. We letΣn denote
the nonlinear set of all functionS of the form

S =
∑

aθϕθ ,
θ∈Λn
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whereΛn ⊂Θ , #Λn � n, andΛn varies withS. The error ofn-term approximation tof ∈X from Φ is
defined by

σn(f ) := inf
S∈Σn

‖f − S‖X.
Our main objective in this article is to describe the spaces of functions of given rates ofn-term
approximation. More precisely, we want to characterize the approximation spaceA

γ
q := Aγq (Φ), γ > 0,

0< q �∞, consisting of all functionsf ∈X such that

‖f ‖Aγq := ‖f ‖X +
( ∞∑
n=1

(
nγ σn(f )

)q 1

n

)1/q

<∞ (3.1)

with the *q -norm replaced by the sup-norm ifq = ∞. ThusAγ∞ is the set of allf ∈ X such that
σn(f )� cn−γ .

To achieve our goals, we shall use the machinery of Jackson and Bernstein estimates plus inte
spaces. SupposeB ⊂ X is a smoothness space with a (quasi-)norm‖ · ‖B , satisfying theλ-triangle
inequality: ‖f + g‖λB � ‖f ‖λB + ‖g‖λB with 0< λ � 1 (in our case,B will be some B-space), and le
Φ ⊂ B. TheK-functional is defined by

K(f, t) :=K(f, t;X,B) := inf
g∈B
(‖f − g‖X + t‖g‖B), t > 0.

The interpolation space(X,B)µ,q (real method of interpolation) is defined as the set of allf ∈ X such
that

‖f ‖(X,B)µ,q := ‖f ‖X +
( ∞∑
m=0

[
2mµK

(
f,2−m

)]q)1/q

<∞, 0� µ� 1,

where the*q-norm is replaced by the sup-norm ifq =∞ (see, e.g., [3,4]).
The well known machinery of Jackson and Bernstein estimates allows to characterize the

n-term approximation fromΦ:

Theorem 3.1. (a) Suppose the following Jackson estimate holds: There isα > 0 such that forf ∈ B
σn(f )� cn−α‖f ‖B, n� 1. (3.2)

Then, forf ∈X,

σn(f )� cK
(
f,n−α

)
, n� 1. (3.3)

(b) Suppose the following Bernstein inequality holds: There isα > 0 such that

‖S‖B � cnα‖S‖X, for S ∈Σn, n� 1. (3.4)

Then, forf ∈X,

K
(
f,n−α

)
� cn−α

([
n∑
ν=1

1

ν

(
νασν(f )

)λ]1/λ

+ ‖f ‖X
)
, n� 1. (3.5)
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Proof. For the proof of this theorem see, e.g., [13].✷
An immediate consequence of Theorem 3.1 is that if the Jackson and Bernstein inequalitie

and (3.4) hold, thenσn(f ) = O(n−γ ), 0< γ < α, if and only ifK(f,n−α) = O(n−γ ). More generally,
Theorem 3.1 readily yields the following characterization of the approximation spacesA

γ
q (Φ):

Theorem 3.2. Suppose the Jackson and Bernstein inequalities(3.2) and (3.4) from Theorem3.1 hold.
Then

Aγq (Φ)= (X,B)γα ,q, 0< γ < α, 0< q �∞,
with equivalent norms.

General embedding theorem and Jackson estimate for nonlinearn-term approximation

Theorem 3.3. Suppose{Φm} is a sequence of functions inLp(Rd), d � 1, 0< p <∞, which satisfies
the following additional properties when1< p <∞:

(i) Φm ∈L∞(Rd), suppΦm ⊂Em with 0< |Em|<∞, and

‖Φm‖∞ � c1|Em|−1/p‖Φm‖p.
(ii) If x ∈Em, then∑

Ej"x, |Ej |�|Em|

( |Em|
|Ej |

)1/p

� c1,

where the summation is over all indicesj for which Ej satisfies the indicated conditions. Deno
(formally) f :=∑mΦm and assume that for some0< τ < p

N(f ) :=
(∑

m

‖Φm‖τp
)1/τ

<∞. (3.6)

Then
∑

m |Φm(·)|<∞ a.e. onR
d , and hence,f is well defined onRd , f ∈Lp(Rd), and

‖f ‖p �
∥∥∥∥∑
m

∣∣Φm(·)∣∣∥∥∥∥
p

� cN(f ), (3.7)

wherec= c(α,p, c1).
Furthermore, if1� p <∞, condition(3.6)can be replaced by the weaker condition

N(f ) := ∥∥{‖Φm‖p}∥∥w*τ <∞, (3.8)

where‖{xm}‖w*τ denotes the weak*τ -norm of the sequence{xm}:∥∥{xm}∥∥w*τ := inf
{
M: #

{
m: |xm|>Mn−1/τ

}
� n for n= 1,2, . . .

}
. (3.9)

Theorem 3.4. Under the hypothesis of Theorem3.3, suppose{Φ∗m}∞j=1 is a rearrangement of the sequen
{Φm} such that‖Φ∗1‖p � ‖Φ∗2‖p � · · · . DenoteSn :=∑n

j=1Φ
∗
j . Then

‖f − Sn‖p � cn−αN(f ) with α = 1/τ − 1/p, (3.10)
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wherec= 1 if 0< p � 1 andc= c(α,p, c1) if 1<p <∞.
Furthermore, the estimate remains valid if condition(3.6) is replaced by(3.8)when1 � p <∞.

Proof of Theorems 3.3 and 3.4. CaseI: 0< p < 1. Sinceτ < p, we have∥∥∥∥∑
m

∣∣Φm(·)∣∣∥∥∥∥
p

�
(∑

m

‖Φm‖pp
)1/p

�
(∑

m

‖Φm‖τp
)1/τ

=N(f )

which proves Theorem 3.3 in this case. To estimate‖f − Sn‖p we shall use the following simpl
inequality: Ifx1 � x2 � · · ·� 0 and 0< τ < p, then( ∞∑

j=n+1

x
p

j

)1/p

� n1/p−1/τ

( ∞∑
j=1

xτj

)1/τ

. (3.11)

The proof of this inequality is given in Appendix B. Applying (3.11) withxj := ‖Φ∗j ‖p, we obtain

‖f − Sn‖p �
∥∥∥∥∥

∞∑
j=n+1

∣∣Φ∗j (·)∣∣
∥∥∥∥∥
p

�
( ∞∑
j=n+1

∥∥Φ∗j ∥∥pp
)1/p

� n1/p−1/τ

( ∞∑
j=1

∥∥Φ∗j ∥∥τp
)1/τ

= n−αN(f ),

which proves Theorem 3.4 in Case I.
CaseII: 1 � p <∞. We need the following lemma.

Lemma 3.5. LetF :=∑j∈Jn |Φj |, where#Jn � n, and‖Φj‖p � L for j ∈ Jn. Then

‖F‖p � cLn1/p

with c= c(p, c1).

Proof. Let 1< p <∞ (the casep= 1 is trivial). Using property (i) of the sequence{Φm}, we have

‖F‖p �
∥∥∥∥∑
j∈Jn

‖Φj‖∞ · 1Ej (·)
∥∥∥∥
p

� cL
∥∥∥∥∑
j∈Jn

|Ej |−1/p · 1Ej (·)
∥∥∥∥
p

.

We defineE :=⋃j∈Jn Ej andE(x) :=min{|Ej | andj ∈ Jn andEj " x} for x ∈ E. Property (ii) yields∑
j∈Jn |Ej |−1/p · 1Ej (x)� c1E(x)−1/p for x ∈R

2. Therefore,

‖F‖p � cL
∥∥E(·)−1/p

∥∥
Lp
= cL

(∫
E

E(x)−1 dx

)1/p

� cL

(∑
j∈Jn

|Ej |−1
∫

1Ej (x)dx

)1/p

= cL(#Jn)1/p � cLn1/p. ✷

R2
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We defineΞµ := {j and 2−µN(f ) � ‖Φj‖p < 2−µ+1N(f )}. Then
⋃
ν�µΞν = {j and ‖Φj‖p �

2−µN(f )} and hence, using (3.6) or (3.8), we derive∑
ν�µ

#Ξν = #

(⋃
ν�µ

Ξν

)
� 2µτ . (3.12)

Therefore,

#Ξµ �
∑
ν�µ

#Ξν � 2µτ . (3.13)

We denoteM :=∑µ�m #Ξµ. By (3.12),M � 2mτ . LetFµ :=∑j∈Ξµ |Φj |. Using Lemma 3.5 and (3.13
we obtain

‖f − SM‖p �
∥∥∥∥∥

∞∑
µ=m+1

Fµ

∥∥∥∥∥
p

�
∞∑

µ=m+1

‖Fµ‖p

� c
∞∑

µ=m+1

2−µN(f )(#Ξµ)1/p � cN(f )

∞∑
µ=m+1

2−µ(1−τ/p)

= cN(f )2−m(1−τ/p) � cM−1/τ+1/pN(f )= cM−αN(f ).

This estimate readily implies (3.10). Evidently, (3.7) is also contained in the above result (takeSM := 0).
This completes the proofs of Theorems 3.3 and 3.4.✷

As will be seen in Sections 3.2 and 3.3, Theorem 3.4 easily gives the needed Jackson estim
piecewise polynomial approximation (see Theorems 3.6 and 3.10). However, there is no simple
for proving Bernstein estimates (see Appendix A).

3.2. Nonlinearn-term Courant element approximation

In this section, we assume thatT is a locally regular triangulation ofR2. We denote byΦT the
collection of all Courant elementsϕθ generated byT (see Section 2.1). Notice thatΦT is not a basis;ΦT
is redundant. We consider the nonlinearn-term approximation inLp(R2) (0< p <∞) from ΦT . Our
main goal is to characterize the approximation spaces generated by this approximation. We letΣ̃n(T )
denote the nonlinear set consisting of all continuous piecewise linear functionsS of the form

S =
∑
θ∈Λn

aθϕθ ,

whereΛn ⊂ Θ(T ), #Λn � n, andΛn may vary withS. We denote byσ̃n(f,T )p the error ofLp-
approximation tof ∈ Lp(R2) from Σ̃n(T ):

σ̃n(f,T )p := inf
S∈Σ̃n(T )

‖f − S‖p.

Throughout this section, we assume that 0< p <∞, α > 0, and 1/τ := α+ 1/p, and denote byBατ (T )
the slim B-space introduced in Section 2.3. We next prove a pair of companion Jackson and B
estimates.
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Theorem 3.6 (Jackson estimate).If f ∈ Bατ (T ), then

σ̃n(f,T )p � cn−α‖f ‖Bατ (T ) (3.14)

with c depending only onα, p, and the parameters ofT .

Remark. Estimate (3.14) remains valid if‖f ‖Bατ (T ) is replaced by‖{‖bθϕθ‖p}‖w*τ with {bθ } from (2.32)
or (2.33) as in the definition ofNQ,τ (f ) (see (2.34)), where‖ · ‖w*τ is the weak*τ -norm defined in (3.9)

Proof. By Theorem 2.15, it follows that:

f =
∑
θ∈Θ

bθ (f )ϕθ absolutely a.e. onR2,

where{bθ } are from (2.32) or (2.33). We use Theorem 3.4, (2.38), and Theorem 2.16 to obtain

σ̃n(f,T )p � cn−α
(∑
θ∈Θ

∥∥bθ (f )ϕθ∥∥τp)1/τ

≈ cn−αNQ,τ (f )≈ cn−α‖f ‖Bατ (T ). ✷

Theorem 3.7 (Bernstein estimate).If S ∈ Σ̃n(T ), then

‖S‖Bατ (T ) � cnα‖S‖p (3.15)

with c depending only onα, p, and the parameters ofT .

The proof of this theorem is more involved than the one of Theorem 3.6. We shall give
Appendix A.

We denote byÃγq := Ã
γ
q (Lp,T ) the approximation space generated byn-term Courant elemen

approximation (see (3.1)). The Jackson and Bernstein estimates from Theorems 3.6 and 3.7 y
following characterization of the approximation spacesÃ

γ
q (Lp,T ) (see Theorem 3.2):

Theorem 3.8. If 0< γ < α and0< q �∞, then

Ãγq (Lp,T )=
(
Lp,B

α
τ (T )

)
γ
α ,q

with equivalent norms.

“Algorithm” for nonlinear n-term Courant element approximation.One of our primary motivations fo
this work was the development of methods forn-term Courant element approximation which capture
rates of the best approximation. The proofs of Theorems 3.3 and 3.6 suggest the following approx
scheme, where we assume thatf ∈ Lp(R2), 1< p <∞, andT is a fixed LR-triangulation ofR2:

Step1. We use the operatorsqm(f ) := qm(f,T ) induced by the quasi-interpolant (see (2.31)) to fi
the following decomposition off :

f =
∑
m∈Z

qm(f )=
∑
m∈Z

∑
θ∈Θm

bθ(f )ϕθ ,

where{bθ(f )} are defined by (2.32) and the identity was established by Theorem 2.15.
Step2. We order the terms{bθ(f )ϕθ }θ∈Θ in a sequence{bθj (f )ϕθj }∞ such that
j=1
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∥∥bθ1(f )ϕθ1∥∥p �
∥∥bθ2(f )ϕθ2∥∥p � · · · .

Then we define then-term approximant by

Ãn(f )p = Ãn(f,T )p :=
n∑
j=1

bθj (f )ϕθj .

This procedure becomes practically feasible in the setting of approximation of functions defin
compact polygonal domains.

By Theorem 3.4, it follows that:∥∥f − Ãn(f )p∥∥p � cn−α‖f ‖Bατ (T ).
If 0 < p� 1, we use the more complicated nonlinear operatorstm,η(f ) (η < p) from (2.31) instead o

qm(f ) and the coefficientsbθ (f ) := bθ,η defined in (2.33). The same estimate for the error holds a
by Theorem 3.4.

These results imply that the above algorithm achieves the rates of the bestn-term Courant elemen
approximation. We shall further elaborate on this in a forthcoming article.

n-term approximation from the library{ΦT }. We denote bỹσn(f )p the error ofn-term approximation
to f ∈Lp(R2) from the best Courant element collection, i.e.,

σ̃n(f )p := inf
T
σ̃n(f,T )p,

where the infimum is taken over all LR-triangulationsT with some fixed parametersM0,N0, r , ρ, andδ.
The following result is immediate from Theorem 3.6.

Theorem 3.9. SupposeinfT ‖f ‖Bατ (T ) <∞, where the infimum is taken over all LR-triangulations w
some fixed parametersM0, N0, r , ρ, andδ, and letf ∈Lp(R2). Then

σ̃n(f )p � cn−α inf
T
‖f ‖Bατ (T ),

wherec depends onα, p, and the parametersM0,N0, r, ρ, δ.

It is anopen problemto characterize the rates of approximation generated by{σ̃n(f )p}. The difficulty
stems from the highly nonlinear structure of approximation from the library{ΦT }T .

3.3. Nonlinear approximation from (discontinuous) piecewise polynomials

In this section, we assume thatT is a weak locally regular triangulation ofR
2 (Section 2.1). We denot

byΣk
n(T ), k � 1, the nonlinear set of alln-term piecewise polynomial function of the form

S =
∑

∈Λn

1
 · P
,

whereP
 ∈ Πk , Λn ⊂ T , #Λn � n, andΛn may vary withS. We denote byσn(f,T )p the error of
Lp-approximation tof ∈ Lp(R2) fromΣk

n(T ):
σn(f,T )p := inf

k
‖f − S‖p.
S∈Σn(T )
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We want to characterize the approximation spaces generated byσn(f,T )p. To this end we shal
proceed according to the recipe from Section 3.1. We shall first prove Jackson and Bernstein es
Throughout the rest of the section, we assume that 0<p <∞, k � 1,α > 0, and 1/τ = α+1/p. Recall
thatBα,kτ (T ) denotes for the skinny B-space introduced in Section 2.4.

Theorem 3.10 (Jackson estimate).If f ∈ Bαkτ (T ), then

σn(f,T )p � cn−α‖f ‖Bαkτ (T )
with c depending only onp, α, k, and the parameters ofT .

Remark. The conclusion of Theorem 3.10 remains valid if‖f ‖Bαkτ (T ) is replaced by the weak*τ -norm
‖{p
,η(f )}
∈T ‖w*τ of the sequence{p
,η(f )}
∈T , 0< η < p, defined in (2.61) (see also (3.9) for t
definition of‖ · ‖w*τ ).
Proof. By Theorem 2.17, we havef = ∑


∈T p
 absolutely a.e. onR
2 and ‖f ‖Bαkτ (T ) ≈

(
∑

∈T ‖p
‖τp)1/τ , wherep
 := p
,η(f ) (0< η < p) are from (2.61). Evidently, the sequence{Φj } :=

{p
}
∈T satisfies the requirements of Theorem 3.3 and, therefore,

σn(f,T )p � cn−α
(∑

∈T

‖p
‖τp
)1/τ

� cn−α‖f ‖Bαkτ (T ). ✷

Theorem 3.11 (Bernstein estimate).If S ∈Σk
n(T ), then

‖S‖Bαkτ (T ) � cnα‖S‖p (3.16)

with c depending only onp, α, k, and the parameters ofT .

We shall give the proof of this theorem together with the proof of Theorem 3.7 in Appendix A.
Now, we denote byAγq := Aγq (Lp,T ) the approximation space generated by{σn(f,T )p} (see (3.1)).

The following characterization of the approximation spacesA
γ
q follows by Theorems 3.10 and 3.11 (s

Theorems 3.1 and 3.2):

Theorem 3.12. If 0< γ < α and0< q �∞, then

Aγq (Lp,T )=
(
Lp,Bαkτ (T )

)
γ
α ,q

with equivalent norms.

Similarly as in the previous section, we set

σn(f )p := inf
T
σn(f,T )p,

where the infimum is taken over all WLR-triangulationsT with some fixed parametersr andρ. The
following result is immediate from Theorem 3.10.

Theorem 3.13. SupposeinfT ‖f ‖Bαkτ (T ) <∞, where the infimum is taken over all WLR-triangulatio
with some fixed parametersr andρ, and letf ∈Lp(R2). Then
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σn(f )p � cn−α inf
T
‖f ‖Bαkτ (T ).

It is anopen problemto characterize the rates of approximation generated by{σn(f )p}.

“Algorithm” for nonlinear n-term piecewise polynomial approximation.We assume thatf ∈ Lp(R2),
0< p <∞, andT is an arbitrary WLR-triangulation ofR2. The proofs of Theorems 3.3 and 3.10 sugg
the following approximation scheme:

Step1. We use the local polynomial approximation to obtain the following decomposition off :

f =
∑
m∈Z

pm,η(f )=
∑

∈T

p
,η(f ),

wherep
,η(f )= 1
 · pm,η(f ) if 
∈ Tm, andη < p (see Theorem 2.17).
Step2. We order the terms{p
,η(f )}
∈T in a sequence{p
j ,η(f )}∞j=1 such that∥∥p
1,η(f )

∥∥
p

�
∥∥p
2,η(f )

∥∥
p

� · · · .
Then we define then-term approximant by

An(f )p =An(f,T )p :=
n∑
j=1

p
j ,η(f ).

By Theorem 3.10 and its proof, it follows that, forf ∈ Bαkτ (T ),∥∥f −An(f )p∥∥p � cn−α‖f ‖Bαkτ (T ).

Haar bases generated by general triangulations.An important point in this article is that we car
out here nonlinearn-term approximation without using bases. In the exceptional case of non
approximation from piecewise constants, however, Haar bases can be constructed and util
nonlinearn-term approximation inLp, 1< p <∞. To make it simple, suppose thatT is a weak
locally regular triangulation ofR2 which is obtained by the standard refinement scheme describ
Section 2.1: Every triangle
 ∈ T has four children obtained by choosing a point on each edge

and joining these points by line segments. Denote by
1, . . . ,
4 the children of
 so that
4 is the
triangle in the middle (with its vertices on the three edges of
). We associate with
 the following three
Haar functions:H
,1 := |
1|−11
1 − |
 \ 
1|−11
\
1, H
,2 := |
2|−11
2 − |
3 ∪ 
4|−11
3∪
4, and
H
,3 := |
3|−11
3−|
4|−11
4. The way we order the children of
 is not important. Clearly,1
,H
,1,
H
,2, andH
,3 form an orthogonal system which spans the set of all piecewise constants over{
j }4j=1.
Then

HT := {H
,1,H
,2,H
,3}
∈T
is a Haar basis associated withT . It is easily seen thatHT is an orthogonal basis inL2(R

2). It can be
proved by a standard technique thatHT is an unconditional basis forLp(R2), 1< p <∞, and thatHT
characterizes the skinnyBα,1τ (T )-norm,α > 0, 1/τ = α + 1/p. As a consequence, the nonlinearn-term
Lp-approximation fromHT can be characterized as above (compare with [12]). We skip the deta
these results.
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3.4. Conclusions and open problems

We bring forward again the fundamental question of how to measure the smoothness of the fu
There is a close connection between sparsity of representation and smoothness of functions tha
wish to discuss here. As we mentioned in Section 1, we believe that in highly nonlinear approxi
as well as in some other nonlinear problems the smoothness of the functions should not be m
using a single space scale (like Besov spaces) but by a family (library) of suitable space sca
explain this concept more precisely we return ton-term Courant element approximation considered
Section 3.2. For this type of approximation, a functionf should naturally be considered of smoothn
order α > 0 if infT ‖f ‖Bατ (T ) <∞, which means that there exists an LR-triangulationTf such that
‖f ‖Bατ (Tf ) <∞. Then the rate of then-termLp-approximation off from the library{ΦT } is at least
O(n−α). It is an open problemto develop effective procedures that: (a) determine (or estimate
maximal smoothnessα of a given functionf and (b) for a given functionf , find an LR-triangulation
Tf such that‖f ‖Bατ (Tf ) ≈ infT ‖f ‖Bατ (T ). Another relatedopen problemis to determine whether for eac
function f ∈ Lp there exists a single LR-triangulationTf such that then-termLp-approximation off
from the library{ΦT } can be characterized using the B-spacesBατ (Tf ).

An important issue for discussion is the smoothness of the approximating toolΦT := {ϕθ }θ∈Θ(T ).
Clearly, in nonlinear approximation, there is no saturation, which means that the corresp
approximation spacesAγq are nontrivial for all 0< γ <∞. Therefore, the smoothness spaces to
used should naturally be designed so that the basis functions{ϕθ } are infinitely smooth. This wa
one of the guiding principles to us in constructing the B-spaces. For instance, the Courant e
{ϕθ }θ∈Θ(T ) are infinitely smooth with respect to theBατ (T ) space scale, namely,‖ϕθ‖Bατ (T ) � c‖ϕθ‖p
for 0< α <∞ (see Section 2.3). This makes it possible that our direct, inverse, and character
theorems impose no restrictions on the rate of approximation 0< α <∞ (see Sections 3.2 and 3.3
Also, this explains the complete success of Besov spaces in the univariate nonlinear piecewise po
(spline) approximation inLp (p <∞). The important fact is that, any univariate piecewise polynom
(with finitely many pieces) is infinitely smooth with respect to the corresponding Besov spaces
precisely, for univariate discontinuous piecewise polynomials, the Bernstein inequality holds w
any restriction on the smoothness parameterα (0< α <∞) if p <∞ (see Theorem 2.2 from [11]
In dimensionsd > 1, however, the situation is totally different. Even for nonlinear approximation f
regular piecewise polynomials (piecewise polynomials generated by regular triangulations, in our
the Besov spaces are not exactly the right smoothness spaces. Namely, the Besov spaces coincid
right smoothness spaces only for some range of the smoothness parameterα. For instance, for nonlinea
n-termLp-approximation from Courant elements generated by a regular triangulation ofR

2, the Besov
spacesB2α,2

τ (Lτ ), 1/τ := α + 1/p, 0< p <∞, are the right spaces only for 0< α < 1+ 1/p. In the
case of discontinuous piecewise polynomial approximation, the range is 0< α < 1/p (see Section 2.5)
For the same reason, the fat B-spaces (Section 2.5) are not exactly the right spaces for charac
of n-term Courant element approximation over general triangulations.

In nonlinearn-term approximation, it is natural to work with bases. Except for the simplest
of n-term piecewise constant approximation (see the end of Section 3.3), we are not aware
(unconditional) bases forLp(R2) (1< p <∞) and the B-spaces over general triangulations. Howe
as was shown in the previous sections there are equally powerful means to tackle the pr
Namely, using simple projectors into subspaces of piecewise polynomials, one can get suffi
sparse representations of the functions, which allow to capture the rates of the best nonlinearn-term
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ooth

of the

d
d
:

l

h

t

spline approximation. It is anopen problemto construct good bases consisting of continuous or sm
compactly supported piecewise polynomials (or other functions) over general triangulations.

Methods and algorithms for piecewise polynomial approximation are in demand. This was one
primary motivations for this work.

Appendix A

A.1. Proof of the Bernstein estimates

In this appendix, we prove Theorems 3.7 and 3.11. We recall our assumptions: 0< p <∞, α > 0, and
τ := (α + 1/p)−1.

Tree structure inT generated byΛ⊂ T . SupposeT is a multilevel triangulation (WLR or better), an
letΛ⊂ T and #Λ<∞. The setΛ induces a tree structure inT that we want to bring forward here an
utilize in the proof later on. We shall use the parent–child relation inT induced by the inclusion relation
Each triangle
∈ Tm has (contains)�M0 children inTm+1 and has a single parent inTm−1.

Let Γ0 be the set of all
 ∈ T such that
 ⊃ 
′ for some
′ ∈ Λ. We denote byΓb the set of all
branching trianglesin Γ0 (triangles with more than one child inΓ0) and byΓ ′b the set of allchildren inT
of branching triangles(each of them may or may not belong toΓ0). Now, we extendΓ0 toΓ := Γ0∪Γ ′b.
We also extendΛ to Λ̃ := Λ ∪ Γb ∪ Γ ′b. In addition, we introduce the following subsets ofΓ : Γf the
set of allfinal triangles in Γ (triangles inΓ containing no other triangles inΓ ) andΓch := Γ \ Λ̃ the
set of allchain triangles. Note that each triangle
 ∈ Γch has exactly one child inΓ . Since the fina
triangles inΓ0 belong toΛ, then #Γb � #Λ and hence #Γ ′b �M0#Γb � c#Λ, #Γf � #Λ+ #Γ ′b � c#Λ,
and #Λ̃� #Λ+ #Γb+ #Γ ′b � c#Λ. Note that #Γch can be uncontrolably larger than #Λ.

We next introduce chains inΓch. By definitionλ= {
1, . . . ,
*} ⊂ Γch (*� 1) is afinite chainin Γch if

′′λ ⊃
1⊃ · · · ⊃ 
* ⊃
′λ for some
′λ,
′′λ ∈ Λ̃,
1 is a child of
′′λ,
j is a child of
j−1, j = 2, . . . , *,
and
′λ is a child of
*. Notice that
′′λ /∈ Γb and hence
1 is the only child of
′′λ in Γ . We letL denote
the set of all finite chains inΓch. Also, by definitionλ= {. . . ,
−2,
−1} ⊂ Γch is aninfinite chainin Γch

if we have· · · ⊃ 
−2⊃
−1⊃
′λ for some
′λ ∈ Λ̃,
j is a child of
j−1, j =−1,−2, . . ., and
′λ is a
child of
−1. We letL∞ denote the set of all infinite chains inΓch. Clearly,L ∪L∞ consists of disjoint
chains of triangles,Γch=⋃λ∈L∪L∞ λ, and #(L ∪L∞)� #Λ̃.

Finally, we use the above sets to introducerings generated byΛ̃. First, for each
 ∈ Γ \ (Γb ∪ Γf),
we denote by
̃ (
̃ �= 
) the unique largest triangle from̃Λ contained in
. We associate with eac

 ∈ Γ \ (Γb∪ Γf) a ringK
 defined byK
 := 
 \ 
̃. Also, we defineK
 := 
 if 
 ∈ Γf andK
 := ∅
if 
 ∈ Γb ∪ (T \ Γ ). Notice that if
 ∈ λ for someλ ∈ L ∪ L∞, then
̃ = 
′λ. It is readily seen tha
K◦
′ ∩K◦
′′ = ∅ if 
′,
′′ ∈ Λ̃ and
′ �= 
′′,


=
⋃


′∈Λ̃,
′⊂

K
′ for 
∈ Λ̃, (A.1)

and hence⋃
˜

 =

⋃
′ ˜
K
′ . (A.2)

∈Λ 
 ∈Λ



218 B. Karaivanov, P. Petrushev / Appl. Comput. Harmon. Anal. 15 (2003) 177–223
For the proof of both theorems, we need the following lemma.

Lemma A.1. SupposeS =∑
∈Λ 1
 ·P
, whereP
 ∈Πk (k � 1),Λ⊂ T with T a WLR-triangulation,
and#Λ<∞. Then(∑


∈Λ
|
|−ατ‖S‖τLτ (
)

)1/τ

� c(#Λ)α‖S‖p

with c depending only onp, α, and the parameters ofT .

Proof. We adopt all necessary notation from “Tree structure inT generated byΛ⊂ T ” developed above
with T andΛ from the hypotheses of the lemma. We may assume that

S =
∑

∈Λ̃

1
 · P
.

It is an important observation thatS is a polynomial of degree< k on each ringK
 = 
 \ 
̃. Hence,
using Lemma 2.7,

‖S‖Lτ (K
) ≈ |K
|1/τ−1/p‖S‖Lp(K
) ≈ |
|α‖S‖Lp(K
). (A.3)

We shall also need the obvious estimate (see (2.1)):∑

∈Γ,
⊃
′

( |
′|
|
|

)γ
� c(ρ, γ ) <∞, γ > 0. (A.4)

We use (A.1)–(A.4) to obtain∑

∈Λ̃

|
|−ατ‖S‖τLτ (
) =
∑

∈Λ̃

|
|−ατ
∑


′∈Λ̃,
′⊂

‖S‖τLτ (K
′ )

=
∑

′∈Λ̃

‖S‖τLτ (K
′ )
∑


∈Λ̃,
⊃
′
|
|−ατ

�
∑

′∈Λ̃

‖S‖τLτ (K
′ )|
′|−ατ
∑


∈Γ,
⊃
′

( |
′|
|
|

)ατ

� c
∑

′∈Λ̃

‖S‖τLp(K
′ ) � c
(∑

′∈Λ̃

‖S‖pLp(K
′ )
)τ/p

(#Λ̃)1−τ/p � c(#Λ)ατ‖S‖τp,

where we once switched the order of summation and applied Hölder’s inequality.✷
Proof of Theorem 3.7. Let S ∈ Σ̃n(T ) with T an LR-triangulation and suppose thatS =:∑θ∈M cθϕθ ,

whereM⊂Θ(T ) and #M � n. LetΛ be the set of all triangles
∈ T which are involved in allθ ∈M.
ThenS =∑
∈Λ S
, whereS
 =: 1
 · P
, P
 ∈Π2. Evidently, #Λ � N0#M � cn. For the rest of the
proof, we adopt all the notation from “Tree structure inT generated byΛ⊂ T ”, given in the beginning
of this appendix, withT andΛ from the above. In addition, we denote
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h

X ∗
m := {
 ∈ Tm: 
⊂Ω
′ for some
′ ∈ Λ̃∩ Tm},

X ∗∗
m := {
 ∈ Tm: 
⊂Ω2


′ for some
′ ∈ Λ̃∩ Tm}, where for
∈ Tm,

Ω
 :=
⋃
{
′ ∈ Tm: 
′ ∩
 �= ∅} and Ω2


 :=
⋃
{
′ ∈ Tm: 
′ ∩Ω
 �= ∅}.

Also, we denoteX ∗ :=⋃m∈Z
X ∗
m andX ∗∗ :=⋃m∈Z

X ∗∗
m . Evidently, we have #X ∗ � 3N0#Λ̃ � cn and

#X ∗∗ � 3N2
0#Λ̃� cn.

Form ∈ Z, we denoteSm :=∑θ∈M, level(θ)�m cθϕθ . Clearly,Sm ∈ S̃m and, therefore, for
 ∈ Tm,

S
(S)τ = S
(S − Sm)τ � ‖S − Sm‖Lτ (Ω
). (A.5)

We shall also use the obvious inequalityS
(S)τ � ‖S‖Lτ (Ω
).
Next, we estimate‖S‖τ

Bατ (T ) :=
∑

∈T |
|−ατS
(S)ττ by splitting upT into two subsets, namely,X ∗

andT \X ∗.
(i) If 
∈X ∗

m, then
⊂Ω
′ for some
′ ∈ Λ̃∩ Tm and henceΩ
 ⊂Ω2

′ . From this, we find

S
(S)ττ � ‖S‖τLτ (Ω
) =
∑


N∈Tm,
N⊂Ω

‖S‖τLτ (
N) �

∑

N∈Tm,
N⊂Ω2


′

‖S‖τLτ (
N)

and hence, using (2.2),

|
|−ατS
(S)ττ � c
∑


N∈Tm,
N⊂Ω2

′

|
N|−ατ‖S‖τLτ (
N).

Therefore,∑

∈X ∗

m

|
|−ατS
(S)ττ � c
∑

∈X ∗∗

m

|
|−ατ‖S‖τLτ (
)

and, summing overm ∈ Z, we find∑

∈X ∗

|
|−ατS
(S)ττ � c
∑

∈X ∗∗

|
|−ατ‖S‖τLτ (
) � c(#X ∗∗)ατ‖S‖τp � cnατ‖S‖τp, (A.6)

where we applied Lemma A.1 toS withΛ replaced byX ∗∗ which is legitimate sinceX ∗∗ ⊃Λ and hence
S has the required representation.

(ii) Let 
∈ Tm \X ∗
m. ThenΩ
 =:⋃n


j=1
j for some
j ∈ (Γch∩Tm)∪ (Tm \Γ ), j = 1, . . . , n
, with
n
 � 3N0. We have, using (A.5),

S
(S)ττ = S
(S − Sm)ττ �
n
∑
j=1

‖S − Sm‖τLτ (
j ). (A.7)

Note that if
j ∈ Tm \ Γ , thenS|
j = Sm|
j and hence‖S − Sm‖Lτ (
j ) = 0.
Suppose
j ∈ Γch∩ Tm. It is an important observation that, in this case,S|K
j = Sm|K
j = 1K
j · P
j

andSm|
j = 1
j · P
j , for someP
j ∈Π2, whereK
j := 
j \ 
̃j (
̃j ∈ Λ̃) is the ring associated wit

j . Using this, we find

‖S − Sm‖τLτ (
j ) = ‖S − Sm‖τLτ (
̃j ) � c‖S‖
τ

Lτ (
̃j ) + c‖P
j ‖
τ

Lτ (
̃j )
� c‖S‖τ ˜ + c|
̃j ||
j |ατ−1‖S‖τL (K ). (A.8)
Lτ (
j ) p 
j
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For the last inequality in (A.8) we used that

‖P
j ‖τLτ (
̃j ) � |
̃j |‖P
j ‖
τ
L∞(
j ) � c|
̃j |‖P
j ‖τL∞(K
j )

� c|
̃j ||
j |−τ/p‖P
j ‖τLp(K
j ) � c|
̃j ||
j |ατ−1‖S‖τLp(K
j ), (A.9)

where we applied Lemma 2.7 and used thatS|K
j = P
j |K
j . From (A.7) and (A.8), we infer

∑

∈T \X ∗

|
|−ατS
(S)ττ � c
∑
m∈Z

∑

∈Γch∩Tm

(
|
|−ατ‖S‖τ

Lτ (
̃) +
|
̃|
|
|‖S‖

τ
Lp(K
)

)

� c
∑

∈Γch

|
|−ατ‖S‖τ
Lτ (
̃) + c

∑

∈Γch

|
̃|
|
|‖S‖

τ
Lp(K
)

=:Σ1+Σ2.

Switching the order of summation and applying (A.4), we obtain

Σ1= c
∑

′∈Λ̃

‖S‖τLτ (
′)
∑


∈Γch,
⊃
′
|
|−ατ

� c
∑

′∈Λ̃

‖S‖τLτ (
′)|
′|−ατ
∑


∈Γ,
⊃
′

( |
′|
|
|

)ατ
� c

∑

′∈Λ̃

|
′|−ατ‖S‖τLτ (
′) � c(#Λ̃)ατ‖S‖τp, (A.10)

where for the latter estimate we applied Lemma A.1 toS with Λ̃ in place ofΛ.
To estimateΣ2, we shall use the representation ofΓch as a disjoint union of chains:Γch=⋃λ∈L∪L∞ λ.

Let λ ∈L and supposeλ= {
1, . . . ,
*}, where
′′λ ⊃
1⊃ · · · ⊃ 
* ⊃
′λ with 
′λ,
′′λ ∈ Λ̃ (
′′λ /∈ Γb).
Then∑


∈λ
|
̃||
|−1‖S‖τLp(K
) � ‖S‖τLp(
′′λ\
′λ)

*∑
j=1

|
′λ||
j |−1

� ‖S‖τLp(K
′′
λ
)

*∑
j=1

ρ*−j+1 � c‖S‖τLp(K
′′
λ
).

If λ ∈L∞ and
∈ λ, thenS|K
 = 0 and hence‖S‖Lp(K
) = 0.
Summing the above inequalities over allλ ∈L, we obtain

Σ2 � c
∑

N∈Λ̃

‖S‖τLp(K
N ) � c

(∑

N∈Λ̃

‖S‖pLp(K
N )
)τ/p

(#Λ̃)1−τ/p � c(#Λ̃)ατ‖S‖τp, (A.11)

where we used Hölder’s inequality and (A.2). Estimates (A.10) and (A.11) yield∑
∗
|
|−ατS
(S)ττ � c(#Λ̃)ατ‖S‖τp � cnατ‖S‖τp.

∈T \X
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ll

s

),

is

f

This and (A.6) imply‖S‖τ
Bατ (T ) � cn

ατ‖S‖τp. ✷
Proof of Theorem 3.11. Let T be a WLR-triangulation andS ∈ Σk

n(T ). ThenS can be written in the
form S =∑
∈Λ 1
 · P
, whereP
 ∈Πk , Λ⊂ T , and #Λ � n. As in the previous proof, we adopt a
the notation from “Tree structure inT generated byΛ⊂ T ” with T andΛ from the above.

To estimate‖S‖τBατ (T ) :=
∑

∈T |
|−ατωk(S,
)ττ , we shall splitT into three subsets:

(i) If 
 ∈ T \ Γ , thenS is a polynomial of degree< k on
 and henceωk(S,
)τ = 0.
(ii) If 
 ∈ Λ̃, then evidentlyωk(S,
)τ � c‖S‖Lτ (
) and hence∑


∈Λ̃
|
|−ατωk(S,
)ττ � c

∑

∈Λ̃

|
|−ατ‖S‖τLτ (
) � c(#Λ̃)ατ‖S‖τp, (A.12)

where for the last inequality we used Lemma A.1 (withΛ replaced byΛ̃).
(iii) Let 
 ∈ Γch (recall thatΓch := Γ \ Λ̃). Clearly, S|K
 = 1K
 · P
 for someP
 ∈ Πk, where

K
 := 
 \ 
̃ is the ring associated with
. Therefore,

ωk(S,
)ττ = ωk(S − P
,
)ττ � c‖S‖τ
Lτ (
̃) + c‖P
‖

τ

Lτ (
̃)
� c‖S‖τ

Lτ (
̃) + c|
̃||
|
ατ−1‖S‖τLp(K
), (A.13)

where we used that‖P
‖τLτ (
̃) � c|
̃||
|ατ−1‖P
‖τLp(K
) which follows by Lemma 2.7 exactly a
in (A.9). From (A.13), we infer∑


∈Γch

|
|−ατωk(S,
)ττ � c
∑

∈Γch

|
|−ατ‖S‖τ
Lτ (
̃) + c

∑

∈Γch

|
̃||
|−1‖S‖τLp(K
)
=:ΣN

1 +ΣN
2.

We estimateΣN
1 andΣN

2 exactly as the sumsΣ1 andΣ2 were estimated in (A.10) and (A.11
respectively. We obtain∑


∈Γch

|
|−ατωk(S,
)ττ � c(#Λ̃)ατ‖S‖τp � cnατ‖S‖τp.

Combining this estimate with (A.12), we find‖S‖Bατ (T ) � cnατ‖S‖p and the proof of Theorem 3.11
complete. ✷

Appendix B

Proof of Lemma 2.6 (Whitney). SupposeP ⊂ R
2 is a parallelogram andf ∈ Lq(P). Evidently, there

exists an affine transformA which mapsP one-to-one onto[0,1]2. Whitney’s estimate

Ek(f,P)q � cωk(f,P)q (B.1)

is invariant under affine transforms and, hence, follows from the caseP := [0,1]2. For the proof of
Whitney’s inequality on[0,1]2, we refer the reader to [1] (for the case ofq � 1) and [14] (for the case o
0< q < 1).
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angle

),

nt under
the
Now, having (B.1), we can prove Whitney’s estimate for a triangle as well. Fix an arbitrary tri

 = [x1, x2, x3]. Let y1 := (x2 + x3)/2, y2 := (x1 + x3)/2, andy3 := (x1 + x2)/2 be the midpoints
of its edges, and let
′ := [y1, y2, y3]. Consider now the three parallelogramsP1 := [x1, y3, y1, y2],
P2 := [x2, y1, y2, y3], andP3 := [x3, y2, y3, y1]. Clearly,
 =⋃3

j=1Pj and
′ =⋂3
j=1Pj . We select

polynomials P
′,P1,P2,P3 ∈ Πk such that‖f − P
′‖Lq(
′) = Ek(f,
′)q and ‖f − Pj‖Lq(Pj ) =
Ek(f,Pj )q for j = 1,2,3. Evidently, since
′ ⊂ Pj and |Pj | = 2|
′|, using Lemma 2.7 and (B.1
we have

‖Pj − P
′‖Lq(Pj ) � c‖Pj −P
′‖Lq(
′) � c‖f − Pj‖Lq(
′) + c‖f −P
′‖Lq(
′)
� c‖f − Pj‖Lq(Pj ) + cEk(f,
′)q � cEk(f,Pj )q
� cωk(f,Pj )q � cωk(f,
)q

with c= c(q, k). From this, we obtain

Ek(f,
)q � ‖f − P
′‖Lq(
) � c

3∑
j=1

‖f − P
′‖Lq(Pj )

� c

3∑
j=1

‖f − Pj‖Lq(Pj ) + c
3∑
j=1

‖P
′ − Pj‖Lq(Pj ) � cωk(f,
)q,

where we again used (B.1). Thus (2.11) is proved for a triangle.
To prove (2.11) in the second case one can proceed similarly, using that the estimate is invaria

affine transforms and most importantly thatT is an SLR-triangulation (see Section 2.1). We omit
details. ✷
Proof of Lemma 2.12. Let S̃ ∈ S̃m be an element of bestLη-approximation tof onΩ
 from S̃m. Using
Lemma 2.7(c) and Hölder’s inequality, we obtain

‖f − S‖Lη(Ω
) � c‖f − S̃‖Lη(Ω
) + c‖S̃ − S‖Lη(Ω
)
� cS
(f )η + c|Ω
|1/η−1/µ‖S̃ − S‖Lµ(Ω
)
� cS
(f )η + c|Ω
|1/η−1/µ(‖f − S̃‖Lµ(Ω
) + ‖f − S‖Lµ(Ω
))
� cS
(f )η + c|Ω
|1/η−1/µ‖f − S̃‖Lµ(Ω
)
� cS
(f )η + c‖f − S̃‖Lη(Ω
) � cS
(f )η. ✷

Proof of inequality (3.11). We shall use the obvious inequality

aαbs−α � (a + b)s, if 0 < α � s anda, b > 0, (B.2)

which is immediate from(a/b)α � (a/b + 1)α � (a/b + 1)s . Now, setα := 1/τ − 1/p, s := 1/τ > α,
a := nxτn , andb :=∑∞

j=n+1 x
τ
j . Applying inequality (B.2), we find( ∞∑

j=n+1

x
p

j

)1/p

�
(
xp−τn

∞∑
j=n+1

xτj

)1/p

= x1−τ/p
n

( ∞∑
j=n+1

xτj

)1/p

= n−αaαb1/τ−α � n−α(a + b)1/τ � n−α
( ∞∑

xτj

)1/τ

. ✷

j=1
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