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Abstract

A pair of dual frames with almost exponentially localized elements (needlets) are constructed on ]Ri
based on Laguerre functions. It is shown that the Triebel-Lizorkin and Besov spaces induced by Laguerre
expansions can be characterized in terms of respective sequence spaces that involve the needlet coefficients.
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1. Introduction

The primary goal of this paper is to construct frames on Rﬂlr := (0, 00)? with nearly exponen-
tially localized elements, based on Laguerre functions and utilize them to the characterization of
spaces of distribution on Ri. We are interested in extending the fundamental results of Frazier
and Jawerth [4—6] on the ¢-transform on R? in the context of Laguerre expansions.
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From the three types of Laguerre functions available in the literature we focus our atten-
tion on the Laguerre functions {F} (see (3.1)) which form an orthonormal basis for the space
L2(RY, wy) with weight

d
wa ) =[5 (1.1)
j=1

For various technical reasons we will assume that o; > 0, while in general «; > —1. The other
two classes of Laguerre functions {£$} and { M} (see (3.4), (3.5)) form orthogonal bases for
LZ(R‘j_) (weight 1). The d-dimensional Laguerre functions )Y are products of univariate La-

guerre functions, namely, 75 (x) := ]—"5‘1 (x1) -~ ~.7-"]‘j‘d (x4) (see (3.1), (3.3)). Hence the kernel of
the orthogonal projector onto

W, := span{Fg: [v] =n} is given by F' (x, y) := Y Fe () FL(y). 1.2)

lv|=n

Denote V,, := @), _o Wi. Evidently, K, (x, y) := >, _o Fre(x, y) is the kernel of the orthogonal
projector onto V,,. A main point in the present paper is that for compactly supported C*° cut-off
functions @ which are constant around zero the kernels

]

An(x,y) = Za(%)}‘j‘(x, ») (1.3)

j=0

decay rapidly (almost exponentially) away from the main diagonal in ]Ri X ]R‘i (Theorem 3.2).
For the same kind of kernels associated with the Laguerre functions { M} in dimension d = 1
this fact is established in [3]. We show that similar results are valid for { M} and {£$} in dimen-
sion d > 1 as well.

We utilize the kernels from (1.3) to the construction of a pair of dual frames {¢z}ecy and
{Ve}eex with X a multilevel index set. As in other similar settings, the almost exponential
localization of ¢¢ and ¢ prompts us to call them “needlets.” The needlet systems from this
paper can be regarded as analogues of the g-transform of Frazier and Jawerth [4,5]. They are
particularly well suited for characterization of the Triebel-Lizorkin and Besov spaces associated
with Laguerre expansions. To be more precise, let @ € C*, suppa C [1/4, 4], and |a] > ¢ on
[1/3,3] and define

m

Po(x, y) :=F5(x,y) and qu(x,y):=zﬁ<4,_1

)}",‘Z(x,y), jizL
m=0

Then for all appropriate indices (see Definition 6.1) the Laguerre—Triebel-Lizorkin space F' ;,g is
defined as the set of all tempered distributions f on Ri such that

< Q.

00 1/q
(Z[zﬂ' Wa(452) 7| f<->|]q)

j=0

I gy = ‘

p
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Here @; x f(x) :=(f, ®;(x,-)) (Definition 4.2) and the weight W (n; x) is define by

d
Wo ;) := [ [ (oj +n1/2)24 (1.4)
j=I

Just for convenience we use dilations by factors of 4/ on the frequency side as opposed to the
traditional binary dilation. The Laguerre-Besov spaces are defined by the (quasi-)norm

00 1/q
”f”Bf,/; = (Z(2Sj “ Wa(4j; .)—P/dd)j % f()”p)l]> ]

J=0

Unlike in the classical case on RY the weight w,, creates some inhomogeneity which compels
us to introduce the additional term W, (4/; )~/ with parameter p € R. This allows to consider
different scales of Triebel-Lizorkin and Besov spaces. For instance, a “classical” choice would
be p = 0. However, more natural to us are the spaces F,, and B,,;, which embed “correctly” with
respect to the smoothness parameter s.

The main results in this article assert that the Laguerre Triebel-Lizorkin and Besov spaces
can be characterized in terms of respective sequence spaces involving the needlet coefficients of
the distributions (Theorems 6.7, 7.4).

Along the same lines one can develop a similar theory on R‘i with weight 1 using the Laguerre
functions {£%} or {M¢}. For such spaces induced by {£%}, see [2].

This paper is an integral part of a broader undertaking for needlet characterization of Triebel—
Lizorkin and Besov spaces on nonstandard domains (and with weights) such as the sphere [11],
interval [8], ball [9], and in the setting of Hermite expansions [13].

The outline of the paper is as follows. All the information we need about Laguerre polyno-
mials and functions is given in Section 2. The localized kernels induced by Laguerre functions
are given in Section 3. Some additional background material is collected in Section 4. The con-
struction of needlets is given in Section 5. In Section 6 the Laguerre-Triebel-Lizorkin spaces
are introduced and characterized in terms of needlet coefficients, while the characterization of
the Laguerre—Besov spaces is given in Section 7. Some proofs for Sections 3, 4 are given in
Section 8 and for Sections 5, 6 in Section 9.

The following notation will be used throughout: ||x|| := max;|x;|, |x| := Zflzl |xi ], llx]l2 :=
(Z?=1 Ixi|$)1/2, Nfllp = (flRi | £(x)|Pwq (x)dx)'/P; |E| stands for the Lebesgue measure of

E CRY, W(E) := [ wa(x)dx, 1 is the characteristic function of E, and 1 := u(E)~'/?1.
Positive constants are denoted by ¢, c1, ¢y, ... and they may vary at every occurrence; A ~ B
means c1A < B < A.

2. Background: Laguerre polynomials and functions
In this section we collect the information on Laguerre polynomials and functions that will be

needed in this paper. The Laguerre polynomials L% (« > —1) can be defined by their generating
function

o
Y LE@r =1 =) e U < 1L
n=0
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They are orthogonal on R = (0, oo) with weight x*e™", more precisely,

oo

_ Tn+a+1)
/Lg(X)L;Yn(X)E *x%dx = F(n—-|—1)8n’m = F(O{ + 1)Lg(0)5n’m,
0

where we used that L% (0) = (":O‘) [15, (5.1.1D)].
Let LS (x) := L‘;‘} (x1)--- L?fj (x4) be the product Laguerre polynomials on Ri, where v =

(vl,...,vd)eNganda:(al,...,ad).For8>—1,deﬁne
LS (x)LS (y) 5 m—+4
po? =) Al , AS = . 2.1
(x1y) 1= k§0 |v§|k =0 h . @1

This is a constant multiple of the nth Cesaro sum of the reproducing kernels for Laguerre poly-
nomials in dimension d. Using the generating function of the Laguerre polynomials, it is shown
in [18] that

P& (x,0) = LI*1+0H (|x)). (2.2)

The product formula for Laguerre polynomials (Hardy—Watson) [16, Proposition 6.1.1] asserts
that for o > —% and x,y e R4,

S L )L 0?)

r(n+a+1) "

LY x +y +2xycos@) TYeost o 1 (xysind) sin®* 6 do, (2.3)

J_

where jy (x) :=x7%J, (x) with J,(x) being the Bessel function.

It will be convenient to denote x2 := (x%, ety xﬁ). Combining (2.1)—(2.3), we arrive at

P ) e [ RS (ete .00, 0) i, )

[0,7]¢
d
=cq / Ln“'+5+"(||x||%+||y||%+2x,-y,~cos9,~>du;‘;,yw), 2.4)
[0, 71 i=1

where cg = 2m)" 22T Doy + 1), 2(x,5.0) = (21(x,.0),....24(x,y,0)) with
zi(x,y,0) = x? + y? + 2x;y; cos 6;, and

d
d
dps (0) = Zim iU [T Gy o (x; yi sin6;) sin® 6; do. (2.5)
i=1
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Some standard asymptotic properties of Laguerre functions will be needed. The univariate
Laguerre functions L are defined by

wpy._ [ T+1) 12 —x/2.a27a
ﬁn (x) = (m) e X Ln (x) (26)

Lemma 2.1. Set N :=4n + 2o + 2. The Laguerre functions L% satisfy

(xN)*/2, 0<x<1/N,
N)“1/4 1/N<x<N/2
L)< { N sxsN/2 27
ERNS ey Wi is 4 N — )14, N2 <x <3NP 7
e vx, x =3N/2,

where y > 0 is an absolute constant.

This lemma is contained in [15, Section 8.22] (see also [16, Lemma 1.5.3]). Using that I"(n +
a+1)/T'(n+ 1) ~n® one easily extracts from (2.7) the estimates

e ILY (x)| < en®/PT VAT 2TA L x e R\ (N/2,3N)2), (2.8)

and, for N/2 < x <3N/2,

efx/2|LZ(x)} < cx*"‘/zn"‘/z*l/“(nl/3 + |4n + 20 +2 — x|)71/4. (2.9)
Also, from (2.7)
e LY ()| <en®, xeRy, (2.10)
and since || LY |« < ¢, again by (2.7),
e PLE ()| < cn/x)*?,  x eR4. (2.11)
Let K (x, y) be the reproducing kernel of the Laguerre polynomials. Then
"L () L% (y)
J J
Kf:(x,y>=cazw, x,y€Ry. (2.12)
j=0 J
The Christoffel function is defined by
20 =[Kex, 0], xeRy. (2.13)
For this function it is known that (see [10] and the references therein)
A (x)
c1@n(x) < Saea(x), 0<x<dn, (2.14)

(x + )%



1142 G. Kerkyacharian et al. / Journal of Functional Analysis 256 (2009) 1137-1188

=] oy 2.15
n(x) == m (2.15)

There are sharp estimates for LS (x) in terms of ¢, (x). For any x > 0, let #_, denote the/a
zero of LY (x) that is closest to x. Then (see e.g. [10])

where

(x — th,n)z

(kyn — lkot10)? x €ltin,tanl.  (2.16)
ot T by n

5 1 a+1
(L )] (x + ;) e " ~ngy(x)

Here and in the following ¢ ,, ..., t,,, denote the zeros of L% (x). They are known to satisfy [15,
Section 6.31]

en TV <ty <typ <o <tpn<4n+2042—c@n)'3, (2.17)
Furthermore (see [15, (6.31.11))),

v2 2 2

4v v v
cx— <typ < — +c(e)— andhencet,, ~ —. (2.18)
n n n n

In addition (see [10] and the references therein),

ty+1,n —tvn ™~ @n (tv,n)- (2.19)

Therefore, if v < (1 — &)n for some ¢ > 0, then by (2.18) 1, , < (1 — €)24n + c(a), and hence,
using (2.19) and (2.15),

forin —ton ~— ifv< (1 —e)n. (2.20)
n

On the other hand, by (2.19) and (2.15), in general,

ﬁ\

Stygin —ton <!/ 2.21)

= |

We will need the Gaussian quadrature formula with weight 7%¢~" on (0, co) [15]:

o0 n
/ f(t)taeit dt ~ Z wv,nf(tv,n)a Wy p = )&Z (tl),l’l)a (2.22)
0 v=1

where ¢, ,, are the zeros of L¢(¢) and AS (x) is the Christoffel function, defined in (2.13). This
quadrature is exact for all algebraic polynomials of degree 2n — 1.
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3. Localized kernels associated with Laguerre functions
3.1. The setting

There are three kinds of univariate Laguerre functions considered in the literature (see [16]),
defined by

_(2hm+ D)\
.7:,2‘()6) = (m) e Ln(x ), (31)

L% (x) have already been defined in (2.6), and

ME(x) = 2x0)2LY (x?). (3.2)

It is well known that {F},,>¢ is an orthonormal basis for the weighed space L2(R+, x2etly
while {£%},>0 and {M$},>0 are orthonormal bases for L2(Ry).

Throughout this paper we will use standard multi-index notation. Thus, for x € R? and « €

Ri, we write x% ;= x?” ...xsd. We will use 1 to denote the vector 1:=(1,1,...,1). Then, for

instance, x1/% := x ; /2 .x;/ 2. The d-dimensional Laguerre functions are defined by

Fr(x):= ]—"3‘]‘ (xl)...fﬁj(xd), (3.3)

L8 (x) = Lﬁ‘ll (x1).. .Eﬁ‘j(xd), (3.4)

ME(x) = Mﬁll (xl)...J\/lgg(xd), (3.5)

where v = (vq,...,vg) € Ng and o = («q, ..., aq). Clearly, x""emﬁ]‘j‘(x) is a polynomial of

degree n =|v|=v; +...+ vy and

Fo(x) =292x70 L% (x7, ..., x3). (3.6)
Evidently, {7} is an orthonormal basis for the weighed space L2(RY, wy), we(x) = x2tl
while {£$} and { M} are orthonormal bases for LZ(Ri) (with weight 1).

We will utilize the basis {F{'} to the construction of frames for the space L%(wy) =
L%(R%, w,). The same scheme based on {LS} or {MS} can be used for the construction of
frames in LZ(Ri).

As explained in the introduction, kernels of type (1.3) will play a critical role in the present
paper. For our purposes we will be considering cut-off functions @ that satisfy:

Definition 3.1. A function @ € C*°[0, 00) is said to be admissible of type (a) or type (b) if @
satisfies one of the following conditions:

(a) suppa C [0,1+v],a(t)=1o0n][0,1], v>0;or
(b) suppa C [u, 1+ v], where 0 <u < 1 and v > 0.

Here u, v are fixed constants.
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For an admissible function @ we introduce the kernels

o]

An(x,y) = Za(%)f;’;(x,y) with 7 (x, y) i= Y Fr0)FL (), 3.7)
m=0 [v|=m

Ay(x, y) = Z&‘(%>£;"n(x,y) with L5, (x, ) i= D LEGLY (), (3.3)
m=0 lv|=m

Af(x,y) = ZZI(%)M‘,"”(X,))) with MZ (r, ) = Y MEOMID). (3.9
m=0

|lv|=m

The rapid decay of the kernels A, (x, y), /Tn (x,y), and A} (x,y) and their partial derivatives
away from the main diagonal y = x in Rf{_ X Ri will be vital for our further development.

3.2. The localization of A,, and its partial derivatives
Recall the definition of the weight W (n; x) := ]_[?:1 (xj +n~1/2)2t1

Theorem 3.2. Let a be admissible and let o > 0. Then there is a constant c, depending only on
o, o, and a such that for x, y € Rﬁ

d/n
n
Ap(x,y)| <c , (3.10)
[AnGx. )] < o VWa (05 3)/ Wo (0 ) (1 + 012 |1x = y|)?
and furthermore, for 1 <r <d,
0 p(d+1)/2
' An(x,y)‘gca (3.11)
0x,

VW (3 X)W (0 y) (1 + 12 ||x — y e

Here the dependence of c, on @ is of the form cy = c(o, o) maxog i<k l[@P ||, where k >
o +2a|+d/2.

In addition to this, there exists a constant 0 > 0 such that if x,y € Ri and max{||x|l, | ylI} >
(6(1 4+ v)n + 3|l + 3)'/2, then

e—omax{llx], yl1}?

(1 +n!72)x = yIDo

|An(x, y)| < co (3.12)

and, for 1 <r <d,

e—omax{lx|, 1y}

(I +n!2]x = ylho

d
Ap(x, y)‘ < ¢o (3.13)

‘ 0xy

To keep our exposition more fluid we relegate the proofs of these and the estimates to follow
in this section to Section 8.

We next use estimate (3.10) to bound the L”-integral of A, (x, y), in particular, we show that
Jra 14n(x, )wa(y)dy < ¢ < 00,
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Proposition 3.3. For 0 < p < 0o, we have

/ | A )| wa(y) dy < cn@PP=DWo(ns )P D x e RY (3.14)

d
R+

Estimate (3.14) is immediate from (3.10) and the following lemma which will be instrumental
in the subsequent development.

Lemma 3.4. If s e Rand o > d(Q2|la| + D(|s|+ 1) + 1), then

d —d/2
/W Way)dy <—= xeR%. (3.15)
o
R

(3 Y)S(L+n12)x — yID® ~ Weln;x)s—1’

We next give a lower bound estimate:

Theorem 3.5. Let a be admissible in the sense of Definition 3.1 and |a] > co > 0 on [1,1 + 7],
T > 0. Then for any § > 0

/|An<x, W we)dy = enWom: )", xe[0, /@ —on]’, (3.16)
R{
where ¢ > 0 depends only on o, d, t, 8, and c.
By the orthogonality of the Laguerre functions it readily follows that

o
2 ~ 2
[ 1au 9 Pwardy = 3 fatm/m £ e,
=0
RY "
and hence Theorem 3.5 is an immediate consequence of the following lemma.

Lemma 3.6. For any ¢ > 0 and 6 > 0 there exists a constant ¢ > 0 such that

n+|den]|
S Frex) = enPWami )Tl xe [0,V @ —n]’. (3.17)

3.3. The localization of Ay, and its partial derivatives
The localization of the kernels /Tn can be deduced from the localization of A, given above.

Theorem 3.7. Let a be admissible. Then for any o > 0 there is a constant ¢, > 0 depending only
on o, a, and a such that for x, y € Ri,
/2

1 1 l
T (i 4+ =3 (i + =) 3 (14012 x 12 — y1/2|ye

| An(x, Y| < o (3.18)
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and, for 1 <r <d,

cnd/2+1

0 ~
‘ Ay (x, y)‘ < 7 : ; . (3.19)
0 [T i+ =13 G+ n= )3 (14025172 = y12)e
Here the dependence of c; ona is as in Theorem 3.7.

Estimates for /T,Z like the ones of (3.12)—(3.16) can be extracted from (3.12)—(3.16). The
results from this and the next subsections follow easily from Theorem 3.2, see Section 8.3.

3.4. The localization of A}, and its partial derivatives
The localization properties of A (x, y) appear simpler:

Theorem 3.8. Let @ be admissible. Then for any o > 0 there is a constant ¢, such that for

X,y € Rf{_
nd/2
| A (x| S drp—e (3.20)
and, for 1 <r <d,
‘ 0 pr(x y)‘ <co nDr 3.21)
ax, M (I +n'72)x = ylI)”
Estimates for A} similar to the ones of (3.12)—(3.16) can easily be obtained.
4. Additional background material
4.1. Norm equivalence
Proposition4.1. Let 0 <g < p<ooand g€V, (n > 1). Then
lgllp < en@HeDA/a=lmy g, @1
and, for any s € R,
” Wy (n; ) g(-) ”p < en@/D1/q=1/p) ” Wy (n; .)S+1/P—l/qg(.) Hq_ 4.2)
Furthermore, for any s € R
Igllp < en™|Won; )*g()| o (4.3)

where M depends only on o, d, p,q, and s.

The proof of this proposition employs the localized kernels from Section 3 and is rather stan-
dard. For completeness we give it in Section 8.
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4.2. Maximal operator

We define the “cube” centered at & € Rﬁ of “radius” r > 0 by Q¢(r) == {x € Rﬂ’r:
lx —&|| <r}. Let M, be the maximal operator, defined by

1 1/t
M, f(x):= sup (— / \f<y)|’wa<y>dy) , xeR4, (4.4)
0: x€Q M(Q)Q

where the sup is over all “cubes” Q in Ri with sides parallel to the coordinate axes which
contain x. It is easy to see that

d
u(Qe(m) ~r! [T+t (4.5)

j=1

Hence u(Q:(2r)) < cu(Qg(r)), ie. u(-) is a doubling measure. Therefore, the theory of
maximal operators applies and the Fefferman—Stein vector-valued maximal inequality is valid
(see [14]):if 0 < p < 00,0 < g < 00, and 0 <t < min{p, ¢}, then for any sequence of functions

fi, fo....onRYL
1/q 00 1/q
H(Z [M:f; )] ) c (Z!m-ﬂ") : (4.6)
=1 p j=1 P
where c =c(p,q,t,d, o).
4.3. Distributions on Ri
We will use as test functions the set S of all functions ¢ € C*°([O0, 00)?) such that
Pg.,, (¢) := sup |x”8ﬁ¢(x)| < oo for all multi-indices y and 8, 4.7)

d
xeRy

with the topology on S, defined by the semi-norms Pg . Then the space S’ of all temperate
distributions on Rf{_ is defined as the set of all continuous linear functionals on S. The pairing of
f €8 and ¢ € S, will be denoted by (f, ¢) := f (¢) which is consistent with the inner product

(f.8):= fpa fO)gEIwa(x) dx in L*(RE, wo).
It will be convenient for us to introduce the following “convolution.”

Definition 4.2. For functions @ :Ri X Ri — Cand f: ]Ri — C, we define

O % f(x) = / O (x. ) f()wa(y)dy. 4.38)

d
]R+
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In general, if f € S, and @ :Rf{_ X Rf{_ — C is such that @ (x, y) belongs to S as a function of
y (D (x,-) € S;), we define @ * f by

@ x f(x):=(f, D(x,-)), 4.9)
where on the right-hand side f acts on @ (x, y) as a function of y.
We now give some properties of the above convolution that can be proved in a standard way.

Lemma 4.3.

@ If feS and ®(-,-) € S+(Ri X Ri), then @ * f € Sy. Furthermore F x f € V).
) If feS,, &(,) €St (RL xRY), and ¢ € Sy, then (® * f,¢) = (f, D * ¢).
© IffeS, &), ¥(,)eStRExRY), and @ (y,x) = @ (x,y), ¥(y,x) = ¥(x,y), then

W@k f(x)=(¥(x,"), (., * f. (4.10)

Evidently the Laguerre functions {F'} belong to Sy. Moreover, the functions in S4 can be
characterized by the coefficients in their Laguerre expansions. Denote

00 oo 1/2
P,*(qs):=Z(n+1)’||f,?*¢||2=2(n+1)’<Z|<¢,f3>|2> SENCR Y
n=0 n=0 [v|=n

Lemma 4.4. A function ¢ € S1 if and only if (¢, F7)| < cx(Iv] + D~* for all multi-indices v
and all k. Moreover, the topology in S can be equivalently defined by the semi-norms P}.

The proof of this lemma is given in Section 8.
5. Construction of frame elements (needlets)

In this section we construct frames utilizing the localized kernels from Section 3 and a cuba-
ture formula on Ri. As explained in the introduction, we will only use the Laguerre functions
{F<} defined in (3.3).

5.1. Cubature formula

We will utilize the Gaussian quadrature (2.22) for the construction of the needed cubature

formula on Ri. Givenn > 1, we define, forv=1,...,n,
1 ty.n 1 o ton 1 a (g2 §2
v =yt and ¢y, = Ewu,n@ = E)\n (ty,n)e™" = Ekn (EV,H)E v, (5.1

where {t, ,} are the zeros of LS (¢) and {w, ,} are the weights from (2.22).
It follows by (2.18) and (2.20), (2.21) that
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Vv

Ev,n ~ ﬁa (52)
Evrtn —Evn~n2 1<V < (1o, (5.3)
and, in general,
cin V2 <Eppin —Evn <con” V0 (5.4)
Furthermore, using (2.14) and (2.19) we obtain
Con ™ ‘pn(tv,n)tﬁn ~ (tv+1,n - tv,n)tg,n ~ (%_U—i-l,n - gv,n)%_ffﬁ_l' (5.5)
Now, for y = (y1,...,vd) € Ng we set
d
cyni=[Jeyn and & =Gy ). (5.6)
j=1
Proposition 5.1. The cubature formula
n n
/ g wa(x)dx ~ Y. cpnfEpn)gEyn) (5.7)
Ri vi=l  ya=1

is exact for all f € Vy and g € V,, provided £ +m < 2n — 1.

Proof. Evidently, it suffices to consider only the case d = 1. Suppose f € V; and g € V,, with
C+m<2n—1.Let f(x)=: F(x)e /2 and g(x) =: G(x2)e™>"/2, where F € 1}, G € IT}
with H} being the set of all univariate polynomials of degree < j. Then using the properties of
quadrature formula (2.22), we get

/f(x)g(x)wa(x)dx=/F(x2)G(x2)x2“+le_x2 dx:%/F(t)G(t)t“e_t dt
0 0 0

1 o |
= 5 Z Wy F(ty,n)G(ty,n) = Z vanF(f\%n)G(&%n)
v=I v=1

n 1
= S MEL)E FEg ).
v=I1

which completes the proof. O
To construct our frame elements we need the cubature formula from (5.7) with

n=n;=|c; A+ 11)V6-47 | +1~47, (5.8)
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where 0 < ¢, < 1 is the constant from (2.18) and 0 < § < 1/26 is an arbitrary but fixed constant.
For j > 0, we define

Xj={6eRL: E=¢§,,,, 1<y <nj, 1<L<d). (5.9)

Note that #X; = n? ~ 4/ Now, if £ € Xj and £ = Eynjs WeSEL Cg 1= Cyp; .
As an immediate consequence of Proposition 5.1 we get

Corollary 5.2. The cubature formula

/ )@ we(x)dx ~ Y~ ¢ f(€)g(&) (5.10)

d EEX'
R4 j

is exact for all f € Vy and g € V,, provided £ +m < 2nj — 1.

Tiling. We next introduce rectangular tiles {Rg} with “centers” at the points § € X;. Set [ :=
[0, (61 + §2)/2] and

L= Gt +8)/2 E +E50)/2], v=2,....n;,

where &, := SU,,,J. ,v=1,...,n;,are from (5.1) and E,,_,.H = é‘,,_/. + 2473,
Toevery £ =&, =(§),,...,§,,) in X; we associate a tile R¢ defined by

Re =1, x---x1Iy. (5.11)
We also set
Qj:= U Re. (5.12)
EEXJ'

Evidently, different tiles R¢ do not overlap and Q; ~ [0, 2714,
By (5.5) it readily follows that

cg ~ (Rg) :=/wa(x)dx~ |Re lwa () ~ | Rs | We (47 ). (5.13)
R
Assume £ € X}, & := £, and [|§]| < (1+46)v/6-2/. By (2.18) ||&, || > ci/*|ly | /* and hence

vl < c,[l/z(l +48)V6 - zjn}/z < (1 —8)n;, where the last inequality follows by the selection
of n; in (5.8). Therefore, for & € &;

Re~&+[-277277]" and  p(Re) ~ 27w, (&) if I < (1+48)V6- 2/, (5.14)

while in general, for some positive constants cy, ca, ¢, ¢,
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£+ [—c127, clz—f']d CRe CE4[—c2793, 227731 and (5.15)
277wy () < w(Re) < 271 Pwy (8). (5.16)

The following simple inequality is immediate from the definition of Wy, (n; x) in (1.2) and will
be useful in what follows:

Wa (475 y) < Wa (45 x) (1427 11x — y )1 x,y eRY. (5.17)
5.2. Definition of needlets
Leta, b satisfy the conditions:
a,be C®(R), suppad,suppb C [1/4,4], (5.18)
[a@)|. ’E(r)| >c>0 ifre[l/3,3], (5.19)
anb(t) +a@nb@n =1 iftre[l/4,1]. (5.20)
Hence,
o0
> a@ b ") =1, tell,o0). (5.21)
m=0

It is readily seen that (e.g. [5]) for any @ satisfying (5.18), (5.19) there exists b satisfying
(5.18), (5./1\9) such that (5.20) holds.
Let a, b satisfy (5.18)—(5.20). Then we set

Do(x, y) i= FE(x, ), (Pj(x,y)::za\<$—_l>_7:gl(x,y), and (5.22)
m=0

as ~ m
Yo (x, y) :=Fgy (x, y), Vi(x,y):= Zb<m—_1)f$()€»y), Jj=1 (5.23)
m=0

Let X; be the set defined in (5.9) and let ¢ be the coefficients of cubature formula (5.10). We
define the jth level needlets by

ge(0) =@ (0, 6) and Y () = PW(x.6), § X (5.24)

Set X := U?io Xj. We will use X as an index set for our needlet systems @ and ¥. For this
reason, (possibly) identical points from different levels X’; are considered as distinct elements
of X. We define

D = {peleens Vo= {Yeleex. (5.25)

We will term {g¢ } analysis needlets and {1} synthesis needlets.
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Localization of needlets. An immediate consequence of Theorem 3.2 is the estimate: for any
o > 0 there exists a constant ¢, > 0 such that for all x, y € R‘j_

cg274

D;(x,y) . : . ,
) VW (47, X))/ Wo (47, y)(1 +2/||x — yl)°

Wi,y <

(5.26)

)

while ¢527¢ can be replaced by c(o, L)27/L if max{|| x|, [|yl} > (1 + 8)2/6-2/, where L > 0 is
an arbitrary constant but the constant c(o, L) depends on L as well. We employ (5.26) and (5.13)
to obtain for & € X;

2d/2
@ (0|, e ()| < : , , xeRd, (5.27)
o £l Wa@ 01 +2i]x —£[)° ’
and
2—JL .
g ()], [we ()] < < if €] > (1+8)6-2/. (5.28)

VW@l x)(1+27 |x —£[)°
‘We next show that Sﬁr and L? (Ri) have discrete decompositions via needlets.

Proposition 5.3.

(@) If f €S/, then

f= ZlI/j x®;xf inS, and (5.29)
j=0
f=3 (fioawe inS,. (5.30)
teX

®) If f e LP(wy), 1 < p < oo, then (5.29), (5.30) hold in LP (wy). Moreover, if 1 < p < 0o,
then the convergence in (5.29), (5.30) is unconditional.

Proof. (a) Note that ¥; * @ j(x,y) is well defined since ¥ (x, y) and @; Lx, y) are symmetric
functions (e.g. ¥;(y, x) = ¥;(x, y)). By (5.22), (5.23) it follows that ¥ * & =Py and

V) ST ()7 i>1 531
jRPjlx,y) = Zza o1 )P\ = )P ), =L (5.31)
m=4J—

Hence, (5.21) and Lemma 4.4 imply (5.29). Evidently, ¥;(x, -) and @;(y, -) belong to V,; and
using the cubature formula from Corollary 5.2, we infer

v *5j(x,y) = / Vi, u)®;(y,u)du

d
R+



G. Kerkyacharian et al. / Journal of Functional Analysis 256 (2009) 1137-1188 1153

=D a¥@.HD;(3.E =Y V(e ().

EGX]' EEX]'

Therefore, ¥; * 5j * f = deX,- (f, ) ¥ and combining this with (5.29) gives (5.30).

(b) In L? identity (5.29) follows easily by the rapid decay of the kernels of the nth partial
sums. We skip the details. In L?, identity (5.30) follows as above. The unconditional convergence
in LP(wy), 1 < p < 00, is a consequence of Proposition 6.3 and Theorem 6.7 below. 0O

Remark 5.4. Suppose that in the needlet construction b =3 and @ > 0. Then ¢ = Ye and
(5.30) becomes f = ZseX(f» V) e. It is easily seen that this representation holds in L? and

12 = Ceen [ ) D2, f € L% ie. {Ye)gen is atight frame for L2(RY., wq).
6. Laguerre-Triebel-Lizorkin spaces

We follow the general idea of using spectral decompositions (see e.g. [12,17]) to introduce
Triebel-Lizorkin spaces on Ri in the context of Laguerre expansions. Our main goal is to show
that these spaces can be characterized via needlet representations.

6.1. Definition of Laguerre—Triebel-Lizorkin spaces

Let a sequence of kernels {®;} be defined by

o
~f m .
Po(x,y):=Fy(x,y) and @;(x,y):= ZG(M—J?Z(L ., Jj=z1 (6.1)
m=0
where {F2(x, y)} are from (3.7) and @ obeys the conditions
ae€ C™®[0,00), suppa C[1/4,4], (6.2)
[a@)|>c>0, ifre[l/3,3]. (6.3)

Definition 6.1. Let s, p € R, 0 < p < 00, and 0 < ¢ < co. Then the Laguerre—Triebel-Lizorkin
space F’ ;Z = F;Z (F*) is defined as the set of all distributions f € Sg_ such that

< o0 (6.4)
p

0o 1/q
||f||F;2 = H (Z[zsta(4j; .)*P/d|q§j % f()|]‘1)
j=0

with the usual modification when g = oo.

As is shown in Theorem 6.7 below the above definition is independent of the choice of @ as
long as @ satisfies (6.2), (6.3).

Proposition 6.2. Forall s,p e R, 0 < p <00, and 0 < g < oo, F ;Z is a (quasi-)Banach space
which is continuously embedded in S, .
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Proof. The completeness of the space F ;,Z follows easily (see e.g. [17, p. 49]) by the continuous
embedding of F; in &/, which we establish next.

Let {@;} be the kernels from the definition of Fpy with @ obeying (6.2), (6.3) that are the
same as (5.18), (5.19). As already indicated there exists a function b satisfying (5.18)—(5.20).
We use this function to define {¥;} as in (5.23). Assume f € F;g. Then by Proposition 5.3
f=2320¥*®;* f in S and hence

o0

(fi$)=D (WjxP;xf,¢), ¢eSi.

—0

~

We now employ (5.31) and the Cauchy—Schwarz inequality to obtain, for j > 2,

47 _ 2
|<'1’f*5f*fv¢>|2=‘ 2 5(%)%%)%*]‘,?&*@

m=4/-241

s m 2 2 & ~( m 2 2
< 2 w(gm)[1mer X (e el
m=4i-241 m=4i—241

47
<l fI3 Y. |Fa ol
m=4/"241

Using inequality (4.3) we get
. . . _ d .
19 5 flla < 2T MHED |25 W, (27 ) a5 ] < 2T D) £,

where M depends on p, «, d, and p. From the above estimates we infer

[ @5 f.d)| <270 fllp 2™ D0 [ Fnx fly <2 f Nl gy PE@)

42 <mg4)
for k > M + |s| + 1. A similar estimate trivially holds for j =0, 1. Summing up we get
[(fo )| <cllfll sy PE (@),
which completes the proof. O
Proposition 6.3. The following identification holds:
Fgg'va(wa), 1 <p<oo, (6.5)

with equivalent norms.
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The proof of this proposition is the same as the proof of Proposition 4.3 in [11] in the case
of spherical harmonics. We omit it. Rough L?” multipliers for Laguerre expansions can be used
for the proof. However, since we cannot find in the literature any multipliers for the Laguerre
expansions we use in the present paper, we next give easy to prove but non-optimal multipliers.

Proposition 6.4. Let k be a sufficiently large integer (k > (5/2)|a| + (7/4)d + 3 will do) and
suppose m € CK(R ) obeys

sup [t/m V()| <c for j=0,1,... k. (6.6)

reRy
Then the operator T, (f) 1= Z;iom(j)}";?‘ * f is bounded on LP (wy), 1 < p < 00.
The proof is given in Section 9.
6.2. Needlet decomposition of Laguerre—Triebel-Lizorkin spaces
As a companion to Fj; we now introduce the sequence spaces fyg. Here {X;}52 is the

sequence of points from (5.9) with associated tiles {Rg}ec X defined in (5.11). Just as in the
definition of needlets in Section 5, we set X' := ;> A

Definition 6.5. Suppose s, p € R, 0 < p < 00, and 0 < g < co. Then f;g is defined as the space
of all complex-valued sequences & := {h¢}gcx such that

<0 6.7)

00 1/q
i = H (ZW 3 [ihelWa (@ @‘”"ﬂw')]q)
j=0

éGXj

p

with the usual modification for ¢ = co. Recall that 1 Re = ,u(Rg)’l/ 27 R:-

In analogy to the classical case on RY we introduce “analysis” and “synthesis” operators by

Sp: f = {(fi0e)}cry and Ty :{heleex > e (6.8)
teX

We next show that the operator Ty, is well defined on f, ;Z.
Lemma 6.6. Let s,p € R, 0 < p < 00, and 0 < g < co. Then for any h € fpg, Tyh =

> sex heWe converges in S'.. Moreover; the operator Ty : fpg — S is continuous, i.e. there
exist constants k > 0 and ¢ > 0 such that

(Tyh. o)l <cPE@hll g forh e f35 and § €S, 6.9)
Proof. Let h € f,;. Using the definition of f,/ we obtain

21 e | We (475 8) "1 TR, (O], < il for g € Xy, j >0,
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But (5.16) gives ||1g, I, = u(Re)/P~12 > c[27/4W, (47, )11/P~1/2 for & € X; and since
27 Qla+d) < W, (47, ) < 2/ Clel+d) jt follows that for & € X;

lhe| < c21M||h||f;Z with M := |s| +2(le| +d)(Ipl/d + 11/ p — 1/2]). (6.10)

By Lemma4.4 ¢ =) 2 F% * ¢ in S; for ¢ € Sy and hence for § € X

Ve (o) =l e)=c> Y E<i)f,fz<x,s>, ce ~ |Re|Wa (4. ).

4j-1
42 <m<4]
Therefore,
Wep)=ci> Y b5 ) Faxd
§’¢ _Cg 471 m
42 <m<4i
and hence

(Y, )| < 270D N F g .

4i=2 <m<4]

Since Fp» % ¢ € V,,, by Proposition 4.1 || F% s ¢|loc < cm@tleb/2) |F%  ¢|l2 and hence

|[(Ye, )| < c2/@lt20 N | 72 g,

4i=2<m<4i

This along with (6.10) and the fact that #X; < c4/d yields, for ¢ € S,

D lhel|(We. )| <D0 D el | (. )|

teX j=0&eX;

o0
< C”h”f;Z Z(#Xj)zj(M+2|a\+2d) Z “]:gl * ¢”2

Jj=0 4i-2<m<4J

o0 00
Scllhll gy 3 m+ DA x|, Yo 2/ (et ih

<cllhll g PE(P), (6.11)
where k := |M + 2|a| +4d + 2] > M + 2|a| + 4d + 1. Therefore, the series Zse/’\f hge con-
verges in S',. We define Ty h by (Tyh, ¢) := ZEEX he (Ye, @) for all ¢ € S. Estimate (6.9)
follows by (6.11). O '

We now present our main result on Laguerre-Triebel-Lizorkin spaces.
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Theorem 6.7. Let s, p € R, 0 < p < 00 and 0 < g < 00. Then the operators Sy : F;Z — f;g and
Ty : f;g — Fls,’q) are bounded and Ty o S, = Id on Fls,’q). Consequently, f € FIS,’; if and only if
{(f pe)leen € frq and

1 ~ I{(F w0} 6.12)

Sp .
Irq

In addition, the definition of F;Z is independent of the particular selection of a satisfying
(6.2), (6.3).

To prove this theorem we need several lemmas with proofs given in Section 9. Assume that
(@} are the kernels from the definition of Laguerre-Triebel-Lizorkin spaces and {¢g }¢cx and
{Y£}ecx are needlet systems defined as in (5.24) with no connection between the functions a’s
from (6.1) and (5.22). We also assume that p, g from the hypothesis of Theorem 6.7 are fixed
and we choose 0 < ¢t < min{p, q}.

Lemma 6.8. For any o > d there exists a constant ¢, > 0 such that

Co
I(R)V2(1+2m|x —&[D°°

| * v (0)] < E€X,, j—1<m<j+1, (6.13)

and @ x e =0 for & € Xy, if |m — j| > 2, where X, ;=0 if m < 0.

Definition 6.9. For any collection of complex numbers {/¢ }¢¢ x; (J=20), we define

. Iyl
hi(x) = _ 6.14
0= 2 iy O
neA;
and
B =hE), EeX, (6.15)

where A :=2d + 2(|a| 4+ 3d)/t +2(la| + d)|p|/d.

Lemma 6.10. For any set {hy},ecx; (j = 0) of complex numbers

R (x) <cM,< > |h,,|]an>(x), xeRY. (6.16)

VIEXJ'

Moreover, for & € X

Wa(@156) " 81,00 < e X I @) 00, )00 x e 617
nEXj

Here the constants depend only on d, «, p, 8, and t.
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Lemma 6.11. Suppose g € V,; and denote

Mg = sup g()], &€,
XERe

neEXjre

Then there exists £ > 1, depending only d, «, §, and A, such that for any § € X;

Mg‘ <cm®*

, Jorallme Xjie, RyNRe #0,

and, therefore,

ME*]lRE(x)éc Z m’,;]an(x), x eRY,
neXjie, RyNRs#D

where ¢ > 0 depends only on d, «, §, and t.

(6.18)

(6.19)

Proof of Theorem 6.7. Choose o so that o > A + 2(Joe| + d)|p|/d and recall that ¢ has already

been selected so that 0 < ¢ < min{p, g}.

Suppose {®;} are from the definition of Laguerre—Trlebel —Lizorkin spaces (see (6.1)—(6.3)).
As already mentioned in Section 5.2, there exists a function b satisfying (5.18), (5.19) such that
(5.20) holds as well. Using this function we define {¥;} just as in (5.23). Then we use {®;} and

{¥;} to define as in (5 24) a pair of dual needlet systems {¢,} and {v,}.

Suppose {¢,}, {gﬁn} 1s a second pair of needlet systems, defined as in (5.22)—(5.24) using

another pair of kernels {(D IR {III }.

We first show the boundedness of the operator T7 : fpq — Fpg. Let h € fpg and set f :=

TI',jh=dexhg1/~/§.Evidentlyq§j*wg 0if & € &)y and|]—m| 2, and hence

Jj+1
Z Zhg@j*lﬂg (X_1:=@).
m=j—1&eX),

Denote Hg := he W, (4™; 5)_p/du(R§)_l/2. Using Lemma 6.8 and (5.17) we get

j+1
Wo (4:2) 0 F < Y03 el W (4752) 7@ 5 P ()]
m=j—1£eXy,
j+l —p/d —1/2
he|Wo (4™ 8) P14 (R )Y
<
Cmgj:_lé;% (1+ 27 [[€ — x|)o—20el+dIpl/d
j+1
<c Y Hix) (H*):=0),
m=j—1

(6.20)

where H'(x) is defined as in (6.14). We use this in the definition of || f ”F}Y:g and apply

Lemma 6.10 and the maximal inequality (4.6) to obtain
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00 l/q
L Nl < (Z(Z-"‘IH}‘(~)|)q)
Jj=0 P
o) q 1/q
= <Z[M’<2js 2 lhsiwa(4f;é)”/du<Rs>‘”Msﬂ )
=0 £eX; »

Hence the operator 7 : fr [‘,q — F pq 18 bounded.
Let the space F’ [S,Z be defined using {@ ;j} instead of {®;}. We now prove the boundedness of
the operator Sy : F/ ;g — ;’Z. Let feF ;2 and denote

Mg —sup|¢ * f(x)|, £€X;, and m,:= inf |®; neXjie
x€Rg XER,
where ¢ is the constant from Lemma 6.11. We have
(£, 06)| <2|@ 5 F©)] < cn(Re)' Mg < cu(Re)' M. (6.21)
Evidently, 5j * f € V,;, and applying Lemma 6.11 (see (6.19)), we get
Milg (x)<c Y milg,(x), xeR% (6.22)

neXie,RyNRs A0

It is easy to see that Wy (4/ 1% y) ~ Wy(4/;&) for y € Re. We use this, (6.21), (6.22),
Lemma 6.10, and the maximal inequality (4.6) to obtain

00 p g\ V4
{4000} < (zzw(zw s M;RRE)>
j=0 tekX; P
00 ' ' q 1/q
<c (Zzsjq< Z Wa(4]+e§ﬁ)_p/dm:ﬂ1e,7> )
j=0 neXjie P
00 ) q 1/q
<c (ZM,(QSJ Z (4J+£ ) p/dmn]an> )
j=0 neXjye 14
00 . ' q 1/q
(5 3w nse)
j=0 neXjye 14
00 1/q
<ec (Zzsf‘fwa(4f;~)“’/d|a> *f()|q> =cll fllg-
j=0
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Here for the second inequality we used that each tile R;), n € Xj1;, intersects no more that finitely
many (depending only on d) tiles R, n € X;. The above estimates prove the boundedness of the
operator S, : FIS,Z — f;‘q). The identity Ty, o S, = Id follows by Theorem 5.3.

It remains to show the independence of the definition of Triebel-Lizorkin spaces from the
specific selection of @ satisfying (6.2), (6.3). Suppose {®;}, {5 ;) are two sequences of kernels
as in the definition of Triebel-Lizorkin spaces defined by two different functions @ satisfying
(6.2), (6.3). As above there exist two associated needlet systems {®;}, {¥;}, {¢:s}, {¢} and
{9}, {¥;}, {@e}, {¥e). Denote by ||f||F].§Z(¢) and ”f”Ff)Z(‘f) the F-norms defined via {®;}

and {5 j}. Then from above

1oy < 08 o < cllfll s -

The independence of the definition of F ;Z of the specific choice of @ in the definition of the
functions {@;} follows by interchanging the roles of {®;} and {®;} and their complex conju-
gates. O

To us the spaces F 1;2 are more natural than the spaces F;,Z with p # s since they embed
correctly with respect to the smoothness index s.

Proposition 6.12. Let 0 < p < p1 <00, 0 < g, q1 <00, and —00 < 51 < s < 00. Then we have
the continuous embedding

Fys CFEYSL ifs/d—1/p=si/d—1/p1. (6.23)

The proof of this embedding result can be carried out similarly as the proof of Proposition 4.11
in [9], using the idea of the proof in the classical case on R" (see e.g. [17, p. 129]). We omit it.

7. Laguerre-Besov spaces

We introduce weighted Besov spaces on R‘_{_ in the context of Laguerre expansions using the
kernels {®;} from (6.1) with a satisfying (6.2), (6.3) (see [12,17] for the general idea of using
orthogonal or spectral decompositions in defining Besov spaces).

7.1. Definition of Laguerre—Besov spaces

Definition 7.1. Let 5, p € R and 0 < p, ¢ < co. The Laguerre-Besov space Bl := Bl (F*) is
defined as the set of all f € S, such that

00 1/q
£l = (Z(z"f | Wa (47 ) "1 f(-)||p)‘f) < o0, (7.1)

j=0
where the £,-norm is replaced by the sup-norm if g = co.

Observe that as in the case of Laguerre—Triebel-Lizorkin spaces the above definition is inde-
pendent of the particular choice of @ obeying (6.2), (6.3) (see Theorem 7.4). Also, as for F;’; the
Besov space Bls,’; is a quasi-Banach space which is continuously embedded in S, . We skip the
details.
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7.2. Needlet decomposition of Laguerre—Besov spaces

We next define the sequence spaces by, associated to the Laguerre-Besov spaces By . As in
Section 6 we assume that {X; }°° o are from (5.9) with associated tiles {R¢ }¢c X; from (5.11). As

before we set X := ;5 &)

Definition 7.2. Let 5,0 € R and 0 < p,q < oo. Then b;’; is defined to be the space of all
complex-valued sequences & := {h¢}gcx such that

o _ J a/p\ /4

||h||bsp€1 = (szstI[ Z(Wa(4],€;)7p/ M(RS)]/p_l/zlh&_I)p} > (72)
j=0 geX;

is finite, with the usual modification whenever p = 0o or g = o0.

We shall utilize again the analysis and synthesis operators S, and Ty defined in (6.8). The
next lemma guarantees that the operator Ty, is well defined on b‘;,’;

Lemma 7.3. Let s, p € R and 0 < p,q < oo. Then for any h € bpq, Tyh:= ZEGX hgre con-
verges in S',. Moreover, the operator Ty, by pg — S is continuous.

The proof of this lemma is quite similar to the proof of Lemma 6.6 and will be omitted.
Our main result in this section is the following characterization of Laguerre-Besov spaces.

Theorem 7.4. Let s,p € R and 0 < p,q < oo. Then the operators S, B — bpq and
Ty : bsﬁ — B pq are bounded and Ty o Sy = Id on B . Consequently, for f e 8!, we have

thatf € B[,q if and only if {{f, ¢)}eecx ebpq and

1 g3 ~ [{<F. )} s (7.3)

l”l

In addition, the definition of Bff; is independent of the particular selection of @ satisfying
(6.2), (6.3).

The proof of this theorem relies on some lemmas from the proof of Theorem 6.7 as well as
the next lemma with proof given in Section 9.

Lemma 7.5. Let 0 < p < oo and p € R. Then for any g € Vy;, j =0,

. £y—Pp/d P v . \—P/d
(X W@ mxle ko)) <clWa(@s) 0], ab
SEX/'

Proof of Theorem 7.4. We will use some basic assumptions and notation from the proof of
Theorem 6. 7. Let O<t<pando > A+ 2(|la| +d)|p|/d. Assume that {®;}, {¥;}, {¢,}, {¥y}
and {t;b I {!I/ 1, (@0} {1/1,7} are two needlet systems, defined as in (5.22)—(5.24), that originate
from two completely different functions @ satisfying (6.2), (6.3).
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Let us first prove the boundedness of the operator 77 :b;f; — BZZ, assuming that B;‘; is
defined by {®;}. Suppose h € b;,’; andset f:=Tyh = ZEGX hg&g.
Denote H := he Wy (4™ &)~P/4u(Re) ™12, & € X),,. Then by (6.20) and Lemma 6.10

Jj+1

| W45 )@y £, < Y | H3],

m=j—1
J+1

<CZ

m=j—1

M’( 2 |hs|Wa(4m;€)p/dM(Rs)‘/zﬂRf)

el

p

j+1

1/p
<c Z ( Z (|h§'|Wo{(4m’E)_P/dH(Rg)l/p—l/z)p) ,

m=j—1 “teX,

which yields || f]| BY, <cll{hp}l b and hence the claimed boundedness of Ty.
We now prove the boundedness of the operator S, : B;’ZI — b;f;, where we assume that the
space B is defined in terms of {®} in place of {®;}. Just as in (6.21) we have |(f, ¢¢)| <

cu(Re)V2|@ ;% f(€)], € € X;. Since @ * f € V,;, Lemma 7.5 implies
i —p/d _
3 (Wal#:8) ™ uR)YPTI2 £ge) )
feX;

<e Y Wa(@i6) 7B 5 £ 1n(Re) < | Wa (475 ) P9® 5 % £ )]
SEXJ'

p
P’

which leads immediately to ||{(f, (p)}||b;/; < c||f||B;/:{.

The identity Ty o S, = Id follows by Proposition 5.3. The independence of B;’; of the specific
selection of @ in the definition of {®;} follows from above exactly as in the Triebel-Lizorkin case
(see the proof of Theorem 6.7). O

The parameter p in the definition of the Besov spaces BIS,Z allows one to consider various
scales of spaces. A “classical” choice of p would be p = 0. However, to us most natural are the

spaces B‘;f (p =s) for they embed “correctly” with respect to the smoothness index s:

q

Proposition 7.6. Let 0 < p < p1 <00, 0 < g < g1 <00, and —00 < 51 < 5 < 00. Then we have
the continuous embedding

B C B ifs/d—1/p=si/d—1/p. (1.5)

Proof. Assuming that @; is from Definition 7.1 we have @; * f € V,;+1 and applying estimate
(4.2) from Proposition 4.1 we obtain

—s1/d

|Wa(47; ) D f(.)“pl < 2/ 40/P=1/p0) |y, (47 .)*x/dgpj ” f(')”p’

where we used that s/d — 1/p =s1/d — 1/p1. This implies (7.5) atonce. O
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8. Proofs for Sections 3, 4
8.1. Proof of estimates (3.10) and (3.12) in Theorem 3.2

We may assume that n > ng, where ng is a sufficiently large constant. Estimate (3.10) will
be established by applying repeatedly summation by parts to the sum in the definition (3.7)
of A,(x, y). For a sequence of numbers {a,,} we denote by AXa,, the kth forward differences,
defined by Aa,, := a;, —apn+1 and inductively Aktlg = A(Akam). Choose k > o +2|a|+d/2
and denote

n

m+k

Qrey) =Y Ay, Fa(x.y), Ay, :=( X ) (8.1)
m=0
Using summation by parts k times, we obtain

— - _ k41~ k

An(x.y) .—Zz‘)a(;)f;%x,y)—ZOA a(;) 2, y), (8.2)
Jj= m=

where AFT! is applied with respect to m. By (2.1) and (8.1), it easily follows that .Q,’jl (x,y)=
ce_(”x”%J””-V”%)/ZP,‘Z’k(xz, y?) and combining this with (2.4) we get

d
256,y =c f L',;':+k+"(||x||§+||y||§+22x,~y,~cosei)
[0, 7] i=1

d
_ 2 2 d . . . . .
xc ¢~ Wty xivi costO2 T Gy (o i cos 6) sin™® 6; ).
i=1

Using this in (8.2) we arrive at the identity

d
An(x,y)=c f Kﬁ(||x||%+||y||%+2inyicosei)

(0.7 i=1
d

< [ T je—1/2(xi yi cos ;) sin®i 6; ., (8.3)
i=1

where A := || + k + d and the kernel Kﬁ is defined by

[e.0]

Arpy o k1l Y o —1/2
Kh(t):=>_A a(n>Lm(t)e . (8.4)

m=0

By a well-known property of finite differences we have

Ak+15<"—1)‘ =0 Mat @] <nt @ty . (8.5)
n
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Further, it is known that [1, p. 204]

2—Ot+%

. —a+1/2 i 2ya—1
Jaml () =2x atl/ Tyt (0= @ A=) dr, a>0, (8.6)
-1
and j_ 1 x)= \/g cos x. Therefore,
|ja_%(x)|<ca<oo, xeRy, a>0. (8.7)

By (8.5) and (2.11) (with « replaced by || + k + 1) we obtain for ¢t > 0

L(1+v)n] 1 m\ (el +k+d)/2
[K:@)| <e Z — (7> < enRHleltd) /2 —(altktd)/2 (g gy
m=max{[un]—k,1}

Using this in (8.3) we get

[T, sin® 6; d6
(U2 + 113 + 230, x;iyi cos 6;) Hlal+d)/2

| An(x, y)| < enRHeD2 /

[0,7]¢

Set T := (k + || + d)/2. Substituting 6; = w — #; in the above integral and using 1 — cost =
2sin? £~ 2 we infer

]_[fl: | sin?% 1; dt

(Ix = Y3 +4 X% x;yi sin? 4)7

|An(xs y)| < Cn_k+t /

[0,714

d 2w
< cn—k-l—‘[ / Hi:] ti . dt - — CM,],:’O[(X, y) (89)
i (lx = ylI% + Doim1 Xiyit])®

,TT

We estimate the integral above in two ways. First, we trivially have

Cn—k+r Cn\oz|+d

lx = yl12* (/2 ]x — ylpktlat+d”

| An(x, y)| < eMF*(x, y) < (8.10)

The second estimate is really many estimates rolled into one. For a fixed 1 < £ < d we partition
a into o = (o, @”) with &’ = (ay,...,a) and a” = (@¢41,...,aq). Since T > |a| + d/2 and
x;yi > 0 we have

Hf:l tizai dt
(x = yI2 + b xiyit?)®

Mr/l{,ot(x’ y) < Cn—k+‘[ f

[0,71¢
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NV
_ ¢ (X yi)
cn~ktT du

<o 7 T
ni=1<xiyi)af+1/2g S =yl i upe

where we applied the substitutions u; = t; (x; yi)1/% and used |o’| power of the main term in the

denominator to cancel the numerator. Enlarging the integral domain to R¢ and using spherical
coordinates, the above product of integrals is bounded by

o
/ du _ f r*=tdr _ c
(= yI2 + TulB =T~ ) (= yI2 4+ 27T e — y 2o =E
R¢ 0
From above and a little algebra we obtain for 1 < € < d

| An(x, )| <eMb(x, y)

end/?

< .
y) T Q— _ gL _ _
[Tiz Gy 2 [Tim gy (n= D)% T2 (12| x — y |k Hlel =2l 1+d =

(8.11)

A third bound on |A,(x, y)| will be obtained by estimating all terms in (3.7). By (2.10) and
(3.6) it follows that

|Fe)  <ev? 1<i<d, and |FY|_ <ev®/?, (8.12)
and hence
m +d — 1 d—1 . .
|]-',f,(x,y)| <c Z VY :c( . )m"’" < emlItd=T yielding
lv|=m
[(1+v)n]
[An(x. )| <ce D mlraTt L enloitd, (8.13)
m=0
We also need the estimate
cnt/?

| A, )| < 1<e<d. (8.14)

[Ty ey +1/2 H?:Z+1(n_l)ai+l/2

By (2.8) it follows that

| P )] < if x2 e Ry \ (2n + 20 + 2, 6n + 3a + 3), (8.13)

Car12,1/4°

and if x2 € [2n 4+ 20 + 2, 6n + 30 + 3), by (2.9)

Cc

Fr)| < '
| n(x)| xenl 43 4 |4n 4+ 20 + 2 — x2|)1/4

(8.16)



1166 G. Kerkyacharian et al. / Journal of Functional Analysis 256 (2009) 1137-1188

From these two estimates one easily concludes that for x > 0

C
Yat1/2,1/4°

|72 (x0)] < ifn e Ry \ (x2/5,x%/3), (8.17)

and

c
xa+1/2(1 + |4n — x2|)1/4 ?

|7 ()] < if n € [x?/5, x%/3]. (8.18)

Hence, | (x)| can be bounded by the sum of the right-hand side quantities in (8.17), (8.18).
Also, from (8.12) ||]:f,f" loo < cvf”/z. From these along with (3.3), (3.4) we obtain

| An(x, y)|

d [(14v)n]

<IT X 1=llFronl

i=1 U,’ZO

d [(1+v)n]

‘ I1 Z (i + 1)

< - -
e v \ait1/2
Hi:l(—xlyl)a’+/ i=0+1 V=

¢ L(14v)n)

1 1 1
XH z:: <(1+v1 174 (1+|Vi—”i|)1/4><(1+vi)1/4+(1+|Vi_vi|)1/4)’

where u;, v; > 0 are some numbers. Clearly, each of the last sums can be bounded by four sums
of the form

L(1+v)n] 1
<cn'l?
V_X;; (U v — DV + [ = 2D

This last estimate apparently holds independently of w; and z;. Estimate (8.14) follows from
above.

We are now in a position to complete the proof of (3.10). Estimates (8.10) and (8.13) readily
imply

cnlal+d

(1 +n1/2”x _ y||)k+\ot|+d ’

|An(x, y)| < (8.19)

while by (8.11) and (8.14) we have for 1 <i < ¢

cnd/Z

TTes Gyt 12 Ty (n Do+ 12(1 4 p1/2 | x — y |kl

| An(x,y)| <
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Clearly, this estimate holds for an arbitrary permutation iy, i, ..., iy of the indices 1,2, ...,d.
These estimates and (8.19) yield

Cnd/Z

[T Griyi 4+ n= Dyt 121 4 01 /2||x — yk-lel”

| An(x, y)| < (8.20)

To complete the proof we need the following simple inequality: for x, y € Ri
(xi #0712 (i #0712 By +n (1 +n'x —yl), 1<i<d. (821
Combining these with (8.20) we get

cnd/?

[T G /2@ 12y 121 /2(1 12—yl A2l =42

|An(-xs Y)| <

which implies (3.10) since k was select so that k > o + 2|a| 4+ d /2.
The proof of (3.12) is trivial. Indeed, by Lemma 2.1 it follows that

|F2 ()| <ex™e ™ forx > (6n + 3o+ 3)/2, (8.22)
From this it easily follows that if max{||x||, [|y|} = (6(1 + v)n + 3||a| + 3)'/2, then
| Anx, )| < endey maxtix 2% -, o o)
which readily implies (3.12).
8.2. Proof of estimates (3.11) and (3.13) in Theorem 3.2

Clearly, (3.13) implies (3.11) if max{|[|x|, [ y[I} = (6(1 4+ v)n + 3|l + 3)!/2.

Assume max{|| x|, [[y[l} < (6(1 + v)n + 3|a| + 3)'/2 < en'/?. We will prove (3.11) in this
case by using the scheme of the proof of (3.10) with appropriate modifications. First, we need in-
formation about the derivative of . The Laguerre polynomials satisfy the relation [15, (5.1.14)]

%LZ(X) = —sz% (x)=x"" [nLg x)—(m+ ot)Lg_l(x)]. (8.23)

After taking the derivative of F (see (3.1)), the first identity in (8.23) yields
9 Fo () = —x[FE () + 2/ F] 8.24
g (x) = —x[FF(x) + 2/nFH (0], (8.24)

and from the second identity we similarly get

x%]—',‘f(x) = —xzf,‘f(x) +2nFy (x) —2b, F; |, bni=+/nn+a). (8.25)
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Here and in what follows we assume F, ,g‘ (x) =0 for k < 0. Also, from the recurrence relation for
Laguerre polynomials [15, (5.1.10)] one readily derives the identity

xLy(x)=Qn+a+DLjx)—n+ DL, —@m+a)Ly_(x), n=1,
with Lg (x)=1and L‘i‘ (x) = —x + o + 1. From this with the definition of F in (3.1), we get
XPFE(x) = —by 1 FL () + 2n 4 o + DFE(x) — by FEy (x), (8.26)
where b, is as above. Combining this with (8.25) gives

d

o) =x" =@+ DFE@) + by ey () — by FE_ (0] (8.27)

We also need the relation [15, (5.1.13)]

L) = Lo (x) — Lo (x). (8.28)
From this and (3.1) we deduce
Fe(x)=vn+a+ 1FT () — VnFet] (x). (8.29)

Using this identity with « replaced by o — 1, (8.27), and the obvious fact that b, =n + O(1), we
arrive at

d
‘E}"ﬁl(x)

<e![ max |Fm@l+a? ma [FT@[] 830
n—1<m<n+1 n<m<n+1

By (8.24) and (8.12) we readily get the estimate |%]—',‘1" (x)] < exn®/?*1 and by (8.30) and
(8.12), |%.7-',‘f(x)| < ex~'n®/2. Therefore,

< cn®/? min{x_l,nx} <en@tD2 y ¢ Ry. (8.31)

d
’Efﬁ‘(ao

We use this estimate to obtain

L(1+v)n]

P 0
'axrA,,(x,y)‘i > Zlff(y)l‘a—xrfﬁ‘(x)

m=0 |v|=m

L(A+v)n]
<cn'’? Z Z Ve L enltdF1/2, (8.32)

m=0 |v|l=m

We next prove an analogue of (8.14). Let 0 < x < cn'/2. Assuming that m € R\ (x2/5, x%/3)
we derive as before from (8.15) and (8.24),
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d
o
‘ ax Fn)] <

1 ml/2 enl/?
s Cx<x°‘+‘/2m‘/4 + x"‘+3/2m1/4> S Zar 2, iA (8.33)

x(| P ] +2m' 2 Fati (0)])

From (8.16) and (8.24) we similarly obtain

Cnl/2

xH12(1 4 [dm — x2|)1/4

‘%fz(x) < for m € (x2/5,x%/3). (8.34)

We further proceed exactly as in the proof of (8.14), with ]:ffr’ (x,) replaced by e .Ffr’ (x;) and
for this term estimates (8.17), (8.18) are replaced by (8.33), (8.34), and we also use (8.31). Asa
result, we get

0 end+b/2
)—An(x,y)‘é 7 i i léﬁgd (835)
o [Timi iyt V2T (n )it 1/2

We now derive our main bound on [(9/9x,) A, (x, ¥)|. It will be convenient to use the notation
af (¢) := f'(r). After differentiating the expression of A, (x, y) in (8.3) we obtain for 1 <r <d,

ad
5 An(x.y) = Qi(x, y) + Qa(x, y), (8.36)

where

d
Qi(x,y) = / gk Hal+d (“x 13+ 13113 +2 ) xiyi cos 9,-)

(0,714 i=l

d
x (2x, —2yrcos6,) [ | Juy—1 (i i cos 6;)(sin6;)>% do, (8.37)
i=1

d

Qo (x,y) = / K§+|a+d<||x||§ +IyIE+2> xivi cose,->
0.3 i=1

d

X l_[ ja,-—% (xi yi cos@,')ajaﬁ%(xryr cos6,)y, cos 6, (sin6;)** db. (8.38)

i=1,i#r

We first estimate Q) (x, y). By the left-hand side identity in (8.23) and (8.28)

j[m(z) T2 = —(1/2) (LY () + 2LYF (1)) e TP = —(1/2) (L2 (1) + L2 (1)) e 2.

Hence, by the definition of K2 in (8.4),

8Kﬁ+|a|+d(t) — _[Kﬁ'H(XH-d-H (1) + K/rcl+\06|+d+l (t)]/2,
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where Kﬁ (¢) is define as Kf; (¢) but with Li‘n in the sum in (8.4) replaced by L;Xn_l. Evidently,

Kﬁ (¢) has the same properties as Kﬁ (t). Substituting the above in (8.37) and taking into account
(8.7), (8.8) we get

|x, — yr costy| ]_[ ltza’ dt
(e = I3+ YL xivit 17)(kHlal+d+1)/2

O1(x. y) < en—kHald+D/2 /

[0,7]
Now, using the fact that
= yrcosty| < 2 — yel + 220y sin? (1/2) < |3 — ye| + 27 (30 87)

and noticing that |x, — y,| can be canceled by an 1/2 power of the main term in the denominator,
whereas x; y; tr2 needs a square of that much, we conclude that

2a,
Q1 (x, y) < enkHlal+d+1/2 / 14, 7% dr
ooy (x = y13 + 2L, xiyir?) etlal+d)/2
,JT
d 20[l'
+exp(KtlalrdD/2 / [1_, % ar
d — .
y (lx = y13 + 20, xiyit?) ktlal+d=1/2

T
Both of the above integrals are of the form of le ¥ defined in (8.9). In fact, we have
Qi(x,y) <en'PMF(x, y) + exTMFL (x ). (8.39)

Furthermore, evidently |x, — y, cost| < |x, — v, | +x, tr2 and inserting tr2 into the weight function
of the integral, we obtain as above

Qi (x,y) Sen'PMY®(x, y) + ex, Myt (x, y). (8.40)
We next estimate Q5. Using the integral representation (8.6) for j, 1 (x) we get

1
9j _%(x)=C/emt(1 -, a0,

o
-1

while 9j_ 1 (x) = csinx. Therefore, 3),_ (x)| ¢ for @ > 0. Consequently, using also that

y, < cn'/?, we obtain as in (8.9)

Q2. )| <en'PMpe(x, y). (8.41)

Combining (8.39) and (8.41) gives

0
' 7 An(x, y)‘ <ox, "METN G y) en! P ME (x, ), (8.42)
r
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whereas combining (8.40) and (8.41) gives

9
‘ — Ap(x, y)’ <en!PMR (x, y) + ex, bt (x, y). (8.43)
,

We are now in a position to establish estimate (3.11). Using (8.10) in (8.42) and combining
the result with (8.32), we conclude that for x, > n~1/2

cnlal+d+1/2

(1 ~|—n1/2||x _ y||)k+|a|+d—1‘

‘iAn(x, y)‘ < (8.44)

0x;
On the other hand, using (8.10) in (8.43) and combining the result with (8.32) shows that estimate
(8.44) holds for x, < n~'/2 as well. Therefore, (8.44) holds for all x, y € R
In going further, using (8.11) in (8.42) and combining the result with (8.35), we obtain for
xp2nV2and 1<i<e

en(@+D/2

0 An(x,y)‘ < 45)
I1

1 iy )
‘3)6, le(xl,yi)a,-i-z Hldzu_l(n—l)a,-i-z(l +nl2|x — y||)k—|oz\—l
On the other hand, using (8.11) in (8.43) and combining the result with (8.35), we see that the
same bound (8.45) holds for x, < n~1/2 as well. Therefore, (8.45) holds in general. Moreover,
(8.45) holds for all possible permutations of the indices and combining it with (8.44) leads to

cnld+D/2

d
‘ An(-xvy)‘g
& I

4 (iyi +nm DS 4 12 )x — yyk-lel=1

Now, estimate (3.11) follows using (8.21) as before.
The proof of (3.13) is simple. By (8.22) and (8.24) it follows that

1/2

d /
‘d_fg(x) < x4t mra? <ce? * for x > (6(1+v)n+3a+3)
x

This and (8.22) imply that if max{||x][, || y|l} = (6(1 4+ v)n + 3|j«| + 3)!/?, then

"o 2 1vN2
‘3 A”(x,y)’ < enem maxlKL I o)
Xr

which yields (3.13).

8.3. Proof of other localization estimates

Proof of Lemma 3.4. We will derive estimate (3.15) from the following estimate: if s € R,
y20,0>Qy+1)(s|+1)+1,and z > 0, then

o0
/. w?rtlgy ¢

= <
’ (1+uw)r+Ds(I+ lu—2z])° (1 47)@r+DG-D"
0

(8.46)



1172 G. Kerkyacharian et al. / Journal of Functional Analysis 256 (2009) 1137-1188

Consider first the case when s > 1. Then I = OZ /2 + fz 0/02 =:J1 + J». Evidently,

Z

Ji1 < (1+z)‘“/1du <c(l42z2)7°H!
0

and

o
7 < c du < c |
2X U+ 06D | At ju—y)° = (1 +2@+D6=D (©>1.
z/2

Since 0 > (2y + 1)(s — 1) + 1 the above estimates for J; and J> yield (8.46).
Let s < 1. Then we have

~

K (1 4 u)@r+hl=s) gy n (1 +v+z)@r+bd=s gy
(I+|u—z)? _/ (I+ oD
-z

0
oo
(1 4 o) @r+hd=s) 4 ,Cy+DHd-s)
gc/ du
—0o0

(I +fvDh?

00 J 00 J
u u
< Qy+DH-s)
S¢ / 1+ |v|)a+(2y+l)(s71) ez (1+|v])°
—00 —00

c
S (14 z)CGr+bH-5"

Here we used that 0 > (2y + 1)(1 — s) + 1. Therefore, (8.46) holds when s < 1 as well.
We now proceed with the proof of (3.15). Denote by J the integral in (3.15). Using that
lxj —yjl < llx =yl we get

2041

o
y dy;
J < L
HO/ O+ n DD (T4 12 — i)/

i=1

d ¥ 2+ g
_ ,Qlal+d)s l—[/ Vi yi
Pl ) (1 +n1/2yl.)(2a,-+l)s(1 + |nl/2xi _ nl/zyil)"/d

d % 2¢x,-+ld
zn(ZlaHd)(s—l)—d/Zl_[/ u u

Pl (1+u)(2°"'+1)s(1+|u—n1/2xi|)‘7/d

=10

d 1 —d)2
< en@altds=b=d2 ] o
= ( +n1/2x,~)(2"‘i+1)(5—1) Wy (n; x)5—1 :

i=1
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Here for the last inequality we used (8.46). O

Proof of Theorems 3.7 and 3.8. By (3.6) we have £%(x) =27 1/2F%(x1/2)x%/2 and by (3.2),
M (x) = x®+V2 F(x). Hence

Zl’l (xv y) = 2_1An (-xl/29 yl/z)xa/zya/z and A: (xy y) = Al’l (x9 )’)xa+1/2ym+l/2-

Now, it is easy to see that these relations and estimates (3.10) and (3.11) yield (3.18) and (3.19)
as well as (3.20) and (3.21). O

8.4. Proof of Lemma 3.6

The main step is to prove Lemma 3.6 for dimension d = 1. To this end we will need a lemma
which goes back to van der Corput (see e.g. [19, vol. I, pp. 197, 198]).

Lemma 8.1. If f"(u) > p > 0or f"(u) < —p <0on [a,b], then

Z eZnif(n)

a<n<b

<(1f'®B) = @] +2)(4p7 2 +¢).

Evidently, when d = 1 Lemma 3.6 is immediate from the following lemma.

Lemma 8.2. For any ¢ > 0 and 6 > O there exists a constant ¢ > 0 such that forn > 1/¢

n+len] [La ()C)]2 12 1 —a—1/2
e ,—X m
Ay (x) =e mX:; Te0) >cn <x+;) ., 0<x<@—8)n. (847

Proof. We may assume that ¢ < 1 and n > ng, where ng is sufficiently large. The proof uses the
asymptotic of L¥ (x) and is divided into several cases.

Case 1. Let 0 < x < ¢®n~! with ¢® := (a + 1)(« + 3) (¢°n~! is larger than the smallest zero of
L% [15, (6.31.12)]). We need the asymptotic formula [15, (8.22.4), (8.22.5)]

T n+a+1)

e 2xPLY(x) =N -

Ja(Z(Nx)l/z) +x°‘/2+2(’)(n°‘), 0<x<c/n,
where N =n + (¢ + 1)/2. Using also that J,(z) = WZH) + O(z%1?), we obtain
e_x/2Lz(x) ~n% +x2(9(n°‘) >cn®, 0<x<c/n.
Combining this with L% (0) = (”:a) ~ n® we arrive at
n+len]

Ap(x) = ¢ Z m* ~n®tl 0<x <c®n,

m=n

which proves (8.47) in this case.
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Case 2. Let ¢°n~! <x < cun~!, where the constant ¢, > 1 will be selected later on. In this case
we use relations (2.16) and (2.19) to conclude that

- 2 20+2 2
e X|LZ(x)| ~ TR (x — )

Furthermore, by a theorem of Tricomi (see [7] for the references), we know that for all the zeros

of LY in the interval 0 < x < c¢/n we have t , = ]C"‘ (14+ O®n2)) as n — oo, where Jaks k=

1,2, ..., are the positive zeros, in increasing order, of the Bessel function J (x). Consequently,
n+len]
An(x) > cn® Z ((mx - jo%,kx)Z —em Ymx — Jak, |)
m=n
n+|en]
> cn“( Z (mx — joakx)2 — c) >cntl,
m=n

Here for the last estimate we used that j, y — oo as k — oo and hence there are only finitely
many zeros of Jy(x) such that jo% e S cen M (n + len]) < c; the argument is the same as in the
analogous situation for Jacobi polynomials in [8].

Case 3. Let c,.n~! < x < ¢*, where ¢, is sufficiently large and its value is to be determined. In
this case we use the asymptotic formula for L (x) [15, (8.22.6)]:

e’x/zLZ(x) — 12 —a/2=1 /A /21 /4

x [cos(2(nx)"/? — a2 — 7 /4) + O(1) (nx) /2],

which holds for ¢’n~! < x < ¢” and O(1) depends only on ¢/, ¢”. We denote y := am/2 + /4
and deduce from above

n+|en]
xOTV2 A, (x) > en e x*F1/2 Z [L%(x)]2
m=n
n+en)
>c Z m_1/2(<:os[2(mx)l/2 - y] + (9(1)(nx)_1/2)2
m=n
n+|en]
>cen~ 1?2 Z 0052[2(mx)1/2 - 7/] + O(l)c;]/znl/z.

m=n

Using the fact that 2co0s2t =1+ cos2t and 2cos2t = €% + e 2! we see that

n+len) n+len]
Y =4 Z 0032[2(mx)1/2 —y]>2len] + Z [ezm(y‘/';_y/) + e_z’”(ym_’/)],
m=n m=n

where y := (2/m)4/x and y’ := 2y /m. The last sum can be estimated by making use of
Lemma 8.1 with f(u) = y/u,a=nand b=n + |en|. We get
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2 >20en] =22+ x"*n7V2) (e + 24x 7403
>2[en) — 224 ()20 V2) (c + 24¢; n).
Putting the above estimates together, we arrive at
2 (x) = en V2 (2Len] =22+ (9207 12) (¢ + 245 ) + Oy a2,

Choosing c, sufficiently large shows that the right-hand side of the above inequality is bounded
below by cn!/? for sufficiently large n. Thus (8.47) is proved in this case.

Case 4. Let ¢* < x < (4 — §)n. Here we apply another asymptotic formula of Laguerre polyno-
mials [15, (8.22.9)]: for x = (4m + 20 + 2) cos? ¢ with e < ¢ < 7/2 —em™1/2,

xa/2+l/4e—X/2Lg1(x) — (_l)m (7.[ Sin¢)—l/2ma/2—l/4
x {Sin[<m + O%”)(sinw —2¢) + 3n/4:| + 0(1)(mx)—1/2}.

Note that the range of x above covers the range of this case. From above, as in Case 3, we obtain

n+|en]
xa+1/2An(x) > cnfaefxxoc+1/2 Z [L;Yn(x)]z
m=n
n+len]

>cn” 12 Z sin2[<m+O[2L1>(sin2¢—2¢)+37'[/4]+O(1)(C*)1/2'

The last sum is again bounded below by cn, which can be proved either by using Lemma 8.1 or
by summing up using simple trigonometric identities. This shows again that (8.47) holds. O

Proof of (3.16) in the case d > 2. We may again assume ¢ < 1. We will use induction on d.
To indicate the dependence of 7 on d we write F , := Fp. Assume that (3.17) has been
established for dimensions up to d — 1. By definition

m

f,‘ji,d(x,x)=2[f“d(x¢z)] @), x =), @ = (@ ag),

k=0
and hence
n+|den| n+|den] |en]
Y Fna®wn = ) Zf““(w) o a @)
m=n m=n

n-‘rI_dan

f‘“(m Z o a1 (X))

Mﬁ

=
Il
s 5

n+|(d—1)en]

[f"‘d @]’ DY F G, (8.48)

k=0 j=n
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It follows by (3.1) and (2.12)—(2.14) that for 0 < x < /@ — )n

- —a—1/2
Z[f,?(x)]z = Ce’le(,‘f(xz, x2) > cn!/? <x2 + l) > cnl/z(x +n7]/2)72a71.
n

k=0
Combining this estimate with (8.48) and the inductive assumption shows that (3.17) holds in
dimensiond. O

Proof of Proposition 4.1. We first prove (4.2). Let g € V,,. Assume 1 < g < 0o and let A, be
the kernel from (3.7), with @ admissible of type (a). Evidently g = A,, * g and using Holder’s
inequality and Proposition 3.3 we obtain for x € Ri

11 L1 1/q'
20| < | We(n; ~)S+7’_3g(-)||q( /|An(x,y)Wa(n;y)_s_F+3|q wa(y)dy>
Rd

dJ2 1/4'

<c ~ 12([ - wa(y)dy > ||Wa(n;.)s+%_qlg(.)|
W (n; x)1/ .58 120y — vINe
We(n; y) (IT+n""lx = yID

q?
d
RY

where 8 :=¢'(s + % — é). To estimate the last integral we use estimate (3.15) from Lemma 3.4
to obtain

|g(x)| <CWHW0¢(”§ -)H%ﬁg(-)ﬂq (8.49)

and hence

| Was 37 ()| . < en? | Wegns )77 g (1)

7 I <g<oo. (8.50)

If 0 < g < 1, then the above estimate with ¢ = 2 gives

[ Wan: 78] < end/ | Wetns 3520

< enl | Wen 3 VP g O 92 [ Wl 3706472

Consequently, (8.50) holds for 0 < g < 1 as well.
Let 0 < g < p < oo. Using (8.50), we have

1/p
[Wa(n: s, = ( /}Wa(n;x)‘y+%g(x)|p_q\Wa(n;X)H%_ég(X)!qwa(x)dO
Rd

< [Wa ‘>”%g<->\}l;q/” | Wan 0771 g2 HZ/”

= cn @YD) W ()T g ()]
q
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Hence (4.2) holds when p < oo. In the case p = oo (4.2) follows from (8.50).
To prove (4.1) we first assume that 1 < g < co. We use again that g = A, x g, Holder’s
inequality, Proposition 3.3, and that W, (n; x) > nl¥1=4/2 {4 obtain

_ 1y 1
lg(0)| < cliglly (1 Wy (n; 1))/ < cn @D/ a g, x eRE,

and hence ||gloo < cn@tleD/a ||| 4- For the rest of the proof of (4.1) one proceeds similarly as
in the proof of (4.2). We skip the details.
To prove estimate (4.3) we first observe that (8.49) withs =y + 1/p — 1/q yields

|Wo(n; g, 1<q<oo,

|g(x)| <Cwl

q’
and, since W, (n; x) > n7%17%, we get [|glloo < cn (@D D/ |1y, (n; )3 g ()|, The re-
maining part of the proof is similar to the proof of (4.2). We omitit. O

Proof of Lemma 4.4. (a) By (2.10) and the definition of F, it follows that || F% |l < cn®/2.
Hence, using (8.27) if |x| < 1 and (8.30) if |x| > 1, we obtain

Ty (x)

d
‘— <en@tbz eR,.

dx

Furthermore, taking one more derivative of (8.24) and using (8.27) shows that

2
d—zf,‘: () = —[FL @) +2v/nFH (0] tx L +2gn xif“ff (x)
dx n dx dx "

= —[Fr )+ 2V/nFeH 0] = (@ + DFF@) + byt Fiyy (6) — by Fe_y (x)
+2/n[— (o + DFH () + buF2 () — by F2H (0],

. . k+1 . k—1 k—1
which allows us to iterate and express d‘iTH}",‘j‘ (x) in terms of %]—"fj‘ (x) and [ZC,H .7-",?‘*1 (x).

The recurrence relation (8.29) allows us to use induction to conclude that

dk
'Wﬁg(x) <cen@tO2 xeR,.

Therefore, for the product Laguerre functions, we have
08 ()| < c(ivl+ D)2 =0, peNd, xeRL
Furthermore, together with the three term relation (8.26), the above inequality also shows that

|x2}/8ﬁ]_‘5((x)| <C(|V| + ])(|a|+|5|+2|7/|)/2, |V| =n, ﬂ, y ENd, X eRi
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Hence, if |(¢, F%)| < cx(|v| 4+ 1)~ for all k, then

PPy = (b, Folx" 0P Fy(x),

d
veNj

where the series converges uniformly and hence

d
veNj

if k >d+ |a|+|B8| + 2]y])/2, which shows that ¢ € S.

(b) Assuming that ¢ € S we next show that |(¢, FJ')| has the claimed decay. From the well-
known second order differential equation satisfied by Lj;, a straightforward computation shows
that 7 (x) satisfies the equation

2 1
'+ %y/—xzy—i—Z(Zn—i—a—i— Dy =0.

In particular, it follows that F7 (x) satisfies, for eachi =1, 2, ..., d, the equation

Dyu+ xPu=2Qv; +a; + Du,

d
where Dy, := —87 — (2a; + 1)x; '3; and ; = e (8.52)
Xi
Let k > 1 and assume that the multi-index v is fixed and ||v|| = max;gjg<qv; > k. Choose
i so that v; = ||v|| and denote X; = (x1,...,X—1,0,%i11,...,Xq). Denote briefly U, (x) :=
07 (¢ (x)e"i2 /2). Then by Taylor’s identity

2k—1 2k !
2 —~ X; _ ~
()i = XU /1! = T /(1 = 0* U (R + 1xie) dt,
r=0 0
which easily leads to
5 2k—1
$i(x) = p(x) —e T2 Y X[ U(T)/r!
r=0
1 2% ' s
= x?k/(l — 0N by (120)8] ¢ (T + 1xien)e ™ 17 (8.53)
0 j=0

where b (-) (0 < j < 2k) is a polynomial of degree < j and ¢; is the ith coordinate vector in R4,
Then by the orthogonality of ]—',‘,f" (recall that v; > 2k) and (8.52) it follows that

(6. 7) = (@0 7 = (61, (Dy, +xD)F).

S 2Quita + 1)
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The operator Dy, can be written in a self-adjoint form x; ;

2ty =g (x2ai+18i) . We use this

and integration by parts to obtain

(¢,~,Dx,.f3‘)=/ /¢,~(x)a,-(x,.2""'+1a,~f3(x))dxidf

RI! Ry

=/ /ai(xfai+18i¢i(x))fg(x)dxidf:(Dxi¢iaf3)-

Ri" Ry
Consequently,

_ 1 2\ 4
@)= 30 a1 (Pn 5090 )
1
= 5 v RO ) 6 59

where we iterated k times. It is easy to see that there is a representation of the form

2% 2k—j ‘
(Dyy +27) = (=07 = oy + D 0 +7) =D 3 ajex; 9]
j=0€==2k

for some constants aj¢. On the other hand, by (8.53) it follows that if j + £ < 2k

max _ sup|x?’ 3P (x)| =c max
[V IS4k, BIS2k+] x [y <4k, |BI<2k+)

sup|xi_l8ij¢,~(x)| <c Pg y(9).
X

We use the above in (8.54) to obtain

1
—_———— max
2KQu;i +a; + DF jy|<ak, B1<4k

(o, F)| < Ps.y @) 7 [,

e FHOHD2Z - max Py (¢), vl >k (8.55)
ly <4k, | Bl <4k

Here we also used that || F%||; < c|v|1¥+9/2 which follows from Lemma 2.1. Estimate (8.55)
shows that |(¢, F¢)| < cx([v] + 1)K+ «+D/2 for any k > 1. Thus |(¢, F¢)| has the claimed
decay.

The equivalence of the topologies on & induced by the semi-norms P, g from (4.7) and the
norms P from (4.11) follows readily by (8.51) and (8.55). O
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9. Proofs for Sections 6, 7

Proof of Proposition 6.4. We shall use a standard decomposition of unity argument. Suppose
be C*®R) sgtisﬁes the conditions: suppb C [1/4,4], b > 0, and b(t) + b(4t) =1 on [1/4, 1];
hence Y 72, b(47) =1, €[1, 00). Now, define

4@
Bo(x,y) :=mO)Fg(x.y) and Pe(x,y) = m(Hb(j/4"")Fe(x.y), €>1.
j=0

Then for the kernel K (x, y) of the operator T, we have K (x,y) = Z?io D¢(x,y). By (6.6) it
readily follows that || (d/dt)*[m(£)b(t /4*~)]llee < ¢4~ and just as in the proof of Theorem 3.2
(using also (5.17)) we get for x, y € Ri

czﬁ(d+l)
W@ y) (1 +28x — ylDo’

c2td ‘ 9

3 _¢ ) <
W@ )+ 20x — y)° e y)‘

|(pf(x1y)|< ayr

for 1 <r <d,where o0 =k — (5/2)|a| — (3/4)d — 2. By a simple standard argument these two
estimates (o > d + 1) lead to

C

wa (V) [lx = y[4+

1<r<d.

0
K (x,y)| < < ‘—

_ K(x, y)‘ <
we (y)[lx — yll4 3y, h
As in the weighted case on R (see [14]), these estimates show that T is a Calder6n—Zygmund
type operator and hence 7, is bounded on L”(wg), 1 < p <oco. O

Proof of Lemma 6.8. Using the orthogonality of Laguerre functions, we have @ * ¥ (x) =0
for & € &y, if jm — j| = 2.

Leté e Xy, j—1<m < j+ 1. Assume first that ||&|| < (1 + 8)+/6 - 2™ From (5.26), (5.27)
it follows that

2mdf2 wa ()

D < Co
02 e S0 s ) W@ 0+ 27 = D7 (427 — €1
RE

dy

62m3d/2 dy
< (o >d)
VWa (@™ x) J (I 4+2"x — yID7 (L +2"]y — &[)°
R
comd/2 comd)?
< <
Wal@ 01+ 27 x —E)7 - Wal@ 8)(1 + 27 [x — &)~ 212

Cc
< .
(R (1 +2m|x — £ ||)o —2lel=2d

where for the last two inequalities we used (5.14)—(5.17). Since o can be arbitrarily large the
claimed estimate (6.13) follows.
Let |€] > (1 +8)+/6 - 2. Just as above we use (5.26) and (5.28) to obtain
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2md-b wa ()

VWe (@ x) J Wo (4" y) (142" lx — D7 (1 42"y — &7
R

)% ¥ (0] <o dy

comd—L)
< )
VW (A7 E) (1 +2m||x — g||)o—2lel—2d

Since, in general, ©(Rg) < c2—md/3 Wu(4™; &) and L can be arbitrarily large the above again
leads to (6.13). O

Proof of Lemma 6.10. Denote

NN |7y —
B3 (x) ._g{; T D B Kk =x— (2la| +d)lpl/d, 9.1)

where d(x, E) :=infycf [[x — y|| is the £>° distance of x from E. We will show that

h% (x) éc/\/l[( > |hw|]lRw>(x), xeRY. 9.2)

a)GXj

Evidently, h*(x) h* (x), x € R?, and hence (9.2) implies (6.16). On the other hand, using
(5.17) we have for & e X

. \—p/d h
j.oey—Pldy x We (475 )P4 n| *

W (47:8) 77 nE < XX: T3~y —Certamma SCHj @ forx € Re,

i

where H, := W, (4/; n)~*/4h, . Therefore, (9.2) yields (6.17) as well.
By the definition of Q; in (5.12) it follows that there exists a constant ¢, > 0 depending only
on d such that

0;=J Reclo.c.2']".
SEX/'

Let x € R?. To prove (9.2) we consider two cases for x.

Case 1. Let ||x|| > 2¢,2/. Then d(x, Ry) > |Ix]||/2 for n € X; and hence

|hn| c
" (x) = Z : < — Z |1y
J
S L+ 2d Ry)< QT Sy

c4ide . 1/t
2’IIJCII)K (Z o ) ’ &

where o := 1 —min{1, 1/¢} < 1 and for the last estimate we use Holder’s inequality if # > 1 and
the ¢-triangle inequality if # < 1.
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Denote Q, := [0, [|x||1¢. Evidently, 1(Qx) ~ [Ix|21¢+9) and combining this with (9.3) we
arrive at

c4ld||x || 2el+d)/t

| ‘ 1/1
B (x) < 4 Bl L) d
](X) (2]”x”)K <M(Qx)é/<n§]| 7| Rn(y)> w, ()’) y)

< c2f<2“>||x||2<'“+”’>/fKMI( > |hn|11R,,)<x> < cM,<Z |h,,|11R,;>(x)

neX; nex;

as claimed. Here we used the fact that x > max{2d, 2(|«| +d)/t}.

Case 2. Let ||x|| < 2¢,27. We first subdivide the tiles {Ry}ne X; into boxes of almost equal sides

of length ~ 27/, By the construction of the tiles (see (5.11)) there exists a constant ¢ > 0 such
that the minimum side of each tile R, is > ¢27/. Now, evidently each tile R, can be subdivided
into a disjoint union of boxes Ry with centers 6 such that

60+~ a i cryco+ -2, 2]

Denote by X ' the set of centers of all boxes obtained by subdividing the tiles from &’;. Also, set
hg :=h; if Ry C R,). Evidently,

.rn Ayl hol
() = Z (1427d(x, Ry)* S Z (14+2/d(x, Rg))¥ ©4)
nex; OeX;

and

> Ihylir, = Y Ihollg,. 9.5)

ﬂEXj 776‘)?_/'
Denote Y := {0 € X;: 27116 — x|| < &},

Y= {0 €X;: 2" <2719 —x|| <&2™), and

Omi={yeR% |y —x|<e@"+ 1277}, m>1.

Clearly, #Y,, < c2md UGer Ry C Oy, and X = Um>0 Y,,. Similarly as in (9.3)

Z Aol
(1+2/d(x, Rg))*

oeY,,

1/t
<2 Y kel < cammamde( Y- |he|’>

fe Ym fe Ym

< 2 (k—d) <

Usey,, Ro

1/t
> w(Re) ' lho|'1g, (y)wa(ymy)

oeY,
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- . 1 H(Qm) 1/t t 1/t
¢ M(Qm)Q ee% Ry ) 1hleO) ) waG)dy

Using (4.5) and that Ueer Rg C O, we get

Q) _ 20D (g 2T\ 2
XC - -
Ry =2 g 42

200 +1
< zmdl—[ 6 +2-2" J\ 29 < cymClalt3d)
o +2 J = ’

Therefore,

|he o
- < 2 mke—d=Qlal+3d)/1) A4 bl .
OezYm (1+27d(x, Ry))* ¢ ¢ Z |7yl R, (x)

T)E.)(j

Summing up over m > 0, taking into account that ¥ > d + (2|«| 4+ 3d)/t, and also using (9.4)
we arrive at (9.2). 0O

Proof of Lemma 6.11. For this proof we will need an additional lemma.

Lemma 9.1. Let g € V,;. For any 0 > 0 and L > 0 we have for x’, x" € 2Rg, where & € X,
j 2 O)

/ " j " |g(77)|
— J L
lg(x)) =g (x| <2/ |x' — X" E X 71 — )7 (9.6)

and

8GN =g <2V =21 ) i IFIEN> (1+20)v/6-27. (9.7)
g

JlE —nlh)e’
%, + 271§ =nl)

Here ¢ and c¢* depend on «, d, 8, and o and c* depends on L as well, 2R: C RY is the set
obtained by dilating R by a factor of 2 and with the same center.

Proof. Let A,; be the kernel from (3.7) with n = 47 where @ is admissible of type (a) with

v:=3. Then Ay * g =g and Ayj(x,") € Vi1 g4i)- Note that [(1 + 8)4/] +4/ < 2n; — 1.
Therefore, by Corollary 5.2

¢ = [ A gy = 3 eru . g

Rd Y]GXj

where ¢, ~ |R,,|Wo,(4j; n). From this, we have for x’, x” € 2R, £ € X,
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8() =8| < Y ey Ay ' m) = Ay (2. ]| g()|
VIEX]'

el =x"11 Y ey sup |V Ay .|| [gm)]. 9.8)
&

xXe
nex;

Note that (6(1 4 8)47 + 3|j«e|| + 3)'/2 < (1 + 8)+/6 - 27 for sufficiently large j (depending on &
and §). Therefore, using Theorem 3.2 we have for n € X

2/ d+1)

VWa @75 )y We T ) (1 +27|1x — )

[V AL (e, < xeRY, 9.9)

and forany L > 0

2=/t

IVAs el < T

if min{||x|l, [I7ll} > (1 +8)v/6-27.  (9.10)

Suppose [|€]] < (1 +28)+/6 -2/ and denote Xi={neX; Inll <1+ 8)+/6-27/} and X" :=
X\ X]f. We split the sum in (9.8) over X’ and X” to obtain

lg(x) — g(x")| < ellx’ _x”||< Yoo+ ) =:cllx’ = x"|(Z1 + 22).

! "
ner ner

Using (9.9), (5.17), and that ¢, ~ 2779 W, (4/; n) for n € XJ’., we get

W (47, n))” lg(n)]

> <2/ : :
1< ) s (Waew;x) T+ 27 [lx — nl)°

HEX]/- X€2Re

j 1g ()]
J

< D i iy 2w

¥,

©.11)

To estimate X, we use (9.10) and the rough estimate ¢, < c2/4. We get

5y < i-d=20 5~ el 9.12
2Ne 2 1+ 2] —nl)° 612
neX]’.’

Here we also used that
L+ 2711E —nll S 1T4+27(c2797 + llx —nll) <e2*/P(14+27|x —nl))  for x €2Re.
Estimates (9.11) (with sufficiently largg o) and (9.12) (with L > d + 20/3) imply (9.6). '
In the case |&] > (1 + 28)+/6 - 2/, we have 2R: C {x € R%: [x|| = (1 + 8)v/6 - 27} for

sufficiently large j and one proceeds just as above but uses only (9.10) as in the estimation
of 5. We skip the details. O
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We now proceed with the proof of Lemma 6.11. Let g € V,;. Let £ > 1 be sufficiently large
(to be determined later on) and denote for & € X

Xire€®)={neX;ie: RyNR: #¥} and (9.13)

dg :=sup{|g(x') — g(x")|: X', x" € R, for some n € Xj1¢(§)}. (9.14)

Our first step is to estimate dg, & € X;. Two cases are to be considered here.

Case L Let [|£]| < (1 +38)v/6-2/. By (5.14)

Re~E+[-277,277]" and Ry~n+[-2777427770 neXx@). .15

Hence, for sufficiently large £ (£ = £(d, 8)) we have Une/yj% ®) Ry, C 2Rz . Now, using estimate
(9.6) of Lemma 9.1 with o > A and the fact that diam(R),) ~ 27/=tforn e Xjre(€), we get

de <2ty (1% (9.16)

g —nHA’
2 (427 — D

where ¢ > 0 is a constant independent of £.

Case IL Let ||£]| > (1 + 38)+/6 - 2/. By (5.14) it follows that ||x|| > (1 4 28)+/6 - 2/ for x €
U,]e X0 (®) R, if j is sufficiently large. We apply estimate (9.7) of Lemma 9.1 with o > X and
L =1 to obtain

lg(m)]

ﬁ.
o, A +27015 —nl)

di <27 ©9.17)
n

We next estimate Mg‘ , & € Xj (see (6.14)). Two cases for & occur here.

Case 1. Let ||£]| < (1 + 48)+/6 - 2/. Note that (9.15) is again valid. By the definition of dg in
(9.14) it follows that Mg < m,, + dg for some w € Xj,(§) and hence, using (9.15),

M: <c

mw .~ —_—
> T2 =l +ds =g +ds, c=c(d,8,1,0).

weXj e
Consequently,
Mg <mj +d;. (9.18)

Denote Xj’. ={neX Inl<d +38)4/6 -2/} and XJ’.’ =X \X]’.. Now, we use (9.16), (9.17)
to obtain
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d _ lg(@)]
df = E — 1 <2t E E - -
¢ (1 +27]1& —nlD* ‘ (1+27]1& =D (1 +27[In — wID*

nex; n€X; weX]

iy g ()
27 E E - - .
e (1 +27]1& = niD*(1 +27|In — wlD*

. 1"
neX; wer

Replacing A and X} by X; above and shifting the order of summation we get

. 1
df <c(27t 427 4 4
fel )w§j|g(‘°)|n§j (L+ 271 = i) (1 + 271 — wl)*
o 1) I
<c(2t+27) Y T 2715 — ol <c@t+277)mp. (9.19)
weX/-

Here the constant ¢ is independent of £ and j, and we used that

1 C
' - < - 1> d). 9.20
,7;[ A+271E = nID*A+27In —wlD* = A +27)E - w|)* (A >d) (9.20)

This estimate easily follows from the fact that ||& — £”|| > ¢27/ forall £, &" € X;.
To estimate r?lg‘ we use again (5.14) and (9.20). We get

Dk L %'7 < me,
e Z<1+2f||s—n||)*\cz 2 (1 + 2 1I& — 7D (1 + 27 [ — wlD*

T]EX]' UGX]' a)EXjJrg

1

e X m Y iy |
weXj 1y neX; (I+27)1& = nlD* (1 +27In — wl|)
Mo 128 My, .
gC . <C2 . —em
L TrTle—al 2 TEae e
a)GXjJrg wEXj+€

for each 6 € X' ,(§). Combining this with (9.18), (9.19) we obtain
Mg <cymy + 02(24 + Z*j)Mg‘ for 60 € X;(§),

where ¢y > 0 is independent of £ and j. Choosing £ and j sufficiently large (depending only on
d, 8, and A) this yields Mg‘ < cemy forall @ € Xy ¢(§). For j < c this relation follows as above
but using only (9.6) and taking ¢ large enough. We skip the details. Thus we have shown (6.18)
in Case 1.
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Case 2. Let |€] > (1 + 48)\/6 .2J . Choose £ > 1 the same as in Case 1. Clearly, for sufficiently
large j (depending only on d and 8) ||x|| > (14 38)v/6-2/ for x € U,)EXM@) R;,. Hence, using
(9.7) with L = 1, we have ‘

i lg(m|
J E : . eMVgr J )
Mg <mg +c2 2 AT 20 — 0D <mgy+c2” Mg forall w € X1 ¢(8),

where ¢ > 0 is independent of j. Fix 6 € X, ¢(§) and for each n € X;, n # &, choose w; €
Xj1e(n) sothat |0 — wy|l = ming,ex; e 16 — ol Then from above

k
M, M

ME<y ——1—— —f§ — X+ (921)
R E 2 o <1+21||s > T
J

From (2.19) it easily follows that w, from above satisfies |6 — w;| < ¢|§ — 5| and hence

mye, m
> < U <2t @ < . (922
! CZ(1+2J||9 o) Z a+2 0 — el cumg. 02D
/

On the other hand, using Definition 6.9 and (9.20), we have

M,
Beal Y ¥ :
J _ A J A
S 5, 20—l (1 + 2= o)
1
<27/
Z Z (1 4+2711E =nID*(1 4+ 27 [In — wlD*
weX; neX;

. M .
<27 —_— =27 M*
@ Z<1+2f||g—w||>A 2= Mo
weX;

with ¢; > 0 independent of j. Combining this with (9.21), (9.22) we arrive at
M < cimy + 022_jM§‘ for 0 € Xj(£).

Choosing j sufficiently large we get Mé cym}, for each 6 € X (£). For j < c this estimate
follows as in Case 1 but using only (9.6). This completes the proof of Lemma 6.11. O

Proof of Lemma 7.5. Let g € V; and 0 < p < oo. We will utilize Definition 6.9 and Lem-
mas 6.10, 6.11. To this end we select 0 <t < p and A as in Definition 6.9. Set M; :=
SUP, ¢ R, lg(x)|, & € X}, and my := infreg, [g(x)], n € Xj+¢, where £ > 1 is the constant from
Lemma 6.11. By (1.2) and the properties of the tiles Rg¢ from (5.14)—(5.16) it readily follows
that W (471, y) ~ Wy (47, &) for y € Re. We now use this, Lemmas 6.10, 6.11 and the maximal
inequality (4.6) to obtain
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. g\—er/d p r
(Z Wa(4/:8)"" max|g ()] u(Ra)

SGXJ*

4 D Wal@):8) " Mz,
EeX; P

<e| 3 wa@tt gy g, | <o Mt< ) Wa(4'j+£§7))_p/dm,]]l1en>
neXjte P neXjte p

<e| D0 Wa@ ) g, | <c|Wa(@:) 0], O
N€Xjte P
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