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ALGORITHMS FOR NONLINEAR
PIECEWISE POLYNOMIAL APPROXIMATION:

THEORETICAL ASPECTS

BORISLAV KARAIVANOV, PENCHO PETRUSHEV, AND ROBERT C. SHARPLEY

Abstract. In this article algorithms are developed for nonlinear n-term
Courant element approximation of functions in Lp (0 < p ≤ ∞) on bounded
polygonal domains in R2. Redundant collections of Courant elements, which
are generated by multilevel nested triangulations allowing arbitrarily sharp
angles, are investigated. Scalable algorithms are derived for nonlinear approx-
imation which both capture the rate of the best approximation and provide
the basis for numerical implementation. Simple thresholding criteria enable
approximation of a target function f to optimally high asymptotic rates which
are determined and automatically achieved by the inherent smoothness of f .
The algorithms provide direct approximation estimates and permit utilization
of the general Jackson-Bernstein machinery to characterize n-term Courant
element approximation in terms of a scale of smoothness spaces (B-spaces)
which govern the approximation rates.

1. Introduction

Highly detailed Digital Terrain Elevation Data (DTED) and associated imagery
are now becoming widely available for most of the earth’s surface. However, al-
gorithms for effective approximation of data of this type are not yet available. A
primary motivation for this work is the development of effective algorithms for
nonlinear piecewise polynomial approximation of DTED maps from a redundant
hierarchial system over (possibly) irregular triangulations which are constructive
in nature. Application of the ideas and theory from [4] to the resulting framework
will permit optimal entropy tree encoding of the elevation data, enable progressive
view-dependent refinements which may be focused to user-localized regions, and
permit the registration of similarly encoded image textures to the surface (see [10],
[4] for more details).

Our philosophy is that dependable practical approximation procedures can be
built only upon a solid theoretical basis. Accordingly, we have two primary goals
in this paper. The first is to better understand nonlinear piecewise polynomial
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approximation, in particular, to understand the nature of the global smoothness
conditions (spaces) which govern the rate of approximation. The second goal is to
develop or refine existing constructive approximation methods for nonlinear approx-
imation which capture the rate of the best approximation and can be implemented
effectively in practice.

This paper addresses nonlinear n-term approximation by Courant elements gen-
erated by multilevel nested triangulations. More precisely, for a given bounded
polygonal domain E ⊂ R2, let (Tm)m≥0 be a sequence of triangulations such that
each level Tm is a triangulation of E consisting of closed triangles with disjoint
interiors and a refinement of the previous level Tm−1. We impose some mild natu-
ral conditions on the triangulations in order to prevent possible deterioration, but
our results are valid for fairly general triangulations with sharp angles. We define
T :=

⋃
m≥0 Tm. Each such multilevel triangulation T generates a ladder of spaces

S0 ⊂ S1 ⊂ · · · consisting of piecewise linear functions, where Sm (m ≥ 0) is spanned
by all Courant elements ϕθ supported on cells θ at the m-th level Tm.

Utilizing these primal elements, we consider nonlinear approximation by n-term
piecewise linear functions of the form S =

∑n
j=1 aθjϕθj , where θj may come from

different levels and locations. Our first goal is to characterize the approximation
spaces consisting of all functions with a given rate of approximation. For approxi-
mation in Lp, p <∞, this is done in [11], where a collection of smoothness spaces
(called B-spaces) was introduced and utilized. In this paper, we develop this theory
in the more complicated case of approximation in the uniform norm (p =∞). Our
program consists of the following steps. First, in order to quantify the approxima-
tion process, we develop a collection of smoothness spaces Bατ (T ) which depend on
T and will govern the best approximation. Second, we prove companion Jackson
and Bernstein estimates, and, third, we characterize the approximation spaces by
interpolation space methods.

Our second and primary goal is, by using the B-spaces and the related tech-
niques, to develop (or refine) algorithms for nonlinear n-term Courant element
approximation so that the new algorithms are capable of achieving the rate of the
best approximation. In the present paper, we develop three such algorithms for
n-term Courant element approximation in Lp, which we call “threshold” (p <∞),
“trim and cut” (0 < p ≤ ∞), and “push the error” (p =∞) algorithms.

The first step of each of these algorithms is a decomposition step. We denote
by Θ the set of all cells (supports of Courant elements) generated by T . The set
(ϕθ)θ∈Θ is obviously redundant and, therefore, every function f has infinitely many
representations of the form

(1.1) f =
∑
θ∈Θ

bθ(f)ϕθ.

It is crucial to have a sufficiently efficient (sparse) initial representation of the func-
tion f that is being approximated. In our case, this means that the representation
(1.1) of f should allow a realization of the corresponding B-norm ‖f‖Bατ (T ). Thus
the problem of obtaining an efficient initial representation of the functions is tightly
related to the development of the B-spaces. We achieve such efficiency by using
good projectors into the spaces Sm, m = 0, 1, . . . .

For completeness and comparison, we first consider the natural “threshold” al-
gorithm for n-term Courant element approximation, which is valid only in Lp,
0 < p < ∞. This algorithm simply takes the largest (in Lp) n-terms from (1.1).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NONLINEAR PIECEWISE POLYNOMIAL APPROXIMATION 2587

Using the results from [11], it is easy to show that the “threshold” algorithm cap-
tures the rate of the best n-term Courant element approximation in Lp (p <∞).

The second algorithm, which we call “trim and cut”, originates from the proof
of the Jackson estimate in [7] and uses the following idea. First, we partition Θ
through a coloring into a family of disjoint trees Θν (with respect to the inclusion
relation): Θ :=

⋃K
ν=1 Θν . Second, we “trim” each tree by removing cells θ ∈ Θν

corresponding to insignificant small terms aθϕθ from (1.1), located near the tips of
the branches. Third, we divide (“cut”) the remaining parts of each tree Θν into
sections of small “energy”. Finally, we rewrite the significant part of each section as
a linear combination of a small number of Courant elements. The resulting terms
determine the final approximant. We shall show that “trim and cut” is capable of
achieving the rate of the best approximation in Lp (0 < p ≤ ∞).

Pivotal in our development is the “push the error” algorithm, the name of which
was coined by Nira Dyn. The idea for this algorithm appears in [5] and may be
roughly described in L∞ as follows. For a fixed ε > 0, we “push the error” with
ε, starting from the coarsest level Θ0 and proceeding to finer levels. Namely, we
denote by Λ0 the set of all θ ∈ Θ0 such that |aθ| > ε (‖ϕθ‖∞ = 1) and define
A0 :=

∑
θ∈Λ0

aθϕθ. Then we rewrite all remaining terms aθϕθ at the next level and
add the resulting terms to the existing terms aθϕθ, θ ∈ Θ1. We denote the new
terms by dθϕθ, θ ∈ Θ1, and select in Λ1 all θ ∈ Θ1 such that |dθ| > ε. We continue
pushing the error in this way to the finer levels in the representation of f . Finally,
we define our approximant by A :=

∑
m≥0Aj . Thus terms dθϕθ with |dθ| ≤ ε are

discarded only at a very fine level, and hence the error (in L∞) is ≤ ε.
Of course, this naive “push the error” algorithm cannot achieve the rate of the

best approximation. However, as we shall show in §3.3 and §5, after some substan-
tial improvements, the algorithm is capable of achieving the rate of convergence of
the best n-term Courant element approximation in the uniform norm.

A focal point of our development is the characterization of the approximation
spaces generated by the best n-term Courant element approximation in L∞ and
the characterization of certain approximation spaces associated with the three al-
gorithms developed, which show that they capture the rate of convergence of the
best approximation.

The outline of the paper is as follows. In §2, we collect all facts needed regarding
multilevel triangulations, local approximation, quasi-interpolants, and B-spaces. In
§3, we develop and explore the three algorithms for nonlinear n-term Courant ele-
ment approximation: “threshold” algorithm (in §3.1), “trim and cut” algorithm (in
§3.2), and “push the error” algorithm (in §3.3). Section 4 is devoted to establishing
Jackson and Bernstein inequalities in order to study best n-term Courant element
approximation. In §5, we show that the three algorithms capture the rate of the
best n-term Courant element approximation and identify the associated approxi-
mation spaces as B-spaces. In §6, we discuss some of the main issues of nonlinear
Courant element approximation. We postpone until the Appendix the proof of an
important coloring lemma used in §3.2 for tree approximation in the “trim and cut”
algorithm.

For convenience, we use the convention that positive constants are denoted by
c, c1, . . . throughout and they may vary at every occurrence. The notation A ≈ B
means that c1A ≤ B ≤ c2A.
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2. Preliminaries

In this section we collect all the facts needed regarding multilevel triangulations,
local approximation, quasi-interpolants, and other results which were developed in
[11] and earlier papers. The essentials are presented for clarity but without proofs.

2.1. Triangulations. By definition E ⊂ R2 is a bounded polygonal domain if E
can be represented as the union of a finite set T0 of closed triangles with disjoint
interiors: E =

⋃
∆∈T0

∆. We shall always assume that there exists an initial
triangulation T0 of E of this form. We call

T =
∞⋃
m=0

Tm

a multilevel triangulation of E with levels (Tm) if the following conditions are ful-
filled:

(a) Every level Tm is a partition (or triangulation) of E, that is, E =⋃
∆∈Tm ∆ and Tm consists of closed triangles with disjoint interiors.

(b) The levels (Tm) of T are nested, i.e., Tm+1 is a refinement of Tm.
(c) Each triangle ∆ ∈ Tm has at least two and at most M0 children (sub-

triangles) in Tm+1, where M0 ≥ 4 is a constant.
(d) The valence Nv of each vertex v of any triangle ∆ ∈ Tm (the number

of the triangles from Tm that share v as a vertex) is at most N0, where
N0 ≥ 3 is a constant.

(e) No-hanging-vertices condition: No vertex of any triangle ∆ ∈ Tm that
belongs to the interior of E lies in the interior of an edge of another
triangle from Tm.

We denote by Vm the set of all vertices of triangles from Tm, where if v ∈ Vm is
on the boundary of E, we include in Vm as many copies of v as is its multiplicity.
With this understanding, we set V =

⋃
m≥0

Vm.

We now introduce three types of multilevel nested triangulations which will play
an essential role in our developments:

• Locally regular triangulations. We call a multilevel triangulation T =⋃
m≥0 Tm of E, a compact polygonal domain in R2, a locally regular triangulation,

or briefly an LR-triangulation, if T satisfies the following additional conditions:
(i) There exist constants 0 < r < ρ < 1 (r ≤ 1

4 ), such that for each ∆ ∈ T and
any child ∆′ of ∆ that belongs to T ,

(2.2) r|∆| ≤ |∆′| ≤ ρ|∆|.
(ii) There exists a constant 0 < δ ≤ 1 such that for each ∆′,∆′′ ∈ Tm (m ≥ 0)

with a common vertex,

(2.3) δ ≤ |∆
′|

|∆′′| ≤
1
δ
.

• Strong locally regular triangulations. We call a multilevel triangulation
T =

⋃
m≥0 Tm of E, a compact polygonal domain in R2, a strong locally regular

triangulation, or simply an SLR-triangulation, if T satisfies condition (2.2) and also
the following condition (which replaces (2.3)):
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(iii) Affine transform angle condition: There exists a constant β = β(T ) >
0 (0 < β < π

3 ) such that if ∆0 ∈ Tm (m ≥ 0) and A : R2 → R2 is an affine
transform mapping ∆0 one-to-one, onto an equilateral reference triangle, then for
every triangle ∆ ∈ Tm with a common vertex with ∆0, we have

(2.4) min angle (A(∆)) ≥ β
where A(∆) is the image of ∆ under A and is therefore also a triangle.

• Regular triangulations. By definition a multilevel triangulation T of E ⊂ R2

is called a regular triangulation if T satisfies the following condition:
(iv) There exists a constant β = β(T ) > 0 such that the minimal angle of each

∆ ∈ T is greater than or equal to β.

The remainder of this subsection makes several observations to better understand
the nature of multilevel triangulations. First, it is clear that the classes of LR- and
SLR-triangulations are each invariant under affine transforms. We next observe
that each SLR-triangulation is an LR-triangulation, but that the converse statement
does not hold. Moreover, each regular triangulation is an SLR-triangulation, but
again the converse is in general false. Counterexamples are given in [11].

Each type of triangulation depends on several parameters which are not com-
pletely independent. For instance, the parameters of LR-triangulations are M0, N0,
r, ρ, δ, and #T0 (the cardinality of T0). We could set M0 = 1

r , ρ = 1− r and elimi-
nate these as parameters, but this would tend to obscure the actual dependence of
the estimates upon given triangulations.

We next briefly describe a simple standard procedure for constructing multilevel
triangulations. We start from an initial triangulation T0 of the given compact
polygonal domain E ⊂ R2. We then select a point on each edge of every triangle
∆ ∈ T0 and join them within ∆ by edges to subdivide ∆ into four children. The
collection of all such children becomes the first generation of triangles, which we
denote by T1. We recursively refine in this way to produce succeeding generations
T2, T3, . . . . The resulting collection T :=

⋃
m≥0 Tm is a multilevel triangulation of

E.
It is important to know how the quantities |∆|, min angle(∆), and max edge(∆)

of a triangle ∆ ∈ T may change as ∆ moves away from a fixed triangle ∆� within
the same level or through the nested refinements. Consider the case when T is an
LR-triangulation. Then conditions (i) and (ii) suggest a geometric rate of change
of |∆| (at the same level). In fact, the rate is polynomial [11]. Furthermore,
if ∆′,∆′′ ∈ Tm (m ≥ 1) have a common vertex and are also children of some
∆ ∈ Tm−1, then, as shown in [11], it is possible for ∆′ to be equilateral (or close to
such), but for ∆′′ to have an uncontrollably sharp angle (see Figure 1).

Figure 1. A skewed cell
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If T is an SLR-triangulation, the above configuration is impossible, but the trian-
gles from T still may have uncontrollably sharp angles. In this case, min angle(∆)
changes gradually from one triangle to the adjacent ones.

For any vertex v ∈ Vm (m ≥ 0), we denote by θv the cell at level m associated
with v, i.e., θv is the union of all triangles from Tm that have v as a common vertex.
We denote by Θm the set of all such cells θv with v ∈ Vm, and set Θ =

⋃
m≥0 Θm.

2.2. Local piecewise linear approximation and quasi-interpolants. We de-
note by Πk the set of all algebraic polynomials of total degree less than k. We shall
often refer to the following lemma (see [11]), which establishes the equivalence of
different norms of polynomials over different sets.

Lemma 2.1. Let P ∈ Πk, k ≥ 1, and 0 < p, q ≤ ∞.
(a) For any triangle ∆ ⊂ R2,

‖P‖Lp(∆) ≈ |∆|
1
p−

1
q ‖P‖Lq(∆).

(b) If ∆ and ∆′ are two triangles such that ∆′ ⊂ ∆ and |∆| ≤ c1|∆′|, then

‖P‖Lp(∆) ≤ c ‖P‖Lp(∆′).

(c) If ∆′ ⊂ ∆ and |∆′| ≤ c1|∆| with 0 < c1 < 1, then

‖P‖Lp(∆) ≤ c ‖P‖Lp(∆\∆′) ≈ |∆|
1
p−

1
q ‖P‖Lq(∆\∆′).

In the above expressions, the constants depend at most on the corresponding param-
eters and the constant c1.

The no-hanging-vertices condition (e) of triangulations guarantees the existence
of Courant elements. Namely, for any vertex v ∈ Vm (m ≥ 0) there exists a
unique Courant element ϕθv supported on θv ∈ Θm which is the unique continuous
piecewise linear function on E that is supported on θv and satisfies ϕθv (v) = 1. We
denote Φ := ΦT := (ϕθ)θ∈Θ. We also denote by Sm the space of all continuous
piecewise linear functions over Tm. Clearly, S ∈ Sm if and only if S =

∑
v∈Vm

S(v)ϕθv .

Throughout the remainder of this section, we assume that T is an LR-triangulation
of E. We shall often use the following stability estimates for (ϕθ)θ∈Θm

.

Lemma 2.2. Let 0 < q ≤ ∞ and S =
∑
θ∈Θm

aθ ϕθ, m ≥ 0, with coefficients aθ ∈ R.

Then for every ∆ ∈ Tm, we have

‖S‖Lq(∆) ≈
( ∑
θ∈Θm, θ⊃∆

‖aθϕθ‖qq
) 1
q

and hence

‖S‖Lq(E) ≈
( ∑
θ∈Θm

‖aθϕθ‖qq
) 1
q

with constants of equivalence depending only on the parameters of T . In these
estimates the `q-norm is replaced by the sup-norm if q =∞.

The proof of this lemma is fairly simple and can be found in [11].

• Local piecewise linear approximation. The local approximation by continu-
ous piecewise linear functions will be an important tool in our further development.
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For f ∈ Lη(E), η > 0, and any ∆ ∈ Tm (m ≥ 0), we denote the error of Lη(Ω∆)-
approximation to f from Sm by

(2.5) SS∆(f)η := SS∆(f, T )η := inf
S∈Sm

‖f − S‖Lη(Ω∆) ,

where Ω∆ is the union of all triangles from Tm that have a vertex in common with
∆.
• Quasi-interpolants. The set ΦT of all Courant elements is obviously redundant.
To obtain a good (i.e., sparse) representation of a given function f , we shall use
the following well-known quasi-interpolant:

(2.6) Qm(f) := Qm(f, T ) :=
∑
θ∈Θm

〈f, ϕ̃θ〉ϕθ ,

where 〈f, g〉 :=
∫
E
fg and (ϕ̃θ) are the duals of (ϕθ) defined by

(2.7) ϕ̃θ :=
∑

∆∈Tm,∆⊂θ
1∆ λ̃∆,θ

with λ̃∆,θ the linear polynomial that is equal to 9
Nv|∆| at vθ, the “central vertex” of

θ, and equal to − 3
Nv|∆| at the other two vertices of ∆ (recall that Nv is the valence

of v). It is easily seen that

〈ϕθ , ϕ̃θ′〉 = δθθ′, for θ, θ′ ∈ Θm.

Obviously, Qm is a linear projector, i.e., Qm(S) = S for S ∈ Sm. It is crucial
that ϕ̃θ ∈ L∞ and ϕ̃θ is locally supported. Consequently, Qm is locally bounded
and provides good local approximation.

Lemma 2.3. (a) If f ∈ Lη(E), 1 ≤ η ≤ ∞, and ∆ ∈ Tm, m ≥ 0, then

‖Qm(f)‖Lη(∆) ≤ c‖f‖Lη(Ω∆).

(b) If 0 < η ≤ ∞ and g =
∑

∆∈Tm 1∆ · P∆ with P∆ ∈ Π2 and m ≥ 0, then

‖Qm(g)‖Lη(∆) ≤ c‖g‖Lη(Ω∆), for ∆ ∈ Tm.

The constants above depend only on η and the parameters of T .

For a proof of this lemma, see [11].

From the above lemma, we see that Qm : Lη(E)→ Sm (1 ≤ η ≤ ∞) is a locally
bounded linear projector. There is a well-known scheme for extending Qm to a
nonlinear projector Qm : Lη(E)→ Sm for 0 < η < 1. This is needed for nonlinear
approximation in Lp (0 < p ≤ 1). To describe this extension, let P∆,η : Lη(∆)→ Π2

(0 < η ≤ ∞) be a projector (linear if η ≥ 1 and nonlinear if 0 < η < 1) such that

‖f − P∆,η(f)‖Lη(∆) ≤ cE2(f,∆) for f ∈ Lη(∆),

where E2(f,∆) is the error of the best Lη(∆)-approximation to f from Π2 (the
linear polynomials). We define

pm,η(f) :=
∑

∆∈Tm

1∆ · P∆,η(f)

and set

(2.8) Tm,η(f) := Qm(pm,η(f)), for f ∈ Lη(E).
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Clearly, Tm,η : Lη(E) → Sm is a projector (linear if η ≥ 1 and nonlinear if
0 < η < 1).

The next lemma, established in [11], shows that Qm and Tm,η provide good local
approximations from Sm.

Lemma 2.4. (a) If f ∈ Lη(E), 1 ≤ η ≤ ∞, and ∆ ∈ Tm, m ≥ 0, then

‖f −Qm(f)‖Lη(∆) ≤ c SS∆(f)η.

(b) If f ∈ Lη(E), 0 < η ≤ ∞, and ∆ ∈ Tm, m ≥ 0, then

‖f − Tm(f)‖Lη(∆) ≤ c SS∆(f)η.

The constants above depend only on η and the parameters of T .

The needed convergence of Qm(f) and Tm(f) to f is provided by the following
result (see Lemma 2.15 from [11]).

Lemma 2.5. If f ∈ Lη(E), then

‖f −Qm(f)‖Lη(E) → 0 as m→∞, if 1 ≤ η ≤ ∞,
‖f − Tm,η(f)‖Lη(E) → 0 as m→∞, if 0 < η ≤ ∞.

Now, we apply a well-known scheme for obtaining sparse Courant element rep-
resentation of functions. We define

(2.9) qm := Qm −Qm−1 and tm,η := Tm,η − Tm−1,η, for m ≥ 0,

where Q−1 := 0 and T−1,η := 0. Clearly, qm(f), tm,η(f) ∈ Sm.
For a given function f ∈ Lη(E), 1 ≤ η ≤ ∞, we define the sequence b(f) :=

(bθ(f))θ∈Θm from the expression

(2.10) qm(f) =:
∑
θ∈Θm

bθ(f)ϕθ, m ≥ 0.

Using Lemma 2.5, we have

(2.11) f =
∑
m≥0

qm(f) =
∑
m≥0

∑
θ∈Θm

bθ(f)ϕθ in Lη.

If f ∈ Lη(E), 0 < η < 1, we define the sequence bη(f) := (bθ,η(f))θ∈Θm by

(2.12) tm,η(f) =:
∑
θ∈Θm

bθ,η(f)ϕθ, m ≥ 0,

and again by Lemma 2.5, we have

(2.13) f =
∑
m≥0

tm,η(f) =
∑
m≥0

∑
θ∈Θm

bθ,η(f)ϕθ in Lη.

Clearly, b(·) is a linear operator while bη(·) (0 < η < 1) is nonlinear.
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2.3. B-spaces. In this section, we include the necessary tools for the B-spaces
which we need for nonlinear n-term Courant element approximation. The B-spaces
over multilevel nested triangulations of R2 are introduced in [11] and used there for
nonlinear n-term Courant element approximation in Lp(R2) (0 < p < ∞). In the
present paper, we shall use the B-spaces for n-term Courant element approximation
in Lp(E) (0 < p ≤ ∞), where E is a compact polygonal domain in R2. We shall
put the emphasis on approximation in the uniform norm (p =∞). There are three
types of B-spaces (skinny, slim, and fat B-spaces) that were introduced in [11] to
serve different purposes. For Courant element approximation, we need the slim
B-spaces, which we shall simply call B-spaces.

Throughout this paper, we assume that T is an LR-triangulation of a compact
polygonal domain E in R2. Moreover, the B-spaces Bατ (T ), with parameter set
1/τ := α + 1/p according to two specific choices: (a) p = ∞ and α ≥ 1; or (b)
0 < p < ∞ and α > 0, will arise naturally in our algorithms and error estimates.
These spaces have several equivalent definitions, which we briefly describe.

• Definition of Bατ (T ) via local approximation. We define Bατ (T ) as the set
of all functions f ∈ Lτ (E) such that

(2.14) |f |Bατ (T ) :=

(∑
∆∈T

(|∆|−αSS∆(f)τ )τ
)1/τ

<∞,

where SS∆(f)τ is the error of Lτ (Ω∆)-approximation (local) to f from Sm for
∆ ∈ Tm (see (2.5)). It is readily seen that |f + g|τ∗Bατ ≤ |f |

τ∗

Bατ
+ |g|τ∗Bατ with τ∗ :=

min{τ, 1}, and |f + s|Bατ = |f |Bατ for s ∈ S0. Hence | · |Bατ is a semi-norm if τ ≥ 1
and a semi-quasi-norm if τ < 1.

By Theorems 2.7 and 2.9 below, it follows that if f ∈ Bατ (T ), then f ∈ Lp(E).
Therefore, it is natural to define a (quasi-)norm in Bατ (T ) by

(2.15) ‖f‖Bατ (T ) := ‖f‖p + |f |Bατ (T ).

More generally, for 0 < η < p, we define

(2.16) NSS,η(f, T ) := ‖f‖p +

(∑
∆∈T

(|∆|1/p−1/ηSS∆(f)η)τ
)1/τ

.

Evidently, NSS,τ(f, T ) = ‖f‖Bατ (T ). When clear from the context, we use NS,τ (f).

• Definition of norm in Bατ (T ) via atomic decomposition. For f ∈ Lτ (E),
we define

(2.17) NΦ(f) := inf
f=
∑
θ∈Θ cθϕθ

(∑
θ∈Θ

(|θ|−α‖cθϕθ‖τ )τ
)1/τ

,

where the infimum is taken over all representations f =
∑

θ∈Θ cθϕθ in Lτ (E). Note
that the existence of such representations of f follows by (2.11) and (2.13). By
Theorem 2.7 below,∑

θ∈Θ

(|θ|−α‖cθϕθ‖τ )τ <∞ implies

∥∥∥∥∥∑
θ∈Θ

|cθϕθ(·)|
∥∥∥∥∥
p

<∞,

and hence f ∈ Lp(E) and the series
∑

θ∈Θ |cθϕθ(·)| converges a.e. and in Lp(E).
Therefore, the way in which the terms of the series are ordered is not essential,
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and the convergence in Lτ (E) implies a stronger (absolute) convergence in Lp(E)
(τ < p). By Lemma 2.1, it follows that

NΦ(f) ≈ inf
f=
∑
θ∈Θ cθϕθ

(∑
θ∈Θ

(|θ|1/p|cθ|)τ
)1/τ

≈ inf
f=
∑
θ∈Θ cθϕθ

(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

.(2.18)

If p =∞, then

NΦ(f) ≈ inf
f=
∑
θ∈Θ cθϕθ

(∑
θ∈Θ

|cθ|τ
)1/τ

.

• Definition of norms in Bατ (T ) via projectors. For f ∈ Lη(E), we let

(2.19) f =
∑
θ∈Θ

bθ,η(f)ϕθ

be the representation of f from (2.11) if η ≥ 1 and from (2.13) if 0 < η < 1. We
define

(2.20) NQ,τ (f) :=

(∑
θ∈Θ

(|θ|−α‖bθ,τ(f)ϕθ‖τ )τ
)1/τ

and, more generally (in accordance with (2.16)),

(2.21) NQ,η(f) :=

(∑
θ∈Θ

(|θ|1/p−1/η‖bθ,η(f)ϕθ‖η)τ
)1/τ

.

By Lemmas 2.1 and 2.2, we have

(2.22) NQ,η(f) ≈
(∑

∆∈T
(|∆|1/p−1/η‖qm(f)‖Lη(∆))τ

)1/τ

, if η ≥ 1,

(2.23) NQ,η(f) ≈
(∑

∆∈T
(|∆|1/p−1/η‖tm,η(f)‖Lη(∆))τ

)1/τ

, if 0 < η < 1,

and

(2.24) NQ,η(f) ≈
(∑
θ∈Θ

(|θ|1/p|bθ,η(f)|)τ
)1/τ

≈
(∑
θ∈Θ

‖bθ,η(f)ϕθ‖τp

)1/τ

.

In the most interesting case of p =∞,

(2.25) NQ,η(f) ≈
(∑
θ∈Θ

|bθ,η(f)|τ
)1/τ

.

• General B-spaces. A more general B-space Bαpq(T ), α > 0, 0 < p, q ≤ ∞, is
defined as the set of all f ∈ Lp(E) such that

‖f‖Bαpq(T ) := inf
f=
∑
θ∈Θ cθϕθ

(∑
m∈Z

[
2mα

( ∑
θ∈Θ, 2−m≤|θ|<2−m+1

‖cθϕθ‖pp
)1/p]q)1/q

<∞,
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where the `q-norm is replaced by the sup-norm if q =∞. In this paper, we do not
need the B-spaces in such generality.

• Embedding theorems and equivalence of norms. We recall our assump-
tions. We have 0 < p ≤ ∞, and α ≥ 1 if p =∞ and α > 0 if p <∞. In both cases,
1/τ := α+1/p (1/τ := α if p =∞). We record estimates and embeddings from [11],
along with the necessary modifications, which are necessary for the development of
the main results of this paper. The first embedding result appears as Theorem 2.16
in [11].

Theorem 2.6. For 0 < τ < p or p = ∞, τ ≤ 1, then for any sequence of real
numbers (cθ)θ∈Θ, we have

(2.26)
∥∥∥∥∑
θ∈Θ

|cθ|ϕθ
∥∥∥∥
p

≤ c
(∑
θ∈Θ

‖cθϕθ‖τp
)1/τ

,

where c depends only on τ , p, and the parameters of T .

Theorem 2.7. If f ∈ Lη(E) with 0 < η < p, and NQ,η(f) < ∞, then f ∈ Lp(E)
(f ∈ C(E) if p = ∞), and f has the representation f =

∑
θ∈Θ bθ,η(f)ϕθ with the

series converging absolutely a.e. in E and in Lp (respectively, in C(E)), and

(2.27) ‖f‖p ≤
∥∥∥∥∑
θ∈Θ

|bθ,η(f)|ϕθ
∥∥∥∥
p

≤ cNQ,η(f),

where c is independent of f .

Proof. For 0 < p < ∞, the result follows from (2.11), (2.13), and Theorem 2.9
below. If p = ∞, the theorem follows by (2.11), (2.13), (2.25), and the following
estimates:∥∥∥∥∑

θ∈Θ

bθ,η(f), ϕθ

∥∥∥∥
∞
≤
(∑
θ∈Θ

|bθ,η(f)|τ
)1/τ

≤ cNQ,η(f) (τ = 1/α ≤ 1). �

Remark 2.8. It is easily seen that Theorem 2.7 is not true when p =∞ and α < 1.
For this reason we impose the restriction α ≥ 1 when p =∞ throughout.

Theorem 2.9. The norms ‖ · ‖Bατ (T ), NSS,η(·) (0 < η < p), NΦ(·), and NQ,η(·)
(0 < η < p), defined in (2.15), (2.16), (2.17), and (2.21), are equivalent with
constants of equivalence depending only on p, τ , η, and the parameters of T .

Proof. One proceeds exactly as in [11] (see the proof of Theorem 2.17 of that
reference) and proves that

|f |Bατ (T ) ≈ (
∑
∆∈T

(|∆|1/p−1/ηSS∆(f)η)τ )1/τ ≈ inf
f=
∑
θ∈Θ cθϕθ

( ∑
θ∈Θ\Θ0

‖cθϕθ‖τp
)1/τ

≈ (
∑

θ∈Θ\Θ0

‖bθ,η(f)ϕθ‖τp)1/τ ,(2.28)

provided 0 < η < p. To obtain the norm estimate from these semi-norm equiv-
alences, we use Theorem 2.6 to give ‖f‖p ≤ cNΦ(f). Using this, (2.28), and the
remark after the definition of NΦ(f) in (2.17), we obtain

‖f‖Bατ (T ) ≈ NSS,η(f) ≤ cNΦ(f) ≤ cNQ,η(f), 0 < η < p.
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For the reverse inequality, we use Lemma 2.2, Theorem 2.6, and (2.28) to obtain(∑
θ∈Θ0

‖bθ,η(f)ϕθ‖τp
)1/τ

≤ c(#Θ0, τ, p)
(∑
θ∈Θ0

‖bθ,η(f)ϕθ‖pp
)1/p

≤ c
∥∥∥∥∑
θ∈Θ0

bθ,η(f)ϕθ

∥∥∥∥
p

≤ c
(
‖f‖p +

∥∥∥∥ ∑
θ∈Θ\Θ0

bθ,η(f)ϕθ

∥∥∥∥
p

)

≤ c‖f‖p + c

( ∑
θ∈Θ\Θ0

‖bθ,η(f)ϕθ‖τp
)1/τ

≤ c‖f‖Bατ (T ).

This and (2.28) imply NQ,η(f) ≤ c‖f‖Bατ (T ). �
The next embedding theorem of Sobolev type follows immediately from (2.18)

or (2.24).

Theorem 2.10. For 0 < α0 < α1 and τj := (αj + 1/p)−1, j = 0, 1, we have the
continuous embedding

(2.29) Bα1
τ1 (T ) ⊂ Bα0

τ0 (T ),

i.e., if f ∈ Bα1
τ1 (T ), then f ∈ Bα0

τ0 (T ) and ‖f‖Bα0
τ0 (T ) ≤ c‖f‖Bα1

τ1 (T ).

• Interpolation. We first recall some basic definitions from the real interpolation
method. We refer the reader to [2] and [1] as general references for interpolation
theory. For a pair of quasi-normed spaces X0, X1, embedded in a Hausdorff space,
the space X0 +X1 is defined as the collection of all functions f that can be repre-
sented as f0 + f1 with f0 ∈ X0 and f1 ∈ X1. The quasi-norm in X0 +X1 is defined
by

‖f‖X0+X1 := ‖f‖X0+X1 + inf
f=f0+f1

‖f0‖X0 + ‖f1‖X1 .

The K-functional is defined for each f ∈ X0 +X1 and t > 0 by

(2.30) K(f, t) := K(f, t;X0, X1) := inf
f=f0+f1

‖f0‖X0 + t‖f1‖X1 .

The real interpolation space (X0, X1)λ,q with 0 < λ < 1 and 0 < q ≤ ∞ is defined
as the set of all f ∈ X0 +X1 such that

‖f‖(X0,X1)λ,q :=
(∫ ∞

0

(t−λK(f, t))q
dt

t

)1/q

<∞,

where the Lq-norm is replaced by the sup-norm if q =∞.
It is easily seen that if X1 ⊂ X0 (X1 continuously embedded in X0), then

K(f, t) ≈ ‖f‖X0 for f ∈ X0 and t ≥ 1, and, consequently,

(2.31) ‖f‖(X0,X1)λ,q ≈ ‖f‖X0 +

( ∞∑
ν=0

[2νλK(f, 2−ν)]q
)1/q

.

Theorem 2.11. Suppose 0 < p ≤ ∞ and further assume that both α0, α1 ≥ 1 in
the case p = ∞, and α0, α1 > 0 otherwise. Furthermore, let τj := (αj + 1/p)−1,
j = 0, 1. Then

(2.32) (Bα0
τ0 (T ), Bα1

τ1 (T ))λ,τ = Bατ (T )
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with equivalent norms, provided α = (1 − λ)α0 + λα1 with 0 < λ < 1 and τ :=
(α+ 1/p)−1.

Proof. We shall prove (2.32) only in the case p > 1. For a proof of (2.32) when
p ≤ 1, see [3].

We shall use the abbreviated notation Bα := Bατ (T ) and Bαj := B
αj
τj (T ), j =

0, 1. Also, we denote by `q the space of all sequences a = (aθ)θ∈Θ of real numbers
such that ‖a‖`q :=

(∑
θ∈Θ |aθ|q

)1/q
<∞.

We set η := 1 and normalize the Courant elements in Lp, that is, ‖ϕθ‖p = 1.
We also renormalize the duals ϕ̃θ from (2.7) accordingly. We denote again by
b(f) = (bθ)θ∈Θ the sequence from (2.10) with respect to the normalized Courant
elements. By (2.24), Theorem 2.7, and Theorem 2.9, if f ∈ Bαj , j = 0, 1, then

(2.33) f =
∑
θ∈Θ

bθ(f)ϕθ and ‖f‖Bαj ≈ ‖b(f)‖`τj ,

recalling that the elements ϕθ are normalized in Lp. The corresponding statement
holds for functions f ∈ Bα as well.

We shall next employ the following interpolation theorem (see, e.g., §5.1 of [1] or
[2]) which follows directly from the definition of the K-functional and the norms of
the interpolation spaces. Suppose T is a linear operator which boundedly maps X0

into Y0 and X1 into Y1, where (X0, X1) and (Y0, Y1) are couples of quasi-normed
spaces as above. Then for 0 < λ < 1 and 0 < q ≤ ∞, T boundedly maps (X0, X1)λ,q
into (Y0, Y1)λ,q.

We introduce linear operators I and P as follows: I is defined by I(f)θ := bθ(f),
θ ∈ Θ, and P is given by P(a) :=

∑
θ∈Θ aθϕθ, a = (aθ)θ∈Θ. By (2.33), ‖b(f)‖`τj ≤

c‖f‖Bαj for f ∈ Bαj , j = 0, 1, and hence I : Bαj → `τj (boundedly). By the
above-mentioned interpolation theorem,

(2.34) I : (Bα0 , Bα1)λ,τ → (`τ0 , `τ1)λ,τ (boundedly).

Similarly, if a ∈ `τj , then by Theorems 2.7 and 2.9, we may conclude that P(a)
Lp=∑

θ∈Θ aθϕθ is well defined. So if we set f = P(a), then

‖P(a)‖Bαj ≤ c inf
f=
∑
θ∈Θ cθϕθ

‖(cθ)θ∈Θ‖`τj ≤ c ‖a‖`τj , j = 0, 1.

Thus P : `τj → Bαj (boundedly), and by interpolation

(2.35) P : (`τ0 , `τ1)λ,τ → (Bα0 , Bα1)λ,τ (boundedly).

Finally, we recall the well-known interpolation result (see, e.g., [2], [1]):

(2.36) (`τ0 , `τ1)λ,τ = `τ , where 1
τ = 1−λ

τ0
+ λ

τ1
with 0 < λ < 1.

Clearly, (2.32) follows by (2.33)-(2.36). �

• Skinny B-spaces. The skinny B-spaces were introduced in [11] and used for
characterization of nonlinear (discontinuous) piecewise polynomial approximation
on R2. We next adapt that definition to the case of approximation on a compact
polygonal domain E ⊂ R2. Suppose T is a multilevel nested triangulation of E
which additionally satisfies condition (2.2) (see §2.1 and [11]). The skinny B-space
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Bαkτ (T ), where k ≥ 1 and α and τ are as above, is defined as the set of all f ∈ Lτ (E)
such that

(2.37) |f |Bαkτ (T ) :=

(∑
∆∈T

(|∆|−αωk(f,∆)τ )τ
)1/τ

<∞,

where ωk(f,∆)τ is a kth modulus of smoothness of f in Lτ (∆), defined by

ωk(f,∆)τ := sup
h∈R2

‖∆k
h(f, ·)‖Lτ (∆)

and ∆k
h(f, ·) is the kth difference of f . The norm in Bαkτ (T ) is defined by

‖ · ‖Bαkτ (T ) := ‖ · ‖p + | · |Bαkτ (T ).

• Fat B-spaces: The link to Besov spaces. Suppose T is an SLR-triangulation
of a compact polygonal domain E ⊂ R2. Similarly as in [11], we define the fat B-
space Bαkτ (T ), where k ≥ 1 and α and τ are as above, as the set of all functions
f ∈ Lτ (E) such that

(2.38) |f |Bαkτ (T ) :=

(∑
∆∈T

(|∆|−αωk(f,Ω∆)τ )τ
)1/τ

<∞.

We endow Bαkτ (T ) with the norm ‖ · ‖Bαkτ (T ) := ‖ · ‖p + | · |Bαkτ (T ). Using Whitney’s
theorem, it readily follows that c1ω2(f,∆)τ ≤ SS∆(f)τ ≤ c2ω2(f,Ω∆)τ , and hence
|f |Bα2

τ (T ) ≤ c|f |Bατ (T ) ≤ c|f |Bα2
τ (T ). The space Bα2

τ (T ) is a natural candidate to
replace Bατ (T ) in nonlinear n-term Courant element approximation. This is, how-
ever, only possible for sufficiently small α (0 < α < α0). Otherwise Bα2

τ (T ) is too
“fat” and cannot do the job. Finally, we note that if T is a regular triangulation
and 0 < α < k, then Bαkτ (T ) coincides with the Besov space B2α

τ (Lτ ). For a more
complete discussion of this and other related issues, see [11].

3. Algorithms for n-term Courant approximation

• Decomposition step for all approximation algorithms. The first step
of each of the three approximation algorithms that we consider in this section
is a decomposition step. This step is not trivial, since the set ΦT := (ϕθ)θ∈Θ

of all Courant elements is redundant and, therefore, each function has infinitely
many representations using Courant elements. For each algorithm, it is crucial to
have a sufficiently efficient initial representation of the function f that is being
approximated. This means that the representation of f should allow a realization
of the corresponding B-norm.

To construct the initial representation, we consider two cases of metric approxi-
mation. If the approximation takes place in Lp, 1 < p ≤ ∞, we utilize the decom-
position of f via quasi-interpolation from (2.11) with 1 ≤ η < p, while if 0 < p ≤ 1,
we use (2.13) with 0 < η < p. In both cases, we have an initial desirable sparse
representation of f of the form

(3.1) f =
∑
θ∈Θ

bθϕθ, bθ = bθ(f),

which allows a realization of the B-norm (see (2.24)–(2.25), and Theorem 2.9). For
the remainder of this section, in order to more easily track the dependency of the
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constants appearing in the inequalities, we redefine ‖f‖Bατ (T ) by

(3.2) ‖f‖Bατ (T ) :=
(∑
θ∈Θ

(|bθ||θ|1/p)τ
)1/τ

≈
(∑
θ∈Θ

‖bθϕθ‖τp
)1/τ

,

which is an equivalent norm inBατ (T ) (see Theorem 2.9). Without loss of generality,
we may assume (when needed) that there is a final level ΘL (L <∞) in (3.1).

3.1. “Threshold” algorithm (p <∞ only). In this algorithm we utilize the
usual thresholding strategy used for n-term approximation from a basis in Lp (1 <
p < ∞). The resulting procedure performs extremely well, due to the sparse rep-
resentation realized by the first step. We note, however, that the derived error
estimates involve constants that depend on p and become unbounded as p → ∞.
The “push the error” and “trim and cut” algorithms described later in this section
will be shown to achieve the corresponding estimates for the uniform norm (p =∞).
For this subsection we therefore assume that f ∈ Lp, 0 < p <∞.

• Description of the “threshold” algorithm.
Step 1. (Decompose) We use the decomposition of f ∈ Lp(E) from (3.1).
Step 2. (Select the n largest terms) We order the terms (bθϕθ)θ∈Θ in a sequence

(bθjϕθj )∞j=1 so that

(3.3) ‖bθ1ϕθ1‖p ≥ ‖bθ2ϕθ2‖p ≥ · · · .
Then we define the approximant ATn (f)p by ATn (f)p :=

∑n
j=1 bθjϕθj .

• Error estimation for the “threshold” algorithm. We denote the corre-
sponding error of approximation of this threshold algorithm by

ATn (f)p := ‖f −ATn (f)p‖p.
The argument used in establishing the Jackson error estimate in [11] may be mod-
ified in obvious ways to prove the following error estimate.

Theorem 3.1. If f ∈ Bατ (T ), α > 0, 1/τ := α+ 1/p (0 < p <∞), then

(3.4) ATn (f)p ≤ cn−α‖f‖Bατ (T ),

where c depends on α, p, and the parameters of T .

In §5, we shall need the following result:

Lemma 3.2. If f =
∑
θ∈Θ bθϕθ is the decomposition of f from (3.1), then

AT2n(f)p ≤ cn−α
( ∞∑
j=n+1

‖bθjϕθj‖τp
)1/τ

,

where (bθjϕθj )∞j=1 is as in Step 2 and c depends on α, p, and the parameters of T .

Proof. Applying Theorem 3.4 from [11] to (bθjϕθj )∞j=n+1 immediately provides the
desired result. �

Remark 3.3. As we have mentioned, the main drawback of the “threshold” algo-
rithm is that it is not applicable to approximation in the uniform norm, since the
constant c = c(α, p) in (3.4) tends to infinity as p→∞ and the performance of the
algorithm deteriorates as p gets large. The obvious reason for this behavior is that
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f can be built out of many terms (bθϕθ) which have small coefficients and are sup-
ported at the same location. These terms can pile up to an essential contribution,
but the algorithm will fail to anticipate their future significance.

3.2. “Trim and cut (the tree)” algorithm. The idea of this algorithm has its
origins in the proof of the Jackson estimate in [7] (see §5, pages 272-276). The
approximation considered there is by wavelets or splines over a uniform partition
in the uniform norm. We shall refine this idea to develop an algorithm for n-term
Courant element approximation in Lp(E), 0 < p ≤ ∞, over LR-triangulations. We
begin with a brief description of the algorithm and then elaborate on the details of
each of the main steps.

• Description of the “trim and cut” algorithm.

Step 1. (Decompose). We use the common decomposition of f ∈ Lp(E) given
in (3.1).

Step 2. (Organize the cells of Θ into manageable trees Θν). We develop an al-
gorithm (procedure) for coloring the cells of Θ in such a way that the
cells of the same color form a tree structure as described in Lemma 3.4
below. This organization greatly simplifies the management of the es-
timates, both the approximation construction and the enumeration of
“active” Courant elements in our approximant.

Step 3. (Trim each tree). Since all the elements may initially affect the B-
space norm of a function, we need to preprocess each tree by pruning
all branches which may have many leaves, but do not make a significant
contribution to the norm of the function f . We do this by running a
stopping time argument from the finest level to a coarser level, until a
significant cumulative contribution is met. We prune the branch just
below that element.

Step 4. (Partition the remaining trees into “segments”). We continue to par-
tition the remainders of each of the K trees by cutting them at each
of the joins of branches to form chains from the tree. We will easily
be able to track the number of chains produced by this procedure. A
second stopping time argument is then applied to cut the chains into
“segments” in order to control the number of significant elements added
to the approximant (at most N0 + 1 from each segment) and to guaran-
tee that the cumulative effect of the left-over elements (i.e., error) can
be controlled by the final Step 5.

Step 5. (Rewrite the “segments” to control error). Here each segment is rewrit-
ten at its finest level, and its terminal element (with the new coefficients)
and some of its neighboring elements are added to the approximant.
This allows for a void to be created, so that the residual of the segment
will have disjoint support with all remaining segments as well as the
residuals of those previously processed. This insures that the cumula-
tive pointwise error remains under control.

We now describe these rather vague steps in more detail. Step 1 is clear from
our earlier discussion.

Step 2. In the following lemma, we construct a procedure for coloring the elements
of Θ with K colors ν, so that no two Courant elements of the same color from the
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same level have supports that intersect; in fact, corresponding cells of the same
color will have a tree structure with set inclusion as the order relation. This allows
us to partition Θ into a disjoint union of sets Θν (1 ≤ ν ≤ K), and correspondingly
organize f as the sum f =

∑K
ν=1 fν , where fν :=

∑
θ∈Θν bθϕθ. We can then

proceed to process each of the fν without worrying about its terms from the same
level overlapping, and at worst a factor of K will come into the constants for the
estimates that we derive. For its proof, see the Appendix.

Lemma 3.4 (Coloring lemma). For any multilevel-triangulation T of E, the set
Θ := Θ(T ) of all cells generated by T can be represented as a finite disjoint union
of its subsets (Θν)Kν=1 with K = K(N0,M0) (N0 is the maximal valence and M0 is
the maximal number of children of a triangle in T ) such that each Θν has a tree
structure with respect to set inclusion, i.e., if θ′, θ′′ ∈ Θν with (θ′)◦ ∩ (θ′′)◦ 6= ∅,
then either θ′ ⊂ θ′′ or θ′′ ⊂ θ′.

In order to complete the remaining Steps 3-5 we must consider two variations
in the details of the algorithm, depending on whether p = ∞ or 0 < p < ∞. The
case of the uniform metric is presented in Subsection 3.2.1, while the case of Lp
(0 < p <∞) is given in Subsection 3.2.2.

3.2.1. The case p =∞. Fix ε > 0 and let ε∗ := ε
2K , where we recall that K is the

number of colors representing the tree structures.

Step 3. Trimming of Θν (1 ≤ ν ≤ K) with ε∗. We trim each Θν , starting from
the finest level Θν

J and proceeding to the coarsest level. We remove from Θν every
cell θ� such that

(3.5)
∑
θ⊂θ�

|bθ| ≤ ε∗.

We denote by Γν the set of all θ ∈ Θν that have been retained after completing
this procedure, and by Γνf the set of all final cells in Γν , i.e., θ� ∈ Γνf iff there is no
θ ∈ Γν such that θ ( θ�. Clearly, for each θ� ∈ Γνf ,

(3.6)
∑
θ⊂θ′
|bθ| ≤ ε∗ for each θ′ ( θ�, but

∑
θ⊂θ�

|bθ| > ε∗.

We denote fΓν :=
∑

θ∈Γν bθϕθ. Therefore,

(3.7) ‖fν − fΓν‖∞ ≤ max
θ� /∈Γν

‖
∑
θ⊂θ�

bθϕθ‖∞ ≤ max
θ� /∈Γν

∑
θ⊂θ�

|bθ| ≤ ε∗,

and hence, if we set fΓ :=
∑K

ν=1 fΓν , then

(3.8) ‖f − fΓ‖∞ ≤ Kε∗ = ε/2.

Step 4. Partitioning the branches of each tree Γν into chains and the chains into
“segments”. For each of the tree structures Γν (1 ≤ ν ≤ K), we denote by Γνb the
set of all branching cells in Γν (cells with more than one child in Γν) and by Γνch
the set of all chain cells in Γν (cells with exactly one child in Γν). It is easy to see
that

(3.9) #Γνb ≤ #Γνf .

In fact, one proceeds by induction from the finest to coarser levels, associating each
branch cell from Γνb by a cell from Γνf . For each branch cell, there is always at least
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one member of Γνf still available from each descendant edge. Only one is used to
associate with the current branch cell, thereby leaving at least one available for its
next ancestor branch cell in that line.

On the other hand, #Γνch may be much larger than #Γνf , and so we will need
to process these elements. A collection of cells θ1 ⊃ θ2 ⊃ · · · ⊃ θl is called a chain
if for j = 1, . . . , l − 1, θj+1 is a child of θj and θj ∈ Γνch, and the terminal cell
θl ∈ Γνf ∪Γνb . We partition the tree Γν into chains. Namely, we start at the coarsest
level and construct (maximal) chains which will terminate with either a final cell
(in Γνf ) or a branching cell (in Γνb ). We continue this procedure to the finest level.

We next “section” each chain into segments using ε∗ as a threshold. Namely, if λ
is a chain and λ = (θj)lj=1 with θ1 ⊃ θ2 ⊃ · · · ⊃ θl, then we start from the coarsest
element θ1 and sum the coefficients of each cell, moving to the next child of the
chain until the sum exceeds the threshold. At this point we cut the chain to form
the first (significant) segment and start this procedure again with the next child in
line until this is not possible (i.e., ending without the threshold being crossed). We
call this type of segment a “remnant segment”. Therefore, this procedure cuts λ
into disjoint segments σ of the form (θj)

i+µ
j=i , µ ≥ 0, so that each segment satisfies

exactly one of the following conditions:
(a) σ consists of a single “significant cell”:

(3.10) |bθi | > ε∗ (case of µ = 0),

(b) σ is a “significant segment”:

(3.11)
i+µ−1∑
j=i

|bθj | ≤ ε∗, but
i+µ∑
j=i

|bθj | > ε∗ (case of µ > 0),

(c) σ is a “remnant segment”:

(3.12)
l∑
j=i

|bθj | ≤ ε∗.

We denote by Σν the set of all such segments σ = (θj)
i+µ
j=i resulting from this

procedure.

Step 5. Rewriting elements from certain segments of Σν . Let σ = (θj)
µ
j=1 be any

segment from Σν , and suppose that the finest cell θµ of σ belongs to Θm. We
rewrite the Courant elements (

∑µ
j=1 bθjϕθj ) of the segment at its finest (m-th)

level, finding coefficients (cθ) such that∑
θ∈Θm,θ◦∩θµ 6=∅

cθϕθ =
µ∑
j=1

bθjϕθj on θµ.

We denote Xσ := {θ ∈ Θm : θ◦ ∩ θµ 6= ∅ and θ ⊂ θ1}. Obviously, if µ = 1 (i.e.,
the segment consists of a single cell), then the coefficient remains unchanged and
Xσ = σ = {θ1}. Observe in any case that #Xσ ≤ N0 +1 and

⋃
θ∈Xσ θ ⊂ θ1. Finally,

set Σ :=
⋃K
ν=1 Σν , and correspondingly define

(3.13) ATCε (f) :=
∑
σ∈Σ

∑
θ∈Xσ

cθϕθ

as our approximant produced by the “trim and cut” algorithm.
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• Error estimation for the “trim and cut” algorithm (case p = ∞).
Suppose that the “trim and cut” procedure has been applied to a function f with
ε > 0, and ATCε (f) =

∑
θ∈Λε

cθϕθ is the resulting approximant from (3.13), where
Λε =

⋃
σ∈ΣXσ. We denote

n(ε) := nf(ε) := #Λε, ATCn(ε)(f)∞ := ‖f −ATCε (f)‖∞,

and
ATCn (f)∞ := inf

{
ATCn(ε)(f)∞ : n(ε) ≤ n

}
.

Note that each of these quantities depend implicitly on T . To complete our results
for the “trim and cut” algorithm, we show first in Lemma 3.5 that this is a good
approximation to f , and then that the number of elements that are used in the
approximant satisfies the correct estimates (see Theorem 3.7 below).

Lemma 3.5. Suppose that ATCε (f) is the approximant for f given in equation
(3.13) which has been constructed using the “trim and cut” algorithm. Then

(3.14) ‖f −ATCε (f)‖∞ ≤ ε.

Proof. Following the definition (3.13) of ATCε (f), we define

Aν :=
∑
σ′∈Σν

∑
θ∈Xσ′

cθϕθ.

Then obviously ATCε (f) =
∑K

ν=1A
ν . Since ε∗ = ε

2K , it suffices to show that
‖fΓν −Aν‖∞ ≤ ε∗.

In Step 5 we extracted the heart of each segment σ = (θj)
µ
j=1, added its con-

tribution to the approximant (3.13), and cleared room for descendant cells. To
estimate the associated error, we introduce the ring for σ as Rσ := θ1 \ θµ; then
Rσ = ∅ when σ consists of a significant cell (i.e., condition (3.10) holds). For any
nonempty ring Rσ (σ ∈ Σν), set σ′ := (θj)

µ−1
j=1 and observe that at worst

‖fΓν −Aν‖L∞(Rσ) =
∥∥∥∥∑
θ∈σ

bθϕθ −
∑
θ∈Xσ

cθϕθ

∥∥∥∥
L∞(Rσ)

≤
∥∥∥∥∑
θ∈σ′

bθϕθ

∥∥∥∥
L∞(θ1)

≤
∑
θ∈σ′
|bθ| ≤ ε∗.(3.15)

It is easy to see that all rings Rσ (σ ∈ Σν) are disjoint and the set where Aν may
differ from fΓν is contained in

⋃
σ∈Σν Rσ. Hence, by summing over all segments σ

and then over all colors ν, it follows that

‖fΓ −ATCε (f)‖∞ ≤
K∑
ν=1

∑
σ∈Σν

‖fΓν −Aν‖L∞(Rσ) ≤ Kε∗ =
ε

2
.

This together with estimate (3.8) implies the desired error estimate (3.14). �

Remark 3.6. Conditions (3.5), (3.11), and (3.12) can be relaxed by replacing every
sum

∑
|bθ| by ‖

∑
bθϕθ ‖∞. This would not change the rate of approximation, but

may improve the constants in a practical implementation.
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Theorem 3.7. If f ∈ Bατ (T ), α ≥ 1, τ := 1/α, then for each ε > 0,

(3.16) ATCn(ε)(f)∞ ≤ ε and n(ε) ≤ c ε−τ‖f‖τBατ (T ),

where c = c(N0,M0, α). Therefore,

(3.17) ATCn (f)∞ ≤ c n−α‖f‖Bατ (T ).

Proof. We have already shown in Lemma 3.5 that ATCn(ε)(f)∞ ≤ ε; so we only need
to establish n(ε) ≤ c ε−τ‖f‖τBατ (T ). We first observe that it is enough to estimate
#Σν , since contributions to the approximant occur only as each segment from Σν

is processed. Note that at most one element is contributed for segments consisting
of a single significant cell (3.10) and at most N0 + 1 contributions for the segments
satisfying instead either (3.11) or (3.12).

In order to estimate #Σν we first estimate #Γνf , since it will estimate certain
terms. The stopping criterium (3.6) in Step 3,

(3.18) ε∗ <
∑
θ⊆θ�

|bθ|,

must hold for each θ� ∈ Γνf . So if we apply the τ -th power to both sides, use the
embedding of the sequence spaces (τ ≤ 1), sum over all θ ∈ Γνf , and observe that
the supports of the cells in Γνf have disjoint interiors, then we obtain

(3.19) #Γνf (ε∗)τ <
∑
θ�∈Γνf

∑
θ⊆θ�

|bθ|τ ≤ ‖f‖τBατ (T ).

The rightmost inequality follows immediately by our definition of the norm of
Bατ (T ) (see (3.2)).

To complete the proof of the theorem, we only need to establish a similar estimate
for the number of elements of Σν . Recall, however, that the segments σ are formed
as disjoint segments of cells from the tree structure and come as one of two types,
Σsig, those exceeding the threshold (see conditions (3.10) or (3.11)) and, Σrem, those
that do not (see condition (3.12)). From the construction it follows that remnant
segments terminate with either a unique final cell or a unique branching cell, and
so by (3.9),

(3.20) #Σrem ≤ #Γνb + #Γνf ≤ 2 #Γνf ,

which has just been shown in (3.19) to satisfy the desired bound.
Therefore we are reduced to estimating #Σsig. But the same idea used in es-

timating #Γνf (see (3.18)–(3.19)) may be employed once again. Indeed, we just
replace the condition (3.18) with

(3.21) ε∗ <
∑
θ∈σ
|bθ| ,

and use the fact that the segments are disjoint (considered as part of the tree
structure), in order to obtain

�(3.22) #Σsig (ε∗)τ <
∑
σ∈Σsig

∑
θ∈σ
|bθ|τ ≤ ‖f‖τBατ (T ).

Although not required here, the following lemma will be needed in §5 and can
now be established using the techniques of this section.
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Lemma 3.8. Let f = f0 + f1, where f =
∑

θ∈Θ bθϕθ, f j =
∑

θ∈Θ b
j
θϕθ (j = 0, 1)

with bθ = b0θ + b1θ (all θ ∈ Θ), and let

Nj :=
(∑
θ∈Θ

|bjθ|
τj

)1/τj

<∞ (j = 0, 1)

with αj ≥ 1 and τj = 1/αj. If the “trim and cut” algorithm with ε = ε0 + ε1

(εj > 0) has been applied to f , represented as above in place of Step 1, then

ATCn(ε0+ε1)(f)∞ ≤ ε0 + ε1,(3.23)

n(ε0 + ε1) ≤ cε−τ0N τ0
0 + cε−τ1N τ1

1 ,(3.24)

and consequently

(3.25) ATCn (f)∞ ≤ cn−α0N0 + cn−α1N1, n = 1, 2, . . . ,

with c depending only on α0, α1, and the parameters of T .

Proof. All the elements for the proof already appear in this subsection, especially in
the proofs of Theorem 3.7 and Lemma 3.5, and we shall assume complete familiarity
with the notation, terminology, and estimates given there. Denote the number
of cells used in the “trim and cut” algorithm for (bθ), with approximation error
ε, by n(ε). Similarly, let nj(εj) be the corresponding number of cells used for
f j (j = 0, 1), again represented as f j =

∑
θ∈Θ b

j
θϕj , in place of Step 1. The

theorem will be proved once we establish the estimate

(3.26) n(ε0 + ε1) ≤ 2 (n0(ε0) + n1(ε1) )

for any ε0, ε1 > 0. Indeed, by combining this inequality with the results of Theo-
rem 3.7 (in particular, inequalities (3.16)–(3.17)), we can see that the estimate

n(ε0 + ε1) ≤ 2cε−τ00 N τ0
0 + 2cε−τ11 N τ1

1 = n(3.27)

is true if we set εj := (4c)1/τjn−1/τjNj , j = 0, 1, where c is the constant appearing
there. But the fact that n ≥ n(ε0 + ε1) and the definition of n(·) imply

ATCn (f)∞ ≤ ATCn(ε0+ε1)(f)∞ ≤ ε0 + ε1.

Hence, by the definition of the εj , the rightmost terms of this last inequality are
bounded by the desired terms on the right-hand side of inequality (3.25).

In order to prove estimate (3.26), we only need to estimate the number of seg-
ments Σ for f . First observe in Step 3 of the algorithm that for the thresholding
condition (3.6) to hold for f , with ε := ε0 + ε1, the condition must also be satisfied
for that same cell θ� for at least one of the f j with corresponding threshold εj
(j = 0, 1). This shows that the tree Γν = Γν(f, ε) determined by threshold ε is
contained in the union of the corresponding trees Γν(f j, εj) (j = 0, 1). By the con-
struction of segments σ from maximal chains of Γν(f) in Step 4, the segments for
f are disjoint and one of the conditions (3.10)-(3.12) must hold. If (3.10) or (3.11)
holds for a segment σ of f , then

∑
θ∈σ |b0θ + b1θ| > ε0 + ε1 implies the correspond-

ing condition for at least one of f0 (and ε0) or f1 (and ε1). That is, for one of
j = 0, 1 we must have

∑
θ∈σ |b

j
θ| > εj, and so for at least half of the segments of f

this condition must persist for a fixed index j (j = 0, 1). The number of remnant
segments (see (3.12)), on the other hand, may be estimated by the sum of the
number of remnant segments of f0 and f1, plus the number of new branching cells
which may arise within the union of the trees of f0 and f1. These new cells are
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introduced in Γν(f, ε) when two chains, exclusive to each of the Γν(f j , εj), meet,
thereby dividing the existing chains for each of the trees and creating an additional
segment. It is easy to see that the number of such new branching cells does not
exceed min{Γνf (f0, ε0),Γνf (f1, ε1)}.

This accounting of the three qualifying conditions (3.10)-(3.12) for segments gives⌈
#Σ
2

⌉
≤ max{#Σ(f0, ε0),#Σ(f1, ε1)}+ min{Γνf(f0, ε0),Γνf (f1, ε1)}

≤ #Σ(f0, ε0) + #Σ(f1, ε1),

which implies the desired estimate (3.26) and completes the proof. �

3.2.2. The case 0 < p < ∞. We now return to completing Steps 3-5 in the case
that p < ∞. The arguments are quite similar to the case p = ∞ in the previous
subsection, and we shall use the notation there and indicate only the differences.
Introduce a new parameter %, where 0 < % < p, and fix ε > 0.

Step 3. Trimming of Θν (1 ≤ ν ≤ K) with ε. This step is the same as in Case 1
(p =∞) with (3.5) replaced by

(3.28)
(∑
θ⊂θ�

(|bθ||θ|1/p)%
)1/%

≤ ε.

In contrast to the case p =∞, the error ‖fν−fΓν‖p is no longer controlled solely by
ε. It will depend on the smoothness of the function f that is being approximated
(see Theorem 3.9 below).

Step 4. Partitioning the branches of each tree Γν into chains and the chains into
“segments”. We proceed exactly as in the case p =∞, replacing conditions (3.10)-
(3.12) by the following:

(3.29) |bθi||θi|1/p > ε (case of µ = 0),

(3.30)(i+µ−1∑
j=i

(|bθj ||θj |1/p)%
)1/%

≤ ε, but
(i+µ∑
j=i

(|bθj ||θj |1/p)%
)1/%

> ε (case of µ > 0),

(3.31)
( l∑
j=i

(|bθj ||θj |1/p)%
)1/%

≤ ε.

Step 5. Rewriting elements from certain segments of Σν . This step is exactly the
same as for the case p =∞.

• Error estimation for the “trim and cut” algorithm (case 0 < p <∞).

Suppose that the “trim and cut” algorithm has been applied to a function f with
0 < % < p and ε > 0, as described above. Let ATCε (f)p =

∑
θ∈Λε

cθϕθ, Λε ⊂ Θ, be
the approximant produced by the algorithm. We denote

n(ε) := #Λε, ATCn(ε)(f)p := ‖f −ATCε (f)p‖p ,
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and
ATCn (f)p := inf{ATCn(ε)(f)p : n(ε) ≤ n}.

Theorem 3.9. If f ∈ Bατ (T ), where α ≥ 1/%− 1/p and τ = (α + 1
p )−1, then for

each ε > 0,

(3.32) ATCn(ε)(f)p ≤ c εατ ‖f‖τ/pBατ (T ) and n(ε) ≤ c ε−τ‖f‖τBατ (T ),

and hence

(3.33) ATCn (f)p ≤ c n−α ‖f‖Bατ (T ), n = 1, 2, . . . ,

where c depends on p, %, α, and the parameters of T .

Proof. We first estimate n(ε). From the stopping time criterium (the converse
inequality of (3.28)) in Step 3, it follows that

(3.34) ε <

(∑
θ⊂θ�

(|bθ||θ|1/p)%
)1/%

≤
(∑
θ⊂θ�

(|bθ||θ|1/p)τ
)1/τ

(since τ ≤ %)

for each θ� ∈ Γνf , which enables us to repeat the arguments from the proof of
Theorem 3.7 and obtain the estimate #Γνf ≤ c ε−τ‖f‖τBατ (T ). In going further, we
use (3.30) in a similar fashion and the above to infer as in the proof of Theorem 3.7
that

(3.35) #Σν ≤ c ε−τ‖f‖τBατ (T ).

This implies the desired estimate for n(ε).
It remains to estimate the error ‖f −ATCn(ε)(f)p‖p. We first estimate ‖fν−fΓν‖p.

To this end, we group the removed cells into collections of comparable Bατ -norms.
We denote by

Ξν := {θ ∈ Θν \ Γν : θ * θ′ for any θ′ ∈ Θν \ Γν , θ′ 6= θ}
the set of all cells at which a trimmed branch starts. Note that for each θ� ∈ Ξν

the inequality (3.28) holds. Therefore, we can partition Ξν into disjoint collections
Ξνj , j = 1, 2, . . . , Lν , such that Ξν =

⋃Lν
j=1 Ξνj and

(3.36) ε% <
∑
θ�∈Ξνj

∑
θ⊂θ�

(|bθ||θ|1/p)% ≤ 2ε%

for all j = 1, 2, . . . , Lν except possibly for j = Lν, when the leftmost inequality
may fail. Hence, since the cells from Ξν have disjoint interiors, and recalling that
|bθ||θ|1/p ≈ ‖bθϕθ‖p, we obtain

‖fν − fΓν‖p = ‖
Lν∑
j=1

∑
θ�∈Ξνj

∑
θ⊂θ�

bθϕθ‖p ≤
( Lν∑
j=1

‖
∑
θ�∈Ξνj

∑
θ⊂θ�

bθϕθ‖pp
) 1
p

≤ c

( Lν∑
j=1

[
∑
θ�∈Ξνj

∑
θ⊂θ�

(|bθ||θ|1/p)%]p/%
) 1
p

(3.37)

≤ c (
Lν∑
j=1

2p/%εp)1/p = c (Lν)1/pε,
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where we used the embedding inequality (2.26). To estimate Lν we once again
exploit the idea used in estimating #Γνf (see (3.18)–(3.19)). Since 0 < τ ≤ %, we
have by (3.36) that

ε <

( ∑
θ�∈Ξνj

∑
θ⊂θ�

(|bθ||θ|1/p)%
)1/%

≤
( ∑
θ�∈Ξνj

∑
θ⊂θ�

(|bθ||θ|1/p)τ
)1/τ

.

We use this and the fact that the collections Ξνj are disjoint to obtain

(3.38) Lν · ετ ≤ c
Lν∑
j=1

( ∑
θ�∈Ξνj

∑
θ⊂θ�

‖bθϕθ‖τp
)
≤ c‖fν‖τBατ (T ).

Combining (3.37) and (3.38), we obtain

‖fν − fΓν‖p ≤ c (ε−τ‖fν‖τBατ (T ))
1/pε = c εατ‖fν‖τ/pBατ (T ),

and hence by standard subaddivitity estimates for Lp (0 < p <∞) we may estimate
the sum

‖f − fΓ‖p ≤
( K∑
ν=1

‖fν − fΓν‖p
∗

p

)1/p∗

(3.39)

≤ c εατ
( K∑
ν=1

(‖fν‖τBατ (T ))
p∗/p

)1/p∗

≤ c εατ ‖f‖τ/pBατ (T ),

where p∗ := min{1, p}.
To complete the proof of the theorem, we must estimate ‖fΓν − Aν‖p. This

differs from our earlier arguments in the case p = ∞, which involved the error
estimate (3.15) over a ring of a segment. For any such ring Rσ (σ ∈ Σν) we use
instead the estimate

‖fΓν −Aν‖Lp(Rσ) = ‖
∑
θ∈σ

bθϕθ −
∑
θ∈Xσ

cθϕθ‖Lp(Rσ) ≤ ‖
∑
θ∈σ′

bθϕθ‖Lp(θ1)

≤ c

(∑
θ∈σ′
‖bθϕθ‖τp

)1/τ

≤ c
(∑
θ∈σ′

(|bθ||θ|1/p)%
)1/%

≤ c ε,

where we used the embedding inequality (2.26). From the above, using that all
rings {Rσ}σ∈Σν have disjoint interiors, we obtain

‖fΓν −Aν‖p ≤ (
∑
σ∈Σν

‖fΓν −Aν‖pLp(Rσ))
1/p ≤ c (#Σν)1/pε.(3.40)

Combining (3.40) and (3.35) yields

‖fΓν −Aν‖p ≤ c εατ‖fν‖τ/pBατ (T ),

and hence

‖fΓ −ATCε (f)p‖p ≤
( K∑
ν=1

‖fΓν −Aν‖p
∗

p

)1/p∗

≤ c εατ
( K∑
ν=1

(‖fν‖τBατ (T ))
p∗/p

)1/p∗

≤ c εατ ‖f‖τ/pBατ (T ),
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where p∗ := min{1, p}. From this and (3.39), we obtain the appropriate estimate
which corresponds to (3.14) of the case for p =∞:

�(3.41) ‖f −ATCε (f)p‖p ≤ c εατ ‖f‖τ/pBατ (T ).

Lemma 3.10. Let f = f0 + f1, where f =
∑

θ∈Θ bθϕθ, f j =
∑

θ∈Θ b
j
θϕθ (j = 0, 1)

with bθ = b1θ + b2θ (all θ), and let

Nj :=
(∑
θ∈Θ

(|bjθ||θ|
1/p)τj

)1/τj

<∞ (j = 0, 1)

with αj ≥ 1
%−

1
p (0 < % < p) and τj := 1/(αj+ 1

p )−1, j = 0, 1. Furthermore, suppose
the “trim and cut” algorithm has been applied to f , using the above representation
of f in place of Step 1, with 0 < % < p as above and ε = ε0 +ε1 for some ε0, ε1 > 0.
Then we have

ATCn(ε0+ε1)(f)p ≤ c (ε0 + ε1)
(
ε−τ00 N τ0

0 + ε−τ11 N τ1
1

)1/p

,(3.42)

n(ε0 + ε1) ≤ c

(
ε−τ00 N τ0

0 + ε−τ11 N τ1
1

)
,(3.43)

and, therefore,

(3.44) ATCn (f)p ≤ c
(
n−α0N0 + n−α1N1

)
, n = 1, 2, . . . ,

where c depends only on p, %, α0, α1, and the parameters of T .

Proof. The proof is very similar to the proof of Theorem 3.9, and we shall only
indicate the differences, using the notation and ideas from there. Those differences
are in estimating #Γνf , #Σν and Lν (see (3.35) and (3.38)). From the stopping
criterium (converse inequality to (3.28)) in Step 3, it follows that, for θ� ∈ Γνf ,

ε0 + ε1 <

(∑
θ⊂θ�

(|bθ||θ|1/p)%
)1/%

≤ c%

(∑
θ⊂θ�

(|b0θ||θ|1/p)%
)1/%

+c%

(∑
θ⊂θ�

(|b1θ||θ|1/p)%
)1/%

≤ c%

(∑
θ⊂θ�

(|b0θ||θ|1/p)τ0
)1/τ0

+c%

(∑
θ⊂θ�

(|b1θ||θ|1/p)τ1
)1/τ1

,

where c% := max{1, 21/%−1} and we used the fact that τ0, τ1 ≤ %. Therefore, for
each θ� ∈ Γνf , at least one of

ε0 < c%

(∑
θ⊂θ�

(|b0θ||θ|1/p)τ0
)1/τ0

or ε1 < c%

(∑
θ⊂θ�

(|b1θ||θ|1/p)τ1
)1/τ1

must hold. Denoting by Γνf0 and Γνf1 the sets of all θ� ∈ Γνf for which the first or
second inequality, respectively, holds, we obtain

N τj
j ≥ c

∑
θ�∈Γν

fj

∑
θ⊂θ�

(|bjθ||θ|1/p)τj ≥ c#Γνfj ε
τj
j (j = 0, 1),
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and hence

(3.45) #Γνf ≤ #Γνf0 + #Γνf1 ≤ c
(
ε−τ00 N τ0

0 + ε−τ11 N τ1
1

)
.

We obtain similar (with the same right-hand-side quantity) for #Σν and Lν by
using the same argument. The estimate for #Σν gives the desired estimate for
n(ε0 + ε1).

We may use estimates (3.37) and (3.40) in the proof of Theorem 3.9, with ε =
ε0 + ε1, together with the above estimates for #Σν and Lν, to obtain

ATCn(ε0+ε1)(f)p ≤ c (ε0 + ε1) (#Σ)1/p,(3.46)

from which the desired estimate (3.42) follows. The final estimate (3.44) is proved
by selecting εj = (2c/n)1/τjNj , which by our result (3.43), gives that n(ε0 +ε1) ≤ n
and so

ATCn (f)p ≤ ATCn(ε0+ε1)(f)p ≤ c n1/p (ε0 + ε1) ≤ c
(
n−α0N0 + n−α1N1

)
,

where we have used (3.46) in the second inequality. �

3.3. “Push the error” algorithm. The idea of this algorithm to our knowledge
first appeared in [5]. Our goal is to adapt this algorithm for nonlinear n-term
Courant element approximation in the uniform norm and perfect it so that the
resulting algorithm achieves the rate of convergence of the best approximation.

In §3.3.1, we describe the “push the error” algorithm in its simplest and most
naive form. We follow with three examples which illustrate deficiencies of the
simple algorithm and the types of traps to which it may fall prey. In §3.3.2, we
give our refined version of that algorithm. Throughout this section, we assume that
T =

⋃∞
m=0 Tm is an LR-triangulation of some compact polygonal domain E in R2,

where the approximation takes place (see §2.1), and f ∈ C(E).

3.3.1. A naive “push the error” algorithm (p = ∞). We begin by outlining the
basic elements of the algorithm.

Step 1 (Decompose). In this subsection we denote by Qj(f) the piecewise linear
continuous function that interpolates f at the vertices Vj of all triangles from Tj .
Clearly f ∈ C(E) can be represented as follows:

(3.47) f = Q0(f) +
∞∑
j=1

(Qj(f)−Qj−1(f)) =:
∑
θ∈Θ

cθϕθ ,

where the series converges uniformly. In practice the series terminates at some
finest level ΘJ (J > 1), so that

f =
J∑
j=0

∑
θ∈Θj

cθϕθ.

Assuming that initially f =
∑
θ∈ΘJ

cθϕθ, there exists a fast and efficient procedure
for obtaining (3.47).

Step 2 (“Threshold” and “push the error”). Fix ε > 0. We shall begin at
the coarsest level Θ0 and proceed consecutively through to higher resolution levels
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Θ1,Θ2, . . . ,ΘJ . We define Λ0 as the set of all cells θ ∈ Θ0 such that |cθ| > ε
(‖ϕθ‖ = 1), and set

A0 :=
∑
θ∈Λ0

cθϕθ =:
∑
θ∈Θ0

bθϕθ.

Next we rewrite all remaining terms cθϕθ (θ ∈ Θ0 \ Λ0) at the next finer level
and add the resulting terms to the corresponding terms from (cθϕθ)θ∈Θ1

. Thus we
obtain a representation of f in the form

f = A0 +
∑
θ∈Θ1

bθϕθ +
J∑
j=2

∑
θ∈Θj

cθϕθ.

We next process the Courant elements at level Θ1. We define Λ1 as the set of all
θ ∈ Θ1 such that |bθ| > ε, and set A1 :=

∑
θ∈Λ1

bθϕθ. All remaining terms bθϕθ,
θ ∈ Θ1 \ Λ1, we rewrite at the finer level Θ2 and add the resulting terms to the
corresponding terms (cθϕθ)θ∈Θ2

. The representation of f at this stage is written as

(3.48) f = A0 +A1 +
∑
θ∈Θ2

bθϕθ +
J∑
j=3

∑
θ∈Θj

cθϕθ.

We continue in this way until we reach the finest (i.e., highest resolution) level
ΘJ . The only modification at this finest level is that we discard all terms whose
coefficients in absolute value do not exceed our threshold parameter ε. In this way
we obtain our approximation

A := Aε(f) :=
J∑
j=0

Aj =
∑
θ∈Λ

bθϕθ, Λ :=
J⋃
j=0

Λj.

Since only small terms (|bθ| ≤ ε) at a single (in this case, finest) level are discarded,
they cannot stack up, and we have

‖f −Aε(f)‖∞ ≤ ε.
Some modifications must be made, however, to insure that this simple and efficient
algorithm will achieve sparse representations in an asymptotically optimal sense and
avoid hidden traps that will result in using too many terms in the approximation.

We indicate briefly each of the possible pitfalls to keep in mind, before developing
the algorithm in full in the next subsection.

Trap 1. The interpolation scheme we used to represent f in (3.47) leads to
difficulties, since it does not always lead to sparse representations. We give here a
univariate example which may be easily extended to two dimensions.

Let E := [−1, 1], and let f be the hat function on [− 1
2N ,

1
2N ] for N sufficiently

large, i.e., f(x) = ϕ(2Nx) with ϕ(x) := (1 − |x|)1[−1,1](x), x ∈ R. We assume
that T consists of all dyadic subintervals of [−1, 1]. Using the interpolation scheme
described in Step 1 at the coarsest level, we must interpolate the extremes at
−1, 0, 1 in order to decrease the L∞ error. The resulting error after this stage,
however, is 1− 1

2N . Proceeding with the naive “push-the-error” algorithm with any
ε < 1

2 results in an index set Λ with #Λ ∼ N . However, the best approximation
is achieved using the single fine scale element ϕ(2Nx). Therefore, any reasonable
algorithm that retains n terms in the approximant should give a rate of convergence
O(n−γ) for any γ > 0.
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Trap 2. For a given ε > 0 the algorithm as currently described may produce a
great number of undesired terms due to the superposition of a large number of fine
level nonintersecting terms (cθϕθ) with a single coarse level term (ϕθ0):

(3.49) f = ε

(
ϕ[−1,1] +

∑
θ∈M

δ ϕθ

)
.

We setM as a set of disjoint cells θ from level 22N with θ ⊂ (−δ, δ), where δ = 2−N .
It is clear that we can choose these cells for M so that #M = 2N . At the central
vertex xθ of each cell θ we have f(xθ) > ε(1 − δ) + δε = ε. The “push-the-error
algorithm” will produce an inefficient approximation, since it will not select the
coarse first term in (3.49) as one might hope. Instead, no such element will be
chosen at the coarsest level, and the error will be pushed. At each successive
stage the coefficients of the rewritten descendant Courant elements for θ0 will all
again lie beneath the threshold and be further rewritten until all cells are on level
22N . At that stage they will be combined with the remaining terms in (3.49).
The corresponding cells will now have coefficients that exceed the threshold and
must be selected, producing at least 2N terms in the approximant. As indicated
above, a desirable algorithm should have anticipated the trap of many small, finely
supported elements that may come at a late stage, and would have chosen for this
function the approximation (with threshold ε) that consists of a single element,
namely ε ϕ[−1,1].

Trap 3. The final example is one that outmaneuvers a quick remedy to Trap 2,
i.e., merely thresholding all small terms at the finest level. For a given ε > 0, we
define

f = ε ϕ[−1,1] +
N∑
j=1

δj ϕ[0,2−mj ] + εϕ[0,2−M ],

where mj = j2, δj = 2−jε, and M = 2N
2
. In this example, elements are again

building near the origin, but now appear at many levels with small amplitudes.
The “push-the-error” algorithm will again take no elements at the coarsest level
and push the error to the next level. Continuing with the algorithm, we are forced
to take essentially all terms as the approximation to the given function when,
optimally, only two terms need be taken.

It is obvious that we can take each of these template examples as building blocks
and build functions to cause these problems for all ε, at all locations and scales.

3.3.2. “Push the error” algorithm in the uniform norm (p = ∞). In this section
we indicate the refinements needed in order to guarantee that the “push the error”
algorithm will achieve optimal rates of approximation. As with the “trim and cut”
algorithm, we break it down into manageable steps.

• Description of the algorithm.

Step 1 (Decompose). For f ∈ C(E) initially represented by (3.1), we may assume,
without loss of generality, that there exists a finest level ΘJ (J > 0) such that f is
written as

(3.50) f =
J∑
j=0

∑
θ∈Θj

bθϕθ.
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Step 2 (“Prune the shrubs”). In the current algorithm we are not able to organize
the cells of Θ into trees as we did in the “trim and cut” method, since, once we
rewrite the error on a finer level, adjacent trees are immediately affected and we lose
the benefit of their intended organization properties. This step of our algorithm,
however, is analogous to Step 3 of the “trim and cut” algorithm. We fix ε > 0
and let ε∗ := ε/2. Our goal is, by discarding small insignificant terms bθϕθ in
the representation of f from (3.50), to prevent our refined algorithm from being
trapped by a situation such as that described in “Trap 2” (see the naive “push
the error” algorithm of §3.3.1). We shall remove such terms, but insure that the
resulting uniform error is at most ε∗ and denote by Γ the set of all retained cells.
In addition, we shall construct a set Γf ⊂ Γ, consisting of “final cells” in Γ.

First, we need to introduce an organizational concept as a replacement for the
tree structures of §3.2. We shall say (figuratively) that a cell θ ∈ Θ sits on another
cell θ� ∈ Θ, if θ is at least as fine as θ� and its interior (denoted by θ◦) intersects
the interior of θ�. Furthermore, for θ� ∈ Θ, we denote the collection of all cells that
sit on θ� by

(3.51) Yθ� := {θ ∈ Θ : θ◦ ∩ θ� 6= ∅ and level(θ) ≥ level(θ�)}.

The procedure of Step 2 will begin at the finest level and proceed to the coarsest,
level by level, constructing sets Γf and Γ. To initialize the procedure we put into
Γf all significant cells θ ∈ ΘJ , i.e., such that |bθ| > ε∗. We place in Γ any cell from
ΘJ that sits on a cell from Γf .

The inductive step proceeds as follows. Suppose that all cells from Θj with levels
j > m (0 ≤ m < J) have already been processed. We now describe how to process
Θm. We place into Γf all cells θ� ∈ Θm that satisfy

(3.52)
∑
θ∈Yθ�

|bθ| > ε∗,

and for which there is no θ ∈ Γf from a higher level (i.e., > m) that sits on θ�. A
cell θ� from Θm is placed in Γ if there is a cell θ in the current Γf that sits on θ�.
We may consider the current version of Γf as an intermediate (m-th) version of a
final set for Γ. Obviously, a cell θ� from Θm is discarded and not placed in Γ if

(3.53)
∑
θ∈Yθ�

|bθ| ≤ ε∗,

and there is no θ ∈ Γf from level m or finer that sits on θ�.
The procedure is terminated after Θ0 is processed and Step 2 of the algorithm

is completed.

The two sets of cells Γ and Γf (Γf ⊂ Γ ⊂ Θ) produced by Step 2 have the
following properties, which follow directly from their construction:

(i) if θ1, θ2 ∈ Γf and level(θ1) 6= level(θ2), then θ◦1 ∩ θ◦2 = ∅;
(ii) for each θ� ∈ Γf , the inequality (3.52) holds;
(iii) for each θ� ∈ Γ, there exists θ ∈ Γf that sits on θ�.

We set fΓ :=
∑
θ∈Γ bθϕθ and define

(3.54) aθ :=
{
bθ, if θ ∈ Γ,
0, if θ ∈ Θ \ Γ;
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then obviously

(3.55) fΓ =
∑
θ∈Θ

aθϕθ.

It follows from the construction that

(3.56) ‖f − fΓ‖∞ ≤ ε∗.

Indeed, to see that this estimate holds, we let D denote the set of all cells θ ∈ Θ
that were discarded during the implementation of Step 2, i.e., D = Θ \ Γ. Let
x ∈ E be arbitrary. If x /∈

⋃
θ∈D θ, then x does not belong to any cell that was

discarded, and so fΓ(x) = f(x). On the other hand, if x ∈
⋃
θ∈D θ, then there

exists a cell θ� ∈ D that contains x and has coarsest level. Since θ� was discarded,
the inequality (3.53) must hold. It follows that

|f(x)− fΓ(x)| = |
∑
θ∈D

bθϕθ(x)| ≤
∑
θ∈Yθ�

|bθ| ≤ ε∗,

where we have normalized our elements so that ‖ϕθ‖∞ = 1. This verifies the desired
inequality (3.56).

Step 3 (Push the error). We now process cells of fΓ with ε∗, starting from the
coarsest level Θ0 and continuing to finer levels. The outcome of this step will be
an approximant A := APε (f) of the form

(3.57) A =
J∑
j=0

Aj :=
J∑
j=0

∑
θ∈Λj

dθϕθ,

where Λj ⊂ Θj and Λj will depend on f .
We use the notation

Xθ� := {θ ∈ Θ : θ◦ ∩ θ� 6= ∅ and level(θ) = level(θ�)}

for cells from the same level as θ� which are adjacent to it.
We start from the representation of fΓ in (3.55). We define Λ̃0 as the set of all

θ ∈ Θ0 such that |aθ| > ε∗ (‖ϕθ‖∞ = 1), and we set Λ0 :=
⋃
θ∈Λ̃0

Xθ. We denote

A0 :=
∑
θ∈Λ0

aθϕθ =:
∑
θ∈Λ0

dθϕθ.

For each θ� ∈ Θj , ϕθ� can be represented as a linear combination of ϕθ’s with
θ ∈ Θj+1. We use this to rewrite (represent) all remaining terms aθϕθ, θ ∈ Θ0 \Λ0,
at the next level and add the resulting terms to the corresponding terms aθϕθ,
θ ∈ Θ1. We denote by dθϕθ, θ ∈ Θ1, the new terms, and therefore obtain a
representation of f in the form

f = A0 +
∑
θ∈Θ1

dθϕθ +
J∑
j=2

∑
θ∈Θj

aθϕθ.

Continuing with the next level, we define Λ̃1 as the set of all θ ∈ Θ1 such that
|dθ| > ε∗, set Λ1 :=

⋃
θ∈Λ̃1

Xθ , and define A1 :=
∑

θ∈Λ1
dθϕθ. As for the previous

level, we rewrite the remaining terms dθϕθ, θ ∈ Θ1 \ Λ1, at the next level and
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add the resulting terms to the corresponding terms aθϕθ, θ ∈ Θ2. We obtain the
following representation of f :

f = A0 +A1 +
∑
θ∈Θ2

dθϕθ +
J∑
j=3

∑
θ∈Θj

aθϕθ.

We continue in this way until we reach the highest level of cells ΘJ . At level ΘJ ,
we define Λ̃J , ΛJ , and AJ as above and discard all terms dθϕθ, θ ∈ ΘJ \ ΛJ .
We finally obtain our approximant A = APε (f) in the form (3.57). We denote
Λ := Λε :=

⋃J
j=0 Λj and Λ̃ := Λ̃ε :=

⋃J
j=0 Λ̃j , and so A =

∑
θ∈Λ dθϕθ.

Since we throw away only elements dθϕθ with |dθ| ≤ ε∗ at the finest level ΘJ ,
we have the estimate

‖fΓ −A‖∞ ≤ ‖
∑

θ∈ΘJ\ΛJ

dθϕθ‖∞ ≤ ε∗,

and hence, using (3.56),

(3.58) ‖f −A‖∞ ≤ 2ε∗ = ε.

This completes Step 3 and with that the description of the algorithm.

We want to point out an important distinction between the “push the error”
steps in the above algorithm and the “naive” algorithm described in §3.3.1. The
difference is that each time we put a significant term dθϕθ (|dθ| > ε∗) into A we also
include the neighboring terms (i.e., from the index collection Xθ). This prevents
our algorithm from being defeated by a situation like that described in “Trap 3” in
§3.3.1.

• Error estimation for the “push the error” algorithm. Suppose “push
the error” is applied to a function f with ε > 0, and APε (f) is the approximant
obtained: APε (f) :=

∑
θ∈Λε

dθϕθ. As in the “trim and cut” method, we use the
corresponding notation

n(ε) := #Λε, APn(ε)(f)∞ := APn(ε)(f, T )∞ := ‖f −APε (f)‖∞,

and

APn (f)∞ := APn (f, T )∞ := inf{APn(ε)(f)∞ : n(ε) ≤ n}.

We remark that if f ∈ Bατ (T ), then by the Embedding Theorem 2.7 it follows that
f is continuous. Estimates (3.59) and (3.60), established in the following theorem,
imply uniform convergence of the “push the error” approximants to f and provide
the necessary rates of approximation by the method.

Theorem 3.11. If f ∈ Bατ (T ), α ≥ 1, τ := 1/α, then for each ε > 0,

(3.59) APn(ε)(f)∞ ≤ ε and n(ε) ≤ cε−τ‖f‖τBατ (T ),

where c = 6N3
0 . Furthermore, we have

(3.60) APn (f)∞ ≤ cn−α‖f‖Bατ (T ), n = 1, 2, . . .

with c = (6N3
0 )α.
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Proof. In order to prove (3.59), we first observe that the direct approximation
estimate APn(ε)(f)∞ ≤ ε follows from inequality (3.58) in the construction of the
algorithm. Therefore it only remains to show that #Λε ≤ cε−τ‖f‖τBατ (T ). Clearly,

(3.61) #Λε ≤ (N0 + 1)(#Λ̃ε),

and we need only estimate the cardinality of Λ̃ := Λ̃ε. We split Λ̃ into two disjoint
sets, Λ̃f and Λ̃r. We define Λ̃f as the set of all final cells in Λ̃, that is, the set of all
θ ∈ Λ̃ for which there is no θ′ ∈ Λ̃ of a higher level sitting on θ. We set Λ̃r := Λ̃\Λ̃f .

We shall make repeated use of the following simple lemma.

Lemma 3.12. Suppose M ⊂ Θ satisfies the condition that cells from different
levels do not have interiors that intersect. Then each θ ∈ Θ may sit on at most
N0 + 1 cells from M.

Proof. The simple hypothesis of the lemma just states that for a cell θ2 to sit on a
cell θ1, it must be on the same level; but there can be at most N0 +1 such cells. �

We first estimate the number of elements #Γf that arise as final cells in Step 2.
For each θ� ∈ Γf , we have, by (3.52),

(3.62) ε∗ <
∑
θ∈Yθ�

|bθ| ≤ (
∑
θ∈Yθ�

|bθ|τ )1/τ (τ ≤ 1).

Clearly, Γf satisfies the hypothesis of Lemma 3.12 (see Property (i) of Γf , which
is stated following (3.52)), and hence each θ ∈ Θ may sit on at most N0 + 1 cells
from Γf . Using this together with (3.62), we obtain

‖f‖τBατ (T ) :=
∑
θ∈Θ

|bθ|τ ≥ (N0 + 1)−1
∑
θ�∈Γf

∑
θ∈Yθ�

|bθ|τ ≥ (N0 + 1)−1(#Γf )(ε∗)τ ,

which, since τ ≤ 1, implies

(3.63) #Γf ≤ 2(N0 + 1)ε−τ‖f‖τBατ (T ).

We next estimate #Λ̃f , the number of final cells for the index set Λ̃ constructed
in Step 3. Clearly from that construction, a cell θ ∈ Λ̃ may occur only if θ ∈ Γ, and
hence Λ̃ ⊂ Γ. On the other hand, from Step 2, for each θ ∈ Γ there exists θ′ ∈ Γf
sitting on θ. Therefore, for each θ ∈ Λ̃f there exists θ′ ∈ Γf sitting on θ. But Λ̃f
satisfies the hypothesis of Lemma 3.12 (with M replaced by Λ̃f ), and hence a cell
θ ∈ Γf may sit on at most N0 + 1 cells from Λ̃f . From this and (3.63), we have

(3.64) #Λ̃f ≤ (N0 + 1)(#Γf ) ≤ 2(N0 + 1)2ε−τ‖f‖τBατ (T ).

To complete the estimate for #Λ̃, we must estimate #Λ̃r. Suppose θ� ∈ Λ̃r :=
Λ̃ \ Λ̃f , and let θ′ ∈ Λ̃ be a cell sitting on θ� with level(θ′) > level(θ�) and such
that level(θ′) is the minimum of the levels of all cells in Λ̃ sitting on θ�. Such a
cell exists, by the definition of Λ̃r, but it is possibly not unique. We denote by
Zθ� the set of all θ ∈ Γ which, while “pushing the error” from θ� in Step 3, have
contributed to the term dθ′ϕθ′ . Due to the minimality of θ′, we see that

(3.65) dθ′ = dθ′ϕθ′(vθ′) =
∑
θ∈Zθ�

bθϕθ(vθ′),
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where vθ′ is the “central vertex” of θ′. Since θ′ ∈ Λ̃, then |dθ′ | > ε∗, and hence,
using (3.65),

(3.66) ε∗ < |dθ′ | ≤ ‖
∑
θ∈Zθ�

bθϕθ‖∞ ≤
∑
θ∈Zθ�

|bθ| ≤
( ∑
θ∈Zθ�

|bθ|τ
)1/τ

(τ ≤ 1).

It is easily seen that each θ ∈ Zθ� satisfies the following properties:
(a) θ ⊃ θ′,
(b) level(θ�) < level(θ) ≤ level(θ′),
(c) the “central vertex” of θ lies on θ�, and hence θ sits on θ�.

Property (a) follows by observing that the support of an element which is rewritten
at a finer level always contains the supports of the contributing finer elements.
Property (b) holds, since Xθ� ⊂ Λ, and hence no terms bθϕθ with level(θ) ≤ level(θ�)
may contribute to dθ′ϕθ′ . Note that it is possible that there are θ that satisfy
properties (a)-(c) above but do not belong to Zθ� .

Next, we show that each θ ∈ Γ may belong to at most N0 + 1 sets Zθ? with
θ? ∈ Λ̃r. Indeed, let θ ∈ Γ and suppose θ� ∈ Λ̃r is such that θ ∈ Zθ� . In
the following, we shall use the notation from above that involves θ�, but we will
consider such θ� as arbitrary in Λ̃. Let Mθ denote the set of all θ] ∈ Λ̃ such
that θ ∈ Zθ] . In particular, θ� ∈ Mθ. We fix Mθ and show that it satisfies the
hypothesis of Lemma 3.12. Indeed, let θ1, θ2 ∈ Mθ from different levels. But this
implies θ ∈ Zθj (j = 1, 2), and we may as well consider θ1 = θ� and say θ2 = θ],
where level(θ]) 6= level(θ�). Evidently, level(θ]) < level(θ′), from property (b)
applied to θ] and θ.

By symmetry, we may assume level(θ]) < level(θ�). If (θ])◦ ∩ (θ�)◦ 6= ∅, then
θ� sits on θ] and hence, since level(θ) > level(θ�), θ cannot be in Zθ] , which is
a contradiction. Therefore, (θ])◦ ∩ (θ�)◦ = ∅, which verifies the hypothesis of
Lemma 3.12.

Now that Lemma 3.12 can be applied to Mθ, then θ (as any other cell from Θ)
may sit on at most N0 + 1 cells θ? ∈ Mθ. Therefore, θ may belong to at most
N0 + 1 such sets Zθ? with θ? ∈ Λ̃r. Using this and (3.66), we obtain

‖f‖τBατ (T ) ≥
∑
θ∈Γ

|bθ|τ ≥ (N0 + 1)−1
∑
θ�∈Λ̃r

∑
θ∈Zθ�

|bθ|τ ≥ (N0 + 1)−1(#Λ̃r)(ε∗)τ .

Therefore, it follows (recall that τ < 1) that

#Λ̃r ≤ 2(N0 + 1)ε−τ‖f‖τBατ (T ).

We combine this estimate with (3.61) and (3.64) to obtain the desired estimate of
#Λε in (3.59). Estimate (3.60) follows immediately from (3.59). �

The following lemma will be needed in §5.

Lemma 3.13. Let f = f0 +f1, where f =
∑

θ∈Θ bθϕθ, f j =
∑

θ∈Θ b
j
θϕθ (j = 0, 1),

and bθ = b0θ + b1θ (all θ ∈ Θ), and suppose

Nj :=
(∑
θ∈Θ

|bjθ|
τj

)1/τj

<∞ (j = 0, 1),

where α0, α1 ≥ 1 and τ0 := 1/α0, τ1 := 1/α1. Furthermore, suppose that “push
the error” is applied using the above representation of f , with ε := ε0 + ε1, where
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ε0, ε1 > 0. Then we have

(3.67) APn(ε0+ε1)(f)∞ ≤ ε0 + ε1,

(3.68) n(ε0 + ε1) ≤ cε−τ00 N τ0
0 + cε−τ11 N τ1

1 ,

where c = 6N3
0 . Consequently,

(3.69) APn (f)∞ ≤ c0n−α0N0 + c1n
−α1N1, n = 1, 2, . . . ,

with cj = (12N3
0 )αj .

Proof. We follow in the footsteps of the proof of Theorem 3.11. We shall use the
notation from there, and only indicate the differences as they arise. We denote
ε∗ := ε∗0 + ε∗1 with ε∗j := εj/2, j = 0, 1. Estimate (3.67) is immediate from the
description of the algorithm.

It remains to provide estimate (3.68) for the number of terms used in the ap-
proximation. As in (3.61), we have

(3.70) n(ε0 + ε1) := #Λε ≤ (N0 + 1)(#Λ̃ε),

where we denote Λ̃ := Λ̃ε, and Λ̃f and Λ̃r have the same definitions, proceeding
exactly as in the proof of Theorem 3.11. Continuing as there, we have to estimate
#Γf . For each θ� ∈ Γf , we have, by (3.52) and the fact that 0 < τj ≤ 1 (j = 0, 1),
that

ε∗0 + ε∗1 = ε∗ <
∑
θ∈Yθ�

|bθ| ≤
∑
θ∈Yθ�

|b0θ|+
∑
θ∈Yθ�

|b1θ|

≤ (
∑
θ∈Yθ�

|b0θ|τ0)1/τ0 + (
∑
θ∈Yθ�

|b1θ|τ1)1/τ1 .

From this, it follows that, for each θ� ∈ Γf , at least one of

(3.71) ε∗0 < (
∑
θ∈Yθ�

|b0θ|τ0)1/τ0 or ε∗1 < (
∑
θ∈Yθ�

|b1θ|τ1)1/τ1

must hold. We denote by Γ0
f and Γ1

f the sets of all θ� ∈ Γf such that the respective
condition from (3.71) holds for either j = 0 or j = 1. For j = 0, 1, we have similarly,
as in the proof of Theorem 3.11,

N τj
j :=

∑
θ∈Θ

|bjθ|τj ≥ (N0 + 1)−1
∑
θ�∈Γjf

∑
θ∈Yθ�

|bjθ|τj ≥ (N0 + 1)−1(#Γjf )(ε∗j )
τj ,

and hence (τj ≤ 1)

#Γjf ≤ 2(N0 + 1)ε−τjj N τj
j .

Therefore,

#Λ̃f ≤ (N0 + 1)(#Γf ) ≤ (N0 + 1)(#Γ0
f + #Γ1

f )

≤ 2(N0 + 1)2

(
ε−τ00 N τ0

0 + ε−τ11 N τ1
1

)
.(3.72)

To complete the proof, we must next estimate #Λ̃r. For each θ� ∈ Λ̃r, we define
θ′ ∈ Λ̃ and Zθ� exactly as in the proof of Theorem 3.11. Similarly as in (3.66), we
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have

ε∗0 + ε∗1 = ε∗ <
∑
θ∈Zθ�

|bθ| ≤
∑
θ∈Zθ�

|b0θ|+
∑
θ∈Zθ�

|b1θ|

≤ (
∑
θ∈Zθ�

|b0θ|τ0)1/τ0 + (
∑
θ∈Zθ�

|b1θ|τ1)1/τ1 .

From this, it follows that, for each θ� ∈ Λ̃r, at least one of

(3.73) ε∗0 < (
∑
θ∈Zθ�

|b0θ|τ0)1/τ0

or

(3.74) ε∗1 < (
∑
θ∈Zθ�

|b1θ|τ1)1/τ1

must hold. We denote by Λ̃0
r and Λ̃1

r the sets of all θ� ∈ Λ̃r for which (3.73) and
(3.74) hold, respectively. As in the proof of Theorem 3.11, each θ ∈ Θ may belong
to at most N0 + 1 sets Zθ� , θ� ∈ Λ̃r. Therefore, for j = 0, 1,

N τj
j ≥

∑
θ∈Γ

|bjθ|
τj ≥ (N0 + 1)−1

∑
θ�∈Λ̃jr

∑
θ∈Zθ�

|bjθ|
τj ≥ (N0 + 1)−1(#Λ̃jr)(ε

∗
j )
τj ,

and hence
#Λ̃jr ≤ 2(N0 + 1) ε−τjj N τj

j , j = 0, 1.
Therefore,

#Λ̃r ≤ #Λ̃0
r + #Λ̃1

r ≤ 2(N0 + 1)
(
ε−τ00 N τ0

0 + ε−τ11 N τ1
1

)
.

This estimate, together with (3.70) and (3.72), implies (3.68) (since N0 ≥ 3). Esti-
mate (3.69) follows by using εj := (2c)αjn−αjNj (j = 0, 1) in (3.67) and (3.68) to
obtain n(ε0 + ε1) ≤ n, and so APn (f)∞ ≤ APn(ε0+ε1)(f)∞ ≤ ε0 + ε1. �

4. Best n-term Courant element approximation

In this section, we assume that T is a locally regular triangulation of a bounded
polygonal domainE with parametersN0, M0, r, ρ, δ, and #T0 (see §2.1). We denote
by ΦT the collection of all Courant elements ϕθ generated by T . Notice that ΦT
is not a basis; ΦT is redundant. We consider nonlinear n-term approximation in
Lp(E) (0 < p ≤ ∞) from ΦT , where we identify L∞(E) as C(E). Our main goal
is to characterize the approximation spaces generated by this approximation, with
emphasis on the case p = ∞. We let Σn(T ) denote the nonlinear set consisting of
all continuous piecewise linear functions S of the form

S =
∑
θ∈M

aθϕθ,

where M ⊂ Θ(T ), #M ≤ n, and M may vary with S. We denote by σn(f, T )p
the best Lp-approximation of f ∈ Lp(E) from Σn(T ):

σn(f, T )p := inf
S∈Σn(T )

‖f − S‖p.

In order to characterize the approximation spaces generated by (σn(f, T )p), we
begin in this section by first proving a companion pair of Jackson and Bernstein
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inequalities, and then follow with the usual techniques of interpolation of operators
(see for example [6], [15], [13]).

In the following, we assume in general that 0 < p ≤ ∞, and that α ≥ 1 for
p =∞ and α > 0 if p <∞; in either case we set 1/τ := α+ 1/p.

Theorem 4.1 (Jackson estimate). If f ∈ Bατ (T ), then

(4.1) σn(f, T )p ≤ cn−α‖f‖Bατ (T ),

where c depends only on α, p and the parameters of T .

Proof. Estimate (4.1) follows from any of our constructive algorithms as formulated
in the corresponding Theorems 3.1, 3.7, 3.9, or 3.11. �

Theorem 4.2 (Bernstein estimate). If S ∈ Σn(T ), then

(4.2) ‖S‖Bατ (T ) ≤ cnα‖S‖p,
where c depends only on α, p, and the parameters of T .

Proof. We shall prove estimate (4.2) only in the case p = ∞. For the proof when
p < ∞, see [11]. Suppose S ∈ Σkn(T ) and S =:

∑
θ∈M cθϕθ, where M ⊂ Θ(T )

and #M ≤ n. Let Λ be the set of all triangles ∆ ∈ T that are involved in all
cells θ ∈ M. Then S =

∑
∆∈Λ S∆, where S∆ =: 1∆ · P∆, P∆ a linear polynomial.

Evidently, #Λ ≤ N0 #M≤ cn.
We shall utilize the natural tree structure in T induced by the inclusion relation:

Each triangle ∆ ∈ Tm has (contains) ≤ M0 children in Tm+1 and one parent in
Tm−1, if m ≥ 1. Let Γ0 be the set of all ∆ ∈ T such that ∆ ⊃ ∆′ for some ∆′ ∈ Λ.
We denote by Γb the set of all branching triangles in Γ0 (triangles with more than
one child in Γ0) and by Γ′b the set of all children of branching triangles in T (which
may or may not belong to Γ0). Now, we extend Γ0 to Γ := Γ0∪Γ′b. We also extend
Λ to Λ̃ := Λ ∪ Γb ∪ Γ′b. In addition, we introduce the following subsets of Γ: the
set Γf of all final triangles in Γ (triangles in Γ containing no other triangles in
Γ), the set (Γ0)f of the final triangles in Γ0, and the set Γch := Γ \ Λ̃ of all chain
triangles. Note that each triangle ∆ ∈ Γch has exactly one child in Γ. We may
argue as we did for trees of cells in (3.9) that the number of branching triangles
does not exceed the number of final triangles, #Γb ≤ #(Γ0)f , and since (Γ0)f ⊂ Λ,
then #Γb ≤ cn. Using this, we have #Γ′b ≤M0 #Γb ≤ cn, #Γf ≤ #Λ + #Γ′b ≤ cn,
and #Λ̃ ≤ #Λ + #Γb + #Γ′b ≤ cn. Keep in mind, however, that #Γch can be much
larger than n.

We next estimate |S|τBατ (T ) :=
∑

∆∈T |∆|−1SS∆(S)ττ , where τ := 1/α (see (2.5)
for the notation). We denote, for m ≥ 0, Sm :=

∑
θ∈M, level(θ)≤m cθϕθ. We shall

use that, for ∆ ∈ Tm,

(4.3) SS∆(S)τ = SS∆(S − Sm)τ ≤ ‖S − Sm‖Lτ(Ω∆)

and, also, SS∆(S)τ ≤ ‖S‖Lτ(Ω∆). Recall that Ω∆ is the union of the collection of
all triangles from the same level as ∆ and which share a vertex. We denote

Hm := {∆ ∈ Tm : ∆ ⊂ Ω∆′ for some ∆′ ∈ Λ̃ ∩ Tm} and H :=
⋃
m≥0

Hm.

Evidently, #Hm ≤ 3N0 #Λ̃ ≤ cn (the valence of each vertex is ≤ N0). We consider
two possibilities for each ∆ ∈ T : (a) ∆ ∈ H, or (b) ∆ ∈ T \ H:
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(a) If ∆ ∈ Hm, then Ω∆ ⊃ ∆′ for some ∆′ ∈ Λ̃ ∩ Tm. Using (2.3), we obtain

|∆|−1SS∆(S)ττ ≤ |∆|−1‖S‖τLτ(Ω∆) ≤ |∆|−1|Ω∆|‖S‖τ∞ ≤ c‖S‖τ∞.

Therefore, by summing over all m ≥ 0, we obtain in this case∑
∆∈H

|∆|−1SS∆(S)ττ =
∑
m≥0

∑
∆∈Hm

|∆|−1SS∆(S)ττ

≤ c‖S‖τ∞
∑
m≥0

#Hm

= c‖S‖τ∞#H ≤ cn‖S‖τ∞.(4.4)

(b) Let ∆ ∈ Tm \Hm. Then Ω∆ =:
⋃n∆
j=1 ∆j for some ∆j ∈ (Γch∩Tm)∪(Tm \Γ),

j = 1, . . . , n∆, with n∆ ≤ 3N0. We have, using (4.3),

SS∆(S)ττ = SS∆(S − Sm)ττ ≤
n∆∑
j=1

‖S − Sm‖τLτ(∆j)
.

Note that if ∆j ∈ Tm \ Γ, then S|∆j = Sm|∆j and hence ‖S − Sm‖Lτ (∆j) = 0.
Suppose ∆j ∈ Γch ∩ Tm. For each ∆ ∈ Γch, we shall denote by ∆̃ (∆̃ 6= ∆) the
unique largest triangle of Λ̃ contained in ∆. Clearly, we have S|∆j\∆̃j

= Sm|∆j\∆̃j
=

1∆j\∆̃j
·P∆j and Sm|∆j = 1∆j ·P∆j , where P∆j is a linear polynomial. Therefore,

‖S − Sm‖τLτ(∆j)
= ‖S − Sm‖τLτ(∆̃j)

≤ c|∆̃j |(‖S‖τ∞ + ‖P∆j‖τL∞(∆̃j)
) ≤ c|∆̃j |‖S‖τ∞,

where we used that ‖P∆j‖L∞(∆̃j)
≤ ‖P∆j‖L∞(∆j) ≤ c‖P∆j‖L∞(∆j\∆̃j)

≤ c‖S‖∞,
applying Lemma 2.1. From the above, it follows that

|∆|−1SS∆(S)ττ ≤ c‖S‖τ∞
∑

1≤j≤n∆,∆j∈Γch∩Tm

|∆̃j |/|∆j|

and hence ∑
∆∈Tm\Hm

|∆|−1SS∆(S)ττ ≤ c‖S‖τ∞
∑

∆∈Γch∩Tm

|∆̃|/|∆|.

Summing over m ≥ 0 in this case as well, we find that∑
∆∈T \H

|∆|−1SS∆(S)ττ ≤ c‖S‖τ∞
∑

∆∈Γch

|∆̃|/|∆|

≤ c‖S‖τ∞
∑

∆′∈Λ̃

∑
∆∈T ,∆⊃∆′

|∆′|/|∆|

≤ c‖S‖τ∞
∑

∆′∈Λ̃

∞∑
j=0

ρj ≤ c‖S‖τ∞#Λ̃ ≤ cn‖S‖τ∞,(4.5)

where we have once switched the order of summation and used that |∆′| ≤ ρ|∆| if
∆′ is a child of ∆ (see (2.2)).

Combining inequalities (4.4) and (4.5), we obtain |S|τBατ (T ) ≤ cn‖S‖τ∞, which is
equivalent to (4.2). �
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We define the approximation space Aγq (Lp) := Aγq (Lp, T ) generated by the n-
term Courant element approximation to be the set of all functions f ∈ Lp(E) such
that

(4.6) ‖f‖Aγq (Lp) := ‖f‖p +
( ∞∑
n=1

(nγσn(f, T )p)q
1
n

)1/q

<∞,

with the usual modification when q =∞.
For a fixed LR-triangulation T , we denote by K(f, t) := K(f, t;Lp, Bατ (T ))

the K-functional as defined in (2.30). The Jackson and Bernstein estimates from
Theorem 4.1 and Theorem 4.2 yield (see, e.g., Theorem 3.16 of [15] and its proof)
the following direct and inverse estimates:

(4.7) σn(f, T )p ≤ cK(f, n−α)

and
(4.8)

K(f, n−α) ≤ cn−α
(
‖f‖p +

( n∑
k=1

1
k

(kασk(f, T )p)p
∗
)1/p∗)

, p∗ := min{p, 1},

where c depends only on α, p, and the parameters of T .
The following characterization of the approximation spaces Aγq (Lp, T ) is imme-

diate from the inequalities (4.7) and (4.8), using the observation (2.31):

Theorem 4.3. If 0 < γ < α and 0 < q ≤ ∞, then

Aγq (Lp, T ) = (Lp, Bατ (T )) γ
α ,q

with equivalent norms.

The next result establishes an important (continuous) embedding, which will be
needed in §5 in order to identify the approximation spaces (the ones determined by
the algorithms, as well as best n-term Courant element approximation) as B-spaces.

Theorem 4.4. Suppose our standing assumptions hold, i.e., α > 1 if p = ∞ and
α > 0 if p <∞. If we let 1/τ := α+ 1/p, then Aατ (Lp, T ) ⊂ Bατ (T ) and

(4.9) ‖f‖Bατ (T ) ≤ c‖f‖Aατ (Lp,T ),

where c depends only on α, p, and the parameters of T .

Proof. We shall prove (4.9) only in the case p = ∞, proceeding similarly as in [7].
For a proof in the case 0 < p < ∞, see [3]. Suppose f ∈ Aατ (L∞, T ), and let
Sm ∈ Σm(T ) be such that

(4.10) ‖f − Sm‖∞ ≤ 2σm(f, T )∞.

Since σm(f, T )∞ → 0, we have f = S1 +
∑∞
ν=1(S2ν − S2ν−1) with the series con-

verging uniformly, and hence (τ < 1)

(4.11) ‖f‖τBατ (T ) ≤ ‖S1‖τBατ (T ) +
∞∑
ν=1

‖S2ν − S2ν−1‖τBατ (T ).

We apply the Bernstein estimate from Theorem 4.2 to S2ν − S2ν−1 ∈ Σ2ν+1(T ) to
obtain

‖S2ν − S2ν−1‖Bατ (T ) ≤ c2να‖S2ν − S2ν−1‖∞ ≤ c2να(σ2ν (f, T )∞ + σ2ν−1(f, T )∞)
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and similarly
‖S1‖Bατ (T ) ≤ c(‖f‖∞ + σ1(f, T )∞).

Substituting the above in (4.11), we find that

‖f‖τBατ (T ) ≤ c‖f‖τ∞ + c

∞∑
ν=1

(2νασ2ν (f, T )∞)τ ≤ c‖f‖τAατ (L∞,T ). �

5. Approximation spaces for algorithms

Our goal in this section is to show that the algorithms that we developed and
explored in §3 achieve (in a certain sense) the rate of convergence of the best n-
term Courant element approximation. We shall utilize the characterization of the
approximation spaces

Aγq (Lp, T ;σ) := Aγq (Lp, T )

from the previous section (see Theorems 4.3 and 4.4). We shall denote by
Aγq (Lp, T ;AT ), Aγq (Lp, T ;ATC), and Aγq (Lp, T ;AP ) the approximation spaces gen-
erated by the “threshold”, “trim and cut”, and “push the error” algorithms, re-
spectively. Namely, f ∈ Aγq (Lp, T ;A), where A is AT , ATC or AP , if f ∈ Lp(E)
and

‖f‖Aγq (Lp,T ;A) := ‖f‖p +
( ∞∑
n=1

(nγAn(f, T )p)q
1
n

)1/q

<∞,

with the usual modification when q =∞ (it is not quite a norm).

Theorem 5.1. Let T be an LR-triangulation of a bounded polygonal domain E ⊂
R2.

(a) If p =∞, α > 1, and τ := 1/α, then

(5.1) Aατ (L∞, T ;AP ) = Aατ (L∞, T ;ATC) = Aατ (L∞, T ;σ) = Bατ (T )

with equivalent “norms”.
(b) If 0 < p <∞, α > 0, and τ := (α+ 1/p)−1, then

(5.2) Aατ (Lp, T ;ATC) = Aατ (Lp, T ;AT ) = Aατ (Lp, T ;σ) = Bατ (T )

with equivalent “norms”, where “trim and cut” is applied with parameter τ ≤ % < p.

Proof. (a) Let p =∞. We let An(f)∞ denote APn (f)∞ or ATCn (f)∞, and Aατ (L∞;A)
denote the approximation space generated by the corresponding algorithm. Suppose
‖f‖Aατ (L∞;A) <∞. Evidently, σn(f)∞ ≤ An(f)∞, and hence, using Theorem 4.4,

‖f‖Bατ ≤ c‖f‖Aατ (L∞;σ) ≤ c‖f‖Aατ (L∞;A).

It remains to show that if ‖f‖Bατ <∞, then

(5.3) ‖f‖Aατ (L∞;A) ≤ c‖f‖Bατ .
For the proof of this estimate, we shall employ Lemmas 3.8 and 3.13. Since they
are identical, it does not matter if we prove (5.3) for “push the error” or for “trim
and cut”.

Suppose f =
∑
θ∈Θ bθϕθ is the representation of f that is used while “push the

error” or “trim and cut” is applied. We have

‖f‖Bατ := (
∑
θ∈Θ

|bθ|τ )1/τ , τ := 1/α, α > 1.
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Next, we use a well-known interpolation technique. We choose α0, α1, τ0, and τ1 as
follows: 1 = α1 < α < α0 and τ0 := 1/α0, τ1 := 1/α1. Hence 0 < τ0 < τ < τ1 = 1.
Now let (|bθj |)∞j=1 be the decreasing rearrangement of the sequence (|bθ|)θ∈Θ, i.e.,
indexed so that

(5.4) |bθ1| ≥ |bθ2 | ≥ · · · .

We fix ν ≥ 0, and denote f0 :=
∑2ν

j=1 bθνϕθν and f1 :=
∑∞

j=2ν+1 bθνϕθν . In going
further, we apply Lemma 3.8 or Lemma 3.13 to f = f0 + f1, from above, to obtain

A2ν (f)∞ ≤ c 2−να0

( 2ν∑
j=1

|bθj |τ0
)1/τ0

+ c 2−ν
∞∑

j=2ν+1

|bθj |.

Using property (5.4) and the facts that τ = 1/α, 1 < α < α0, and τ0 = 1/α0, we
infer

∞∑
ν=0

(2ναA2ν (f)∞)τ ≤ c

∞∑
ν=0

[
2−ν(α0−α)τ0

ν∑
k=0

2k|bθ2k
|τ0
]τ/τ0

+ c

∞∑
ν=0

[
2ν(α−1)

∞∑
k=ν

2k|bθ2k
|
]τ

≤ c

∞∑
k=0

2k|bθ2k
|τ ≤ c

∑
θ∈Θ

|bθ|τ = c‖f‖τBατ ,

where we used the well-known Hardy inequalities, namely, we applied the inequality
from Lemma 3.10 in [15] to estimate the first sum and Lemma 3.4 from [6] to the
second term.

(b) For 0 < p < ∞, the proof of (5.2) is similar to the proof of (5.1). The only
difference is that the appropriate roles of Lemmas 3.8 or 3.13 are now played by
Lemmas 3.2 or 3.10. We omit the details. �

6. Concluding remarks

Our primary goal in the present article is to quantify the nonlinear n-term ap-
proximation from Courant elements and use it to develop algorithms capable of
achieving the rate of the best approximation. This is closely related to the funda-
mental question in nonlinear approximation of how to measure the smoothness of
the functions. As we show in this article, for n-term Courant element approxima-
tion when the triangulation T is fixed, it is natural to measure the smoothness via
the scale of the B-spaces Bατ (T ). The use of these spaces allows one to characterize
the approximation spaces for any rate of convergence α > 0. It also enables us to
develop algorithms which attain the rate of the best approximation.

It is natural to add another degree of nonlinearity to the approximation by
allowing the triangulation T to vary. Thus a function f should be considered
smooth of order α > 0 if infT ‖f‖Bατ (T ) < ∞, where the infimum is taken over all
LR-triangulations T (with fixed parameters). Therefore the rate of n-term Courant
element approximation to f is roughly O(n−α). Summarizing, our approximation
scheme proceeds as follows: (i) for a given function f , find a triangulation Tf and
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a B-space Bατ (Tf ) in which f exhibits the most smoothness, (ii) find an optimal
representation of f in terms of Courant elements from ΦT , and (iii) run an algorithm
that achieves the rate of the best n-term Courant element approximation. The
first step in this scheme is the most complicated one. We do not have an efficient
solution for this as yet. In the simpler case of nonlinear approximation by piecewise
polynomials over dyadic partitions, this problem, however, has a complete and
efficient solution [14]. As we show, once the triangulation T is determined, the
remaining two steps are now well understood and have efficient solutions in both
theoretical and practical senses.

The three algorithms that we develop and explore in this article provide solu-
tions of the problem under appropriate conditions. A common feature of these
algorithms is the first step, a nontrivial decomposition from the redundant collec-
tion of all Courant elements from ΦT . After this initial step, however, they take
three different routes. The “threshold” algorithm is completely unstructured but
easy to implement. The drawback of this procedure is that it is not valid in the
case of the uniform norm, and as a consequence it does not perform well in Lp for
p large. The “trim and cut” algorithm is valid for Lp, 0 < p ≤ ∞, but it is over-
structured and as a result the performance suffers. The “push the error” algorithm
appears to be the preferred approximation method.

The algorithms that we develop in this article are not restricted to n-term
Courant element approximation. They can be applied immediately to the approxi-
mation from (discontinuous) piecewise approximation over multilevel triangulations
(for the precise setting, see [11]). In this case the role of the B-spaces Bατ (T ) should
be played by the skinny B-spaces Bατ (T ), introduced in (2.37). The results are sim-
ilar, but simplify considerably. We omit the details.

Furthermore, these algorithms can easily be adapted to nonlinear n-term approx-
imation by smooth piecewise polynomial basis functions such as those considered
in [3] and, in particular, by box splines. The main difference would be that one
should use the corresponding B-spaces, developed in [3], but proceeding in a similar
manner to this paper.

It is natural to use (wavelet or prewavelet) bases in nonlinear approximation, and
specifically for approximation in Lp (1 < p < ∞). We are not aware of compactly
supported wavelets (prewavelets) generated by Courant elements or smoother piece-
wise polynomials on general multilevel triangulations. It is clear to us that such
wavelet bases would be very “expensive” to construct and hence are of limited prac-
tical value. However, in the case of uniform triangulations, compactly supported
prewavelets and wavelet frames generated by Courant elements, or box splines, do
exist and have been implemented in practice. Obviously, the n-term approximation
from such bases or frames cannot surpass the rate of the best n-term Courant (or
box spline) approximation, but they may give better constants and hence better
performance results in practical situations.

It is also an important observation that, even in the case of uniform triangula-
tions, the B-spaces used here are different from the Besov spaces used in nonlinear
approximation. For a more complete discussion of this issue, see [11] and [3].

Finally, we remark that in a related paper [12] we extend the arguments of
this paper to develop a corresponding approach in the Hausdorff metric which is
natural for approximating surfaces. There we also consider various practical aspects
for decompositions, numerical approximation, and data structures.
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Appendix. Coloring Lemma

In order to keep focus on the main analytical results of the paper, we have
postponed the proof of the coloring lemma used in Section 3.2 to this appendix. This
decomposition result was used to create a manageable collection of tree structures
for estimating both the error and the number of elements used in our constructed
approximant. Since this is a general purpose result which may prove useful in
similar settings, we give its proof in full in this appendix. For clarity we have
broken down the proof into a series of lemmas. Since the coloring is done in several
refinement stages, it is helpful to think of the coloring as an ordered triple of
primary, secondary, and shade colors. The primary coloring will sort the elements
periodically by resolution level, the secondary coloring will insure there is spatial
color separation, and the third coloring (shading) is a more delicate adjustment to
insure that tree structures are formed. We begin by repeating the statement of the
coloring lemma for the reader’s convenience.

Coloring Lemma [see Lemma 3.2]. For any LR-triangulation T of E, the
set Θ := Θ(T ) of all cells generated by T can be represented as a finite disjoint
union of its subsets (Θν)Kν=1 with K = K(N0,M0) (N0 is the maximal valence and
M0 is the maximal number of children of a triangle in T ) such that each Θν has
a tree structure with respect to the inclusion relation, i.e., if θ′, θ′′ ∈ Θν , then
(θ′)◦ ∩ (θ′′)◦ 6= ∅, or θ′ ⊂ θ′′, or θ′′ ⊂ θ′.

To begin the proof, we show, without loss of generality, that for the purposes of
coloring we may assume that the multiresolution triangulation provides sufficient
resolution with each refinement step. We argue below that after a certain fixed
number of increments of the level there will be a guaranteed refinement of each edge
and triangle, which by hypothesis is controlled from above, i.e., uniformly bounded
valences and max number of subtriangles for each refinement. Consequently, we
may separate the levels of Θ into L (L := d12N4

0 ln2M0e) disjoint classes (primary
colors) by placing two levels in the same class iff their indices are the same (mod L).
Thus a class Θ̃ is of the form Θ̃ =

⋃∞
j=0 Θ̃j , where Θ̃0 := Θj0 for some 0 ≤ j0 < L

and Θ̃j := Θj0+jL. Since each such class Θ̃ has a different primary color, it will
suffice to show how to designate the secondary colors of the members of a single Θ̃.
Therefore, to simplify the notation and wording of arguments, we will simply refer
to (secondary) coloring the classes Θ̃ instead of Θ. In Lemma A.1 below we show
however that these classes have additional useful properties. Loosely speaking,
part (a) shows that the old vertices on a given level are far apart in terms of the
graph metric. In part (b) a similar statement is given for the “central parts” of
non-overlapping edges of Courant elements from different levels of Θ̃.

For D ⊂ R2 and m ≥ 0, we define the star Stkm(D) inductively by St0m(D) := D

and Stkm(D) :=
⋃
{θ ∈ Θ : level θ = m, θ◦ ∩ Stk−1

m (D) 6= ∅}. For the vertices in
resolution level m, this is just the neighborhood of radius k in the graph metric. For
an edge e with vertices v′ and v′′ and an integer m > level e, we define the “central
part” of the edge to be st(e,m) := St2m(e\StR−1

m ({v′, v′′})), where R := M
4N2

0
0 + 4.

This selection for R has been made sufficiently large so that part (b) of the following
lemma holds.
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Lemma A.1. The Courant collection Θ̃ described above satisfies the following con-
ditions:

(a) For each edge [v, v′] the distance between v and v′, measured in the graph
metric on the next finer level of Θ̃, is at least 4R.

(b) If e and e′ are edges from cells in Θ̃, m is an integer with m − L ≥
level e ≥ level e′, and e * e′, then st(e,m) ∩ e′ = ∅.

Proof. (a) Note that each edge in Θ gets subdivided at least once after 2N0 levels.
Further, observe that after Ñ0 := 2N2

0 refinements of any triangle, none of its
vertices can be connected to their opposite edge by a single edge at the finer level.
Using this observation repeatedly, one can verify that after L refinements, the graph
metric distance between v and v′ will be at least 2L/Ñ0 = M

6N2
0

0 > 4R.
(b) Let v and v′ be the vertices of e. Using twice the observation from the

proof of part (a), we conclude that the distance from each of the vertices in
e \ St1

m−2Ñ0
({v, v′}) to e′ is at least 4 when measured in the graph metric on

level m. Therefore, on the m-th level, e \ St1
m−2Ñ0

({v, v′}) has a buffer of at least
three layers of triangles that separates it from e′. On the other hand, the existence
of M0 and the choice of R guarantee that StR−1

m ({v, v′}) ⊃ St1
m−2Ñ0

({v, v′}), and
this establishes the claim. �

This completes the primary coloring, and from this point on we only need work
with a particular Θ̃ (i.e., a fixed primary color). In this case “level θ” will now refer
to the level of θ in Θ̃ rather than in Θ, as will the star Stkm(θ) and st(e,m). Also,
when referring to the color of a cell we will now mean the secondary color, unless
otherwise specified. For θ ∈ Θ̃ we denote by ∂θ the boundary of θ, and by xθ the
central point of θ. We say that the cells in Θ′ ⊂ Θ̃m are R-disjoint (R ≥ 1) if
θ◦ ∩ StRm(θ′) = ∅ for any θ, θ′ ∈ Θ′.

The next result is used for the (secondary) coloring of cells of Θ̃, proceeding from
coarse to fine levels, and uses M colors, so that same color cells are R-disjoint.

Lemma A.2. Suppose some of the cells on a given level are colored in M :=
NR+1

0 + 1 (R ≥ 1) colors so that the same color cells are R-disjoint. Then the rest
of the cells on that level can be colored in the same M colors so that the same color
cells are R-disjoint.

Proof. To complete the coloring on the given level, we first use color #1 to paint
as many cells as possible so that the same color cells are R-disjoint. Next, we
use color #2 as much as possible, followed by the third and so on until either all
cells get painted or we run out of colors. The latter case, however, never occurs.
Indeed, assume the contrary and let θ be the first cell that cannot be colored by
this algorithm with the M colors. The cell θ has the property that within its R+ 1
star StR+1

m (θ) there must be at least one cell painted with each of the M colors.
But this contradicts the fact that M was selected to be at least as large as the
number of cells within StR+1

m (θ). �
For the secondary coloring we proceed inductively, beginning at the coarsest level

Θ̃0, and color cells in M colors so that same color cells are R-disjoint. Suppose
then that all levels up to Θ̃k (k > 0) have been colored. We color Θ̃k as follows.

Step a) (Color corner cells). First we define the notion of corner cell. A cell θ
of level k is called a corner cell for a coarser cell θ′ if θ′ has an adjacent cell θ′′ (at
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Figure 2. Corner cells from Step a)

the same level of course) so that xθ lies on edge [xθ′ , xθ′′ ] and xθ is adjacent to xθ′′
on the level k (see Figure 2). Given a cell θ′ ∈ Θ̃k−1, we color each of its corner
cells θ ∈ Θ̃k the same color as θ′. This insures that a cell’s color is propagated
through all finer levels to its corner cells.

Step b) (Extend the coloring to R-stars of the vertices on level (k − 1)). For
each vertex v on level (k − 1), we paint the cells contained in StR+2

k (v) using M
colors so that the coloring done in Step a) is preserved and each color is used at
most once. This is always possible, since M was selected sufficiently large. Note
that after this step the same color cells are R-disjoint, since part (a) of Lemma A.1
guarantees that the stars are sufficiently separated.

Step c) (Complete the secondary coloring of Θ̃k). Accounting for the cells
previously painted in Steps a) and b), we color the remaining cells from Θ̃k as
described in Lemma A.2.

This procedure specifies the secondary coloring of Θ̃, and we have thus repre-
sented it as a finite disjoint union

⋃M
ν=1 Θ̃ν , where Θ̃ν are all cells (secondarily)

colored in the ν-th color. Thus the primary color skips levels until sufficient refine-
ment is guaranteed, while the secondary color insures sufficient spatial separation
on each level to control cell overlaps. Unfortunately, the collection of same primary-
secondary colored cells (Θ̃ν) might not form a tree structure, i.e., there might be
two cells in Θ̃ν whose interiors meet but neither of them contains the other. This
may only happen when a finer cell lies on the edge of a given cell. To fix this defect
we will set for each fixed Θ̃ν the third coloring component, the shade of the cells,
from two possible choices. First, we say that θ′ and θ′′ (θ′, θ′′ ∈ Θ) touch if an
edge of the finer of the cells is contained in an edge of the coarser.

We now restrict our cells to be of fixed primary and secondary colors (i.e., fix Θ̃ν)
and inductively determine the shade of these cells. On the coarsest level Θ̃ν

0 of Θ̃ν all
cells are disjoint, and we assign them shade #1. For the induction step, we suppose
cells of all levels of Θ̃ν up to level k have been shaded and each shaded collection
satisfies the desired tree properties. We say that a cell θ is shade-consistent with θ̃
if xθ does not lie on an edge of any cell that has the same shade as θ̃. Hence it is
possible to place θ in this shade collection and preserve the tree structure. In this
case we will also use the terminology that θ is consistent with that particular shade.
We now proceed to shade the cells belonging to level k, i.e., θ ∈ Θ̃ν

k, according to:

Case i. If θ both touches and is shade-consistent with some coarser cell θ̃, then
we assign to θ the same shade as that of the finest such θ̃. Recall that
this finest cell is unique by the construction of Θ̃ν .
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Case ii. Otherwise, we assign to θ the first numbered shade for which θ is con-
sistent. If no such shade exists, we introduce a new shade for θ.

By the construction in the induction step, it is obvious that each shade sub-
collection has the desired tree structure. We will show that these criteria intro-
duce at most two shades. For this we need a couple of technical facts. We remind
the reader that all cells belong to a fixed Θ̃ν , i.e., they have a fixed primary and
secondary color.

Lemma A.3. If θ intersects an edge e′ of a coarser cell θ′ but is not one of its
corner cells, then θ ⊂ st(e′,m), where m := level θ.

Proof. Let e′ be an edge of θ′ that intersects θ, and let v be a vertex of e′. By
Step b) of our coloring procedure (for secondary colors), St1m(v) contains a corner
cell θ′′ in Θ̃ν

m that is shaded the same as θ′ . By Step c) in the construction of Θ̃ν ,
StRm(v) does not contain any other cells from Θ̃ν

m. Since θ is not a corner cell of θ′,
then θ 6= θ′′. Therefore θ ∩ StR−1

m (v) = ∅, and so θ must meet e′ \ StR−1
m ({v, v′}),

where v′ is the remaining vertex of e′. Therefore, θ ⊂ st(e′,m). �

Lemma A.4. Cells of Θ̃ν with different shades do not touch.

Proof. Suppose to the contrary that cells θj , θk ∈ Θ̃ν of different shades (shade #j,
shade #k, respectively) do touch. We may first assume that θj is a maximal (i.e.,
coarsest level) cell of shade #j that touches θk, and conversely, that θk is a maximal
cell in shade #k that touches θj . This follows by iteration and the fact that there
are only finitely many coarser levels; so the iteration must terminate.

We may assume without loss of generality that level θj < level θk =: mk, and
let ej, ek denote the edges of θj , θk respectively, such that ek ⊂ ej. We consider
the two cases under which the finer cell θk could have been shaded, and show that
each one leads to a contradiction.

For Case i. In this event there would be a coarser cell θ̃k ∈ Θ̃ν of shade #k that
touches θk and to which θk would be shade-consistent. Let ẽk be an edge of θ̃k
where it is touched by θk. We consider two possible subcases, depending upon the
relative level of θ̃k to that of θj .

Subcase i.a θ̃k is finer than θj .
Since level θj ≤ level θ̃k < level θk, then by part (b) of Lemma A.1 either ẽk ⊂ ej

or st(ẽk,mk) ∩ ej = ∅. The first possibility may be ruled out, since it would imply
that the coarser cell θ̃k would touch θj , but θk is the maximal such cell of shade #k.
Hence st(ẽk,mk) must be disjoint from ej. Note that θk is not a corner cell of θ̃k.
If that were the case, then θk would be disjoint from the interiors of all edges on
level θ̃k except the edge on which xθk lies and the edges (at most two, possibly one)
where θ̃k is touched by θk. Hence, ej must overlie one of the these edges, since it
contains ek. This, however, contradicts the fact that θj touches θk in the former
case and contradicts the maximality of θk in the latter. Therefore θk cannot be a
corner cell of θ̃k, and so, by Lemma A.3, θk ⊂ st(ẽk,mk). But we have already
proved that st(ẽk,mk) ∩ ej = ∅, which is impossible, since θk touches θj on ej .

Subcase i.b θ̃k is coarser than θj .
Since level θ̃k < level θj < level θk, then again by part (b) of Lemma A.1 either

ej ⊂ ẽk or st(ej ,mk)∩ẽk = ∅. The former case contradicts maximality of θk relative
to θj . For the latter case, note that θk cannot be a corner cell of θj , because θk
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and θj have different shades. Therefore, by Lemma A.3, θk ⊂ st(ej ,mk), and so we
obtain θk ∩ ẽk = ∅, which is impossible, since θk touches θ̃k on ẽk.

For Case ii. If this case occurred for the shading of θk, then since θj is both
coarser than and touches θk, θk must not have been shade #j consistent. Hence
there must be a θ̃j ∈ Θ̃ν of shade #j that is coarser than θk, and xθk belongs to
some edge ẽj of θ̃j . We consider two possible subcases, depending upon the level
of θ̃j relative to that of θj .

Subcase ii.a θj is coarser than θ̃j .
Since level θj ≤ level θ̃j < level θk, then compare edges ej, ẽj using part (b)

of Lemma A.1 to infer either st(ẽj ,mk) ∩ ej = ∅ or ẽj ⊂ ej . In the latter case,
it follows that both the edge ek (recall θk touches the coarser θj on ek) and the
opposite vertex xθk (since xθk ∈ ẽj) of a triangle in Tk are contained in ej , which
is clearly impossible. If the former case holds, i.e., st(ẽj ,mk) ∩ ej = ∅, then a
contradiction also results. To see this, observe that θk cannot be a corner cell for
θ̃j , due to the fact that they have different shades. But Lemma A.3 implies that
θk ⊂ st(ẽj ,mk), which contradicts the fact that θk ∩ ej 6= ∅.

Subcase ii.b θj is finer than θ̃j.
Since level θ̃j < level θj < level θk, we again compare edges ẽj, ej using part (b)

of Lemma A.1 to imply either st(ej ,mk) ∩ ẽj = ∅ or ej ⊂ ẽj . By quite similar
arguments to the previous subcase we can prove that contradictions are reached.
Specifically, the latter statement implies that both the central vertex xθk and its
opposite edge ek belong to the edge ẽj . On the other hand, the fact that θk cannot
be a corner cell for θj will imply that θk ⊂ st(ej ,mk), which will show that xθk
belongs to the intersection st(ej ,mk) ∩ ẽj , and contradict the former statement
above.

By our assumption that different shaded cells could touch, we are led in all cases
to contradictions, thereby completing our contrapositive proof. �

By combining the previous results with the next lemma, it follows immediately
that Θ can be colored with K := 2ML colors, and the proof of the coloring lemma
will be complete.

Lemma A.5. At most two shades are required.

Proof. Suppose in Case ii of the shading step above that a third shade were needed
for some cell θ. Then its central point xθ ∈ e1 ∩ e2 for some edges e1 of θ1 and
e2 of θ2, where θ1, θ2 ∈ Θ̃ν are coarser than θ and have shade #1 and shade #2,
respectively. Now, if xθ were a vertex for e1, then there would be a corner cell of
θ1 in Θ̃ν adjacent to θ, which is clearly impossible, since cells at the same level are
R-disjoint. The same reasoning applies to e2. Therefore xθ cannot be a vertex for
either e1 or e2, and we conclude that e◦1 ∩ e◦2 6= ∅. Hence, θ1 and θ2 touch, which
contradicts Lemma A.4. �
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