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ABSTRACT. An algorithm for fast and accurate evaluation of band-limited
functions at many scattered points on the unit 2-d sphere is developed. The
algorithm is based on trigonometric representation of spherical harmonics in
spherical coordinates and highly localized tensor-product trigonometric kernels
(needlets). It is simple, fast, local, memory efficient, numerically stable and
with guaranteed accuracy. Comparison of this algorithm with other existing
algorithms in the literature is also presented.

1. INTRODUCTION

The fast and accurate evaluation of band limited functions on the sphere is
important for many areas such as Geodesy and Geomagnetism. In this article the
band limited functions on the 2-d sphere S? will be termed spherical polynomials
and we are interested in developing an algorithm for efficient evaluation of high
degree (> 2000) spherical polynomials at many (millions) scattered locations on
S2. Our requirements on the algorithm are to be fast, simple, local, numerically
stable, and memory efficient with the emphasis on its speed and stability.

A natural standard approach to evaluation of a spherical polynomial given by
its coefficients in the standard basis is to

(i) compute the values of the polynomial at regular grid points on S?, and

(ii) use these to evaluate the polynomial at arbitrary points on S2.

We shall utilize this approach in the present paper.

Regular grid points on S? will be points which are equally spaced with respect
to their spherical coordinates (6,A). This kind of grid points have the obvious
drawback that they concentrate around the poles, but this is fully compensated by
the possibility of applying fast Fourier methods. Here we adhere to the fundamental
principle, put forward in [8], that high degree spherical polynomials are better
represented by their values at regular grid points than by their coefficients.

In the present paper we focus entirely on problem (ii). Our key observation is that
a simple extension of every spherical polynomial expressed in spherical coordinates
is a trigonometric polynomial in two variables and, therefore, can be represented
by highly localized tensor product trigonometric kernels (needlets). This allows us
to develop a simple and effective evaluation algorithm.

Thus our algorithm for evaluation of spherical polynomials hinges on our ability
to rapidly and accurately compute the values of high degree univariate trigonometric
polynomials given their values at equally distributed points. For this we deploy
highly localized reproducing kernels of the form Ky (z) = 1423 ¢(f) cosna,
where the cutoff function ¢ is smooth, ¢ = 1 on [0,1] and suppy C [0,1 + 7],
for some 7 > 0. We term this kind of kernels trigonometric needlets. Clearly,
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Ky * f = f for every trigonometric polynomial f of degree < N. Denoting by
X a set of M (sufficiently large) equally spaced grid points on T = R/27N the
approximating needlet operator takes the form

Onsf(x)= Y. M 'Ky —&f(),

£eX:p(§,2) <

where 0 > 0 is a small parameter and p(x,y) is the distance on T. As will be shown
in Section 3 the superb localization of the needlet kernel leads to a short sum
above and hence to fast algorithm, while keeping the error of approximation small.
A thorough analysis of the relationship between the selection of the cutoff function
¢, the parameters §, 7, the (relative) error £ and the degree N is conducted. It is
shown that for practical purposes the optimal § ~ % in the case of our best
cutoff function . The operator norms of || Py s5]lco—sco are explored for different
values of 7, ¢ and N. It turns out that [|Pn sllccsoo ~ 2 and these norms are
practically independent of the degree N. A surprising feature of the trigonometric
needlet operator ®y s is that ®x s f interpolates f for the minimum value of M
and symmetric cutoff functions ¢.

The trigonometric needlet algorithm is compared with two other algorithms for
fast evaluation of trigonometric polynomials: (i) Spline interpolation based on La-
grange interpolation, and (ii) Nonequispaced fast Fourier transform (NFFT) with
Kaiser-Bessel window function. A quantitative analysis of the error and complexity
of the algorithm is presented. The upsides and downsides of these algorithms are
clearly delineated.

As indicated above our algorithm for fast evaluation of spherical polynomials
at many scattered points relies on the simple fact that every spherical polynomial
expressed in spherical coordinates readily extends as a trigonometric polynomial in
two variables. The tensor product needlet operator takes the form

1

(1.1)  @3,5f(0,)) = KL > > Kn(0 = 0)KN (A= Xe) f(Or, o),
kip(0,01) <6 £:p(AAk) <5

where {(0x, \¢)} are 4K L equally distributed grid points in spherical coordinates.
Our algorithms uses the operator ‘I)?v, s for fast and accurate evaluation or approx-
imation of high degree spherical polynomials. This algorithm inherits all valuable
features of the univariate algorithm for evaluation of trigonometric polynomials
at scattered points mentioned above, namely, it is fast, numerically stable, local,
memory efficient, and simple.

To put this algorithm in prospective we would like to compare it briefly with
our spherical needlet algorithm from [8]. In [8] we used reproducing kernels of the
form Ky (z - &) with Ky (u) =3, ¢(%)(2n + 1) P, (u), where P, is the nth degree
Legendre polynomial and ¢ is a cutoff function as above. This kernel is highly
localised and the operator @y f(z) := (4m)~! [ Kn(z - €)f(§)do(§) reproduces
spherical polynomials of degree < N. In [8] we discretize this operator by using
a cubature formula on the sphere with nodes X and weights w¢,§ € X, and then
truncate it to derive an approximating operator of the form:

(1.2) ‘I’?v,af(w) = Z ws’CN(ﬂ’j -6 f(6).
EEX:p(E,x)<d

Here X is a set of regular grid points on S2, p is the geodesic distance on S?
and § > 0 is a small parameter. The idea is the same, the superb localization
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of Kn(z - &) allows to use a short sum in (1.2) and at the same time to keep
the error under control. The algorithm that uses the operator ®% 5 in the place
of @?\,7 5, however, is more complicated and is computationally more costly. More
detailed comparison between these two methods is given in Subsection 5.4. In
Subsection 5.4 we also compare our tensor product trigonometric needlet method
with the tensor product Lagrange interpolation method and the nonequispaced fast
spherical Fourier transform algorithm of Kunis and Potts [15].

A Matlab realization of the tensor product trigonometric needlet algorithm is
created and its performance is compared to our spherical needlet software on ex-
amples of spherical polynomials of degree 2160.

This article is a followup of [8], where the spherical needlet algorithm mentioned
above is developed. The main ideas of this paper are rooted in [8], which is also a
useful source for references on the subject.

The organization of the paper is as follows. The spherical harmonics standard
basis is reviewed in Section 2 and the problem for fast evaluation of spherical
polynomials is stated clearly. The development of our needlet algorithm for fast
evaluation of univariate trigonometric polynomials and its comparison with relevant
algorithms occupy Section 3. The general idea of the tensor product trigonometric
needlet algorithm is presented in Section 4. The tensor product trigonometric
needlet algorithm on S? is developed in Section 5, where it is also compared with
other algorithms. The results of experiments are also provided in Section 5.
Notation. We shall denote by ¢, cq,ca,... positive constants which may vary at
every appearance and by ¢, ¢, ¢/, ¢’ and the alike positive constants which preserve
their values throughout the paper. The relation f ~ g between functions f and g
means ¢1f < g < cof, while f ~ ¢ is used when f/g — 1 under an appropriate
limit of the argument.

2. BACKGROUND AND STATEMENT OF THE PROBLEM

We next review the basics of spherical harmonics and state precisely the problems
of interest to us.

2.1. Spherical harmonics: Background. Denote by H, (n > 0) the space of
all spherical harmonics of degree n on S?. We shall represent spherical harmonics
in spherical coordinates. Recall the relationship between the cartesian coordinates
(21,22, 23) and the spherical coordinates (0, 1), 0 < 6 <7, 0 < X\ < 27, of a point
x on the unit 2-d sphere S?: x = (21,2, 23) = (sinf cos \,sin §sin \, cos 6).

The standard orthonormal basis {énm}ﬁpo U {Snm}%zl for H,, is defined in
terms of the associated Legendre functions P,,,. Namely, for z = (6, \)

2.1) Grm Ppm(cos@) cosmA, m=0,1,...,n,
) gnm(:r) = ¢umPam(cos@)sinmA, m=1,2,....n

where Py (u) = (1 —u?)™?2(L)" P, (u) with P, being the nth degree Legendre
polynomial and the coefficients gy, are selected so that énm, Snm are normalized
in L?(S?). We refer the reader to [19] and [16] for more details about spherical
harmonics.
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In the standard basis (2.1) a spherical polynomial f of degree < N is usually
given by its coefficients {anm,bpm}, i-€.

N n
(2.2) fz)= Z Z (anménm(x) + bnmgnm(x)> .

n=0m=0
We shall denote by Py the set of all spherical polynomials of degree < N.

Extension of spherical polynomials in spherical coordinates. From (2.1)
we have for 6 € [0, 7] and X € [0, 27)

Crm (0, X) = g sin™ 8 P{™ (cos 0) cos m,

(2.3) .
Snm (0, X) = Gpm sin™ 0 P{™) (cos 0) sin mA.

We use these identities to extend énm and gnm for all #, A € R, and in turn we use
the latter and (2.2) to extend the spherical polynomial f(6,A) for 6, A € R.
The following claim will play a key role in this article:

Proposition 2.1. Let f be a spherical polynomial of degree < N and assume that
in spherical coordinates f is extended as above. Then f(0,\) can be expressed in
the form

N N
(2.4) FON = > Y cpe’®H,

k=—N/{=—N

where ¢y are (complex) coefficients. More generally, the restriction of f over every
circle on S? is a trigonometric polynomial of degree < N.
Furthermore,

(2.5) f(=0,x+7)=f(0,\) for 6,AeR.

Proof. The representation (2.4) is immediate from (2.3). It is well known that each
space H,, of spherical harmonics is invariant with respect to the rotation group on
S2. Therefore, by applying an appropriate rotation (2.2) and (2.1) imply that the
restriction of f over every circle on S? is a trigonometric polynomial of degree < N.
It is easily seen that C,,, and S, verify property (2.5) and hence (2.5) holds in
general. O

2.2. The problem of spherical polynomial evaluation. We are interested in
the following

Problem 1. Given a spherical polynomial f with its coefficients {anm, bnm }, eval-
uate f(z) at arbitrary (scattered) points x € Z, on the sphere S? with prescribed
precision g > 0, measured in the uniform norm.

We split this problem into two problems:
Problem 2. Given a spherical polynomial f with its coefficients {anm, bnm }, eval-
uate f(£) at all points ¢ from a regular grid X on S2.

Problem 3. Given the values f(&£) of a spherical polynomial f at regular grid
points £ € X, evaluate f(z) at arbitrary (scattered) points z € Z, on the sphere S?
with precision &q.

Regular grid points on S? will be points {(6x, \¢)} in spherical coordinates, where
{A¢} and {01} are equally distributed. Given K, L > 1 we define two sets of regular
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grid poits X = {¢, = (0", \)}, i = 1,2, by

(2.6) 9,@1):?k,k=o,1,...,f{; AL :zé,K:O,l,...,QL—l;
and
1
2.7) 6P = K<k+2),k_0,1,..., —1; AP = —é ¢=0,1,...,2L — 1.

Here in XM we consider only one node for k = 0 (the North Pole) and one node
for k = K (the South Pole).

The relations between K, L and N above will be given in Section 5.

In this paper we focus on Problem 3. We shall use the representation of spherical
polynomials from Proposition 2.1 to develop an effective algorithm for this problem.

3. FAST AND ACCURATE EVALUATION OF TRIGONOMETRIC POLYNOMIALS

The first step in developing our method for evaluation of spherical polynomials
is to develop such an algorithm in the univariate case. Our method relies on highly
localized kernels (needlets) which reproduce trigonometric polynomials.

3.1. Trigonometric needlets. As is well known the Nth partial sum of the
Fourier series of a 2m-periodic function f takes the form

N

Snf(z / Dn(z —y)f(y)dy, where DN(x):1+2Zcosmc

n=1
is the Dirichlet kernel. Clearly f = Sy f for every f € Ily, where Il denotes the
set of all trigonometric polynomials of degree < N.

The Dirichlet kernel is poorly localized and hence not suitable for evaluation

of trigonometric polynomials. Instead we shall utilize reproducing operators with
highly localized kernels defined by

(3.1) Kn —1+QZ ( )cosm:

where ¢ is a cutoff function with the properties:
(32) ¢eC0,00); p(t)=1,1€0,1]; 0<(t) <1, te[l,147];
and p(t) =0, t > 1+ 7;

for some 7 > 0.
Consider the linear operator

(33) Brf @) =Ko+ 50) = o [ Kol = )1 0)
Clearly,

(3.4) dyf=f Vfelly, and

(3.5) dyfelly, 1, VfelLY(T), with N, =[N +7N].

The kernel K can be viewed as a mollified version of the Dirichlet kernel.

Our method relies heavily on the fact that for cutoff functions ¢ € C'*° the kernel
Kn from (3.1) has nearly exponential localization. This follows from the following
somewhat more general assertion.
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Theorem 3.1. Let ¢ € C*(R) be compactly supported and set

Kn(z):= Z @(%)emz.

ne”Z
Then for any o > 0 there exists a constant c, > 0 such that

(3.6) K (@) < coNAL+Nlal) ™7, || <.

This claim is known and easy to prove but nowhere to find in the standard
Fourier series literature, see [9] for a proof.

The nearly exponential localization of K can be improved to sub-exponential
by selecting the cutoff function ¢ € C*°[0, 00) to be with “small” derivatives. As is
shown in [9, Theorem 3.1] for any & > 0 there exists a cutoff function ¢ satisfying
(3.2) such that

1
B7)  lelle e le®le <e(¢Mnle+k—1]"9)", k=12

for some constants ¢, ¢’ > 0 depending only on € and 7. (A more general statement
is established in [10, Theorem 2.3].)

Using this kind of cutoff functions we get the following sub-exponential localiza-
tion result for the kernels Kn (see [9, Theorem 5.1]):

Theorem 3.2. If ¢ satisfies (3.2) and (3.7), then the kernels Kn from (3.1) obeys

coN|x|
. < - <
(3.8) IKn(x)] <N exp{ lIn(e + NJa )] } , x| <

where c1,co > 0 are constants depending only on € and 7. Here ¢ > 0 cannot be
removed.

Observe that for cutoff functions ¢ € C* (in fact, much less is needed) the

~ o0
sequence of operators {<I> N}N is uniformly bounded on LP, i.e.
=0

(3.9) 1@ fllrry < el fllzeery, Yf € LP(T), 1<p< oo,

with a constant ¢ > 0 depending only on . This is immediate from the inequality
5= [¢ |Kn(x)| dz < ¢ < oo, which follows from (3.6) with some o > 1.

3.2. Discrete trigonometric “needlet” operators. We next discretize the op-
erator @ from (3.3) by using the simple quadrature formula

1 27 1
(3.10) or |, F@dy~D MT'F(),
fex
where
(3.11) X=Xy :={&=2nM " k:k=0,1,...,M —1}.

It is readily seen that this quadrature formula is exact for trigonometric polynomials
F of degree < M — 1.
Applying quadrature (3.10) to the integral in (3.3) we obtain a discrete counter-
part of the operator @y, namely,
(3.12) Oy f(x):=> M 'Kn(z—Ef(E).
fex

In the next theorem we collect some simple properties of this operator.
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Theorem 3.3. Let ¢ satisfy (3.2) for some 7 > 0 and assume Ky, defined in
(3.1), obeys (3.6) with some o > 1. If M > N, then ®y satisfies:

(3.13) Oy £°(X) — C(T) is a bounded linear operator;

(3.14)  ||®n]lge(x)sc(m) < C, where C > 0 is a constant independent of N ;
(3.15) Onfelly 1 Yfer®(X) with N, = [N +7N].

Moreover, if M > N + N, then

(3.16) Oyf=f Vfelln;

(3.17) If = @nfllem < (1@nll+ D EN(fleo Vf € C(T).

Here En(f)oo = 1infgemy | — 9lloo-

Proof. The boundedness of the operator ®y in (3.13) follows from (3.12). For
(3.14) we use (3.6) to obtain

M/2

1@ [l () scm) < co(N/M) D 2(1+ 2rmN/M) ™7 < C.

m=0
Further, (3.15) follows from (3.12) and K € Iy, 1. Identity (3.16) follows from
(3.4) because Kn(z —-)f(+) is a trigonometric polynomial of degree N + N, —1 for
every z. Finally, (3.17) follows from (3.16) and (3.13). O

Observe that Theorem 3.3 yields
En,—1(f)oo S f =Pnfllom < cEn(f)e for feC(T),

which shows the excellent approximation property of the sequence of operators ® .

However, the number of terms in (3.12) is quite large for any meaningful prac-
tical application. Having in mind the excellent localization of the kernel Ky (see
Theorems 3.1 and 3.2) we truncate the sum in (3.12) and define

(3.18) Oy sf(z):= Y M 'Kn(@—6F(©),
fex
p(z,§)<8

where § > 0 is a small parameter and p(x,y) = min,ez |x —y — 27n| is the distance
on T.

In the following theorem we shall prove that a sufficient condition for evaluating
f(z), f € N, by ®ns(f,x) with error ¢ f]|o is
(3.19) IKn(z)] <e for 0<|z|<m.

However, the bounds obtained in Theorem 3.6 bellow for ¢ satisfying (3.19) are
not quite satisfactory. Observe that the majorants of [y (x)| given in (3.6) and
(3.8), after reaching the value € for x = § from (3.19), preserve their fast decay for
0 < x < w. This means that it may be possible to select a smaller value of § in the
operator ®y s and still have the same relative error . This can be achieved, for
example, by replacing the uniform condition in (3.19) by an integral one:
1 us
(3.20) S=6+2nM Y, = [ M(Ky,t)dt =e,
i 51
where M is the maximal function
(3.21) M(g,x) = sup  g(y)

Y€z, 2m—x)

, 0<x <.
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Theorem 3.4. Let NNM e N, 7>0, M >N+ N, and 0 < e < 1. Assume that
¢ satisfies (3.2), Kn obeys (3.6) for some o > 1 and ¢ is determined by (3.19) or
(3.20). Then the operator ®y s, defined in (3.18), satisfies

) Oy s : LX) = L°(T) is a bounded linear operator;

) 1PN f = PnsfllLee(my < Ellflles(xy VF € L(X);
3.24) If = x5 fllLee(m) < €llfllesecay VS € s

) If = @NnsfllLem < (C+DEN(f)oo +ellflle=xy VS € CO(T),
where C is the constant from (3.14).

Proof. The boundedness of the operator ®y s in (3.22) follows from (3.18). For the
proof of (3.23) we first assume that ¢ is determined by (3.19). Then

(3.26) Z M7'Kn(@z—8l< Y M1'e<e
fex
p(w76)>5 p(x,€)>06

Second, assume that 0 is determined by (3.20). Using that M(g,-) is a non-
increasing function in [0, 7] we infer from (3.21)

1 [l

|/CN( )| < */ M(Kn,t)dt for 2rM~' <|y| <.
27 Sy ~2mm-2

Now we use this inequality separately for v — ¢ =y € (0,7] and for x — & =y €

[, —0) and apply (3.20) to obtain for every z € T

™

1
(3.27) > M Kn(z -8 <2— MKy, t)dt =e.
27 Js—2nm-1
fex
p(z,€)>6

In light of (3.12) and (3.18), estimates (3.26)—(3.27) yield

Bnf(x) = Pnof(@) < Y MKy =] Iflleocry < el fllew )
gex
p(x,6)>48
This completes the proof of (3.23). We now appeal to Theorem 3.3 to complete the
proof of Theorem 3.4. O

3.3. Selection of the cutoff function ¢. Our choice of a cutoff function ¢ sat-
isfying (3.2) will be guided by the following rule: Find the smallest possible § for
which (3.23) holds. We first satisfy (3.19), which implies (3.23).

3.3.1. The minimum 6 for which (3.19) holds. Given 7 > 0, a cutoff function ¢
satisfying (3.2), 0 <& <1, and N > 1 we denote by do(¢; e, 7, N) the minimum §
for which (3.19) holds. Functions ¢ that produce small § are deemed good cutoff
functions. Set

0oo(e, 7, N) = inf do (5,7, N),
©

where the infimum is taken on all ¢ satisfying (3.2). We are interested in establish-
ing lower and upper bounds on 0 (g, 7, N).
The upper bound relies on the following
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Theorem 3.5. Let N e N, o € R, 1 <o < N, and 7 > 0. There exist a cutoff
function ¢ (defined by (7.4) in [8]) satisfying (3.2) and absolute constants co,c1 >0
such that

(3.28) K ()] < eo(1 + 7)N min {1, <T§Tx|)g} ) <

This theorem follows from [8, Theorem 7.1] with « = 8 = —1/2 and k = [o].

Theorem 3.5 provides an explicit form for the constant ¢, = ¢o(1 + 7)(c10/7)°
in Theorem 3.1 under the additional conditions (3.2). Note that the form of de-
pendence of ¢, on the length of support 2 4+ 27 and the rate of decay o cannot be
essentially improved as follows from [11].

Matching lower and upper bounds for (g, 7, N) are given in

Theorem 3.6. Let N € N, 0 < e <1 and 7 > 1. There exist absolute constants
¢ ,¢t >0 such that for N > 2In(co(1+ 7)/e) with ¢o from Theorem 3.5 we have
(3.29)

C_ln(l/e) +InN+In(l+7) < b(e,7,N) < C+ln(1/5) +InN +1In(1+ 7').
TN TN
Proof. For the upper bound in (3.29) we apply Theorem 3.5 with 6 = ecyo/(7N)
and o = In(co(1 +7)N/e) (hence 0 = In(co(1+7)/e) +In N < N/2+ N/2 = N) to
obtain (3.19).
According to the proof of Theorem 3.2 in [8] a lower bound &y < doo(e, 7, N) is
determined as

1/v
o = arccos(85(S +1)"2—1), S= (R—l— VR? — 1) , R=¢"Kn(0),

where v = [N + 7N]—1 is the degree of K. From the above we infer the following
asymptotic representation of dy for large IV and small ¢

In(2KN(0)/e) _ In(4(1 + ¢r)N/e)
3.30 0o ~
(3:30) 0 v - 27N ’
where the estimate Cn(0) > 2(1 + é7)N with some constant ¢ depending only on
@ is used in the last inequality. This completes the proof. O

Remark 3.1. In fact, the upper bound in (3.29) holds for 0 < 7 < oco. The
condition 7 > 1 is used only in obtaining the lower bound via the inequality in
(3.30). For 0 < 7 < 1 the denominator of the lower bound in (3.29) is (14 7)N and
does not match the denominator of the upper bound. Note that the localization of
Kn gets worse when 7 — 0 and necessarily d(¢,7, N) — 7 in this case.

Remark 3.2. The upper estimate in (3.29) is achieved by WZ functions ¢ which
vary with o and e. This estimate cannot be achieved by any single “universal” (i.e.
independent on N and ¢) cutoff function ¢, no matter how smooth it might be.

3.3.2. The minimum ¢ for which (3.20) holds. As before, we set
51(€aTa N) = il’lfdl(@;cf,T, N)7
©
where the infimum is taken over all ¢ satisfying (3.2) and 61 (p;e, 7, N) is ¢; from
(3.20). From (3.19) and (3.20) we get immediately
51(90;Ea7_a N) < 500(§0;677—7 N)

Hence, the upper bound from Theorem 3.6 holds for d;(e, 7, N) as well. But using
again Theorem 3.5 one can improve this estimate as follows:
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Theorem 3.7. There exist absolute constants ¢ ,c* > 0 such that for N € N,
0<e<e!, N>In(l/e) +c* and 7 > 1 we have

(3.31) 61(e, 7, N) < C#%.

Proof. Estimate (3.28) holds with K (z) replaced by M(Ky,z) due to the mono-
tonicity of the right-hand side in (3.28). Using this we obtain

1 (" co(l—l—T)N/oo Cc10\°
. - <
(3.32) - i MK, t)dt < =5 6 (TNt) dt

_ 00010(1+T) /oo 0= dv = C()610(1+T) < Cc10 >01

i w(oc—1)1 \7N&

TN[S

c10 91

Set k :=|In(coer)|+2, o :=1In(1/e) + k and 07 := ecyo/(TN). Noticing that o > 3

and 7 > 1 imply :(Efljf))T < 1, we infer from (3.32)
1 U

(3.33) — [ M(Kn,t)dt < coere™ 7! < coepem /AR < g,
s 51

Thus, (3.33) proves the theorem with ¢# = ec;(k + 1) and ¢* = k (which leads to
N > o). O

Note that for a fixed € the upper bound for d; (¢, 7, N) in (3.31) with the increase
of N becomes smaller than the lower bound for do. (¢, 7, N) in (3.29). This fact jus-
tifies the replacement of criterion (3.19) by criterion (3.20). Note that the product
Noi(e,7,N) is bounded from above by a quantity depending on & and 7 but not
on N. This means that the number of therms in (3.18) is independent of N and
we can use ®y s for very high degrees N.

3.3.3. Selection of . During the testing of our algorithm we determined §; accord-
ing to two criteria: (3.20) and

(3.34) §=6 +2rM, %/ K (t)|dt =e.
01

For our best cutoff functions ¢ both criteria give very close values of d; for various
g, 7 and N. Therefore, for practical applications one can determine ¢; using (3.34)
rather than (3.20). On the other hand, one cannot drop the second term in § := §; +
2w M~ because there are functions f for which || ®n f — P s f || Lo () > €| f|leoo (2
whenever ¢ is taken to be §;. Note that the use of ¢; in (3.18) in the place of §
would decrease the number of terms exactly by 2.

For fixed ¢, €, 7 and N it is easy to write a code for approximate computation of
01(p;e, 7, N) from (3.20) or (3.34) and thus to compare the values of ¢; for different
@’s. This approach guided us in selecting a good cutoff function ¢ for our purposes.

We work with cutoff functions ¢ satisfying (3.2), which for ¢ € [1,1+4 7] are given
by

1 1

(3.35) o(t) = /(1/ VAT gy g = / VAT dy b > 0.
(t—1)/7 0

In (3.35) b is a parameter, which is given by

(3.36) b= 4.641og;,(1/e) — 0.52
provided 4 < log;¢(1/e) < 11 and 7 > 1.
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The values of §1(p; €, 7,1000) for various € and 7 are given in Table 1.

m\e| 107° 10-° 1077 1078 1079 | 10710
1 10.02259 | 0.02744 | 0.03219 | 0.03678 | 0.04136 | 0.04585
2 ]0.01147 | 0.01374 | 0.01614 | 0.01834 | 0.02071 | 0.02300
3 10.00762 | 0.00922 | 0.01073 | 0.01224 | 0.01370 | 0.01537
4 1 0.00573 | 0.00689 | 0.00803 | 0.00917 | 0.01030 | 0.01141
TABLE 1. Values of 61 (¢; e, 7,1000) for ¢ from (3.35)—(3.36)

The computed values of §1(p;e, 7, N) for ¢ from (3.35) with b from (3.36) can
be very well approximated by the expression

_In(1/e -
(3.37) 51 (p;e, 7, N) = ¢ 7(_]\/[ ), c=2.

In fact all values of &;(p;e, 7, N)TN/log(1/e) for N = 1000 in Table 1 are be-
tween 1.9622 and 2.0031. Note that the approximation (3.37) corresponds to
the upper limit from (3.31). Moreover, our computations show that the quan-
tity No1(p;e,7,N) is practically a constant (less than 2% deviation) for 100 <
N <10 000 for any fixed € and 7 in the specified range.

3.3.4. Operator norms. The norms of 51\;, @y and @y s as operators from C[0, 27)
into L [0,27) are very small, quite like the norms of their analogues on the sphere
(cf. [7, Subsection 5.2]). The norm of the integral needlet operator ®y from (3.3)
is given by

1

H(’iNHC[O,QTF)*)C[O,Q‘n’) =5 » [ (t)|dt

and the norms of the discrete needlet operators ®y from (3.12) and ®n s from
(3.18) are given by

1
12~ llcw2m—raio2m = sup - > IKn (= =),
z€[0,27) fex

1
[®n,5llc,2m) > Lafo,27) =  SUP i > KN (@ =9l
z€[0,2m) fex
p(a.€)<s

Their values for various &, 7, M = [(2+ 7)N] and ¢ from (3.35)—(3.36) are given

in Table 2. Note that ¢ depends on both € and 7 and that 0 < || ®n || — | PN s]| < €.
[Pn | [®n| and [Py ||
el 107° [ 1077 [ 107° [ 1071 || 107° [ 1077 | 1077 [ 1071
1 || 1.6874 [ 1.7515 [ 1.8002 | 1.8395 || 2.0583 | 2.1591 | 2.2357 | 2.2975
2 | 1.5227 | 1.5869 | 1.6357 | 1.6750 || 1.7987 | 1.8999 | 1.9768 | 2.0387
3 | 1.4485 | 1.5127 | 1.5616 | 1.6010 || 1.6816 | 1.7830 | 1.8600 | 1.9221
4 |/ 1.4056 | 1.4699 | 1.5187 | 1.5581 | 1.6136 | 1.7153 | 1.7925 | 1.8546

TABLE 2. Norms of the integral operator ® ~ and the discrete op-
erators @ and @y 5 for N = 1000

Our computations also show that these norms are practically independent of the
degree N.
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3.3.5. Trigonometric needlet algorithm. We put forward the following algorithm for
solving Problem 3.
Input: N, e, M (M > 2N), X = {& = 2rk/M,k =0,...,M — 1}, polynomial
values f(£),£ € X, and scattered points © € Z.
Pre-computation:
(1) Determine 7 = M/N — 2.
(2) For ¢, 7 and ¢ given by (3.35)-(3.36) determine p(n/N).
(3) Determine § = §; + 27/M with 67 from (3.37).
(4) For ¢ and 0 from Steps 2-3 approximate Ky (x) for x € [0,d] (see [8,
Subsection 3.3]).

Computation: For every x € Z compute the approximate value f(z) =®nsf(x)
of f(x) using (3.18).

Output: The approximate values f (z), z € Z.

We next determine the complexity of all steps. The values ¢(n/N) in Step 2
can be computed in O(N) operations. Step 4 requites O(N In1/e) operations. (We
follow the kernel evaluation approach described in [8, Subsection 3.3]. Trigonomet-
ric polynomial evaluation is done by the Newbery modification of the Clenshaw
recurrence [17].) The total complexity of the preparatory Steps 1-4 is O(N In1/e).

From inequality (3.31) it follows that the approximate evaluation of f by (3.18)
at a single point requires O(In 1/¢) operations. Thus, the total count of operations
is O(NInl/e + |Z|In1/e), where | Z| stands for the number of elements in Z.

3.4. Interpolating needlets. One surprising property of the trigonometric needlet
operators is that @ f and ®n s f interpolate f at the knots of X for the minimum
possible value of M, i.e. M = (2+ 7)N, and for symmetric cutoff functions (see
(3.38)); no smoothness of the cutoff function is required.

We start with

Lemma 3.1. Let N € N and 7 > 0 be such that TN € N. Assume that the cutoff
function ¢ satisfies the conditions: ¢(t) =0 fort > 2+ 71 and

(3.38) PR+T—-t)+pt)=1, 0<t<1+7/2.

Let M =2N+7N and xy, = 2o M 'k, k=0,1,..., M —1. Then the needlet kernel
Kn, defined in (3.1), satisfies Kn(xo) = M and Kn(xr) =0 fork=1,2,...,M—1.

Proof. From sin My /2 = sinkm = 0 we get for n < M/2
cos(M — n)xy, — cosnxy = 2sin My /2sin(M/2 — n)xy, = 0.
Also (3.38) implies
(M = n)/N) + o(n/N) =1, < M2
If M =2m (M even), then for k > 1 we have

m—1 .
2
Kny(xp)=1+2 E cosnmk—l—cosmxk:W:O
— sin /2

and for k =0 we have Ky (0) = Kn(zo) =1+2(m—1)+1= M.
If M =2m+1 (M odd), then for k > 1 we have

sin(m +1/2)zy

ICN(:Ek):l—i—QZcosnxk: =0

— sin /2
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and for k = 0 we have Kn(0) = Kn(zg) =1+ 2m = M. O

Note that in the case of a symmetric cutoff function ¢ satisfying (3.2) Lemma 3.1
identifies 2N +7N —1 of the zeros of the needlet kernel I, which is a trigonometric
polynomial of degree N+7N —1. The remaining 7N —1 (complex) zeros apparently
are used for generating the superb localization of the kernel for cutoff functions as
those considered in Theorems 3.1 and 3.2.

As an immediate consequence of Lemma 3.1 we get

Theorem 3.8. Let N € N, 7 > 0 be such that TN € N and M = 2N+7N. Assume
that ¢ satisfies (3.38) and X is given by (3.11). Then the needlet operators defined
by (3.12) and by (3.18) for some § > 0 satisfy ®n f(n) = f(n) and ®nsf(n) = f(n)
for everyn € X.

Proof. Note that (n — &§)M/(2w) € Z for every n,& € X. Therefore, Lemma 3.1
implies that all terms but one (for n = £) in the sums in (3.12) and (3.18) are equal
to zero. 0

Note that if ¢ is defined by (3.35) then it satisfies (3.38). Hence, the corre-
sponding needlets ®x f and ®y s5f and the trigonometric needlet algorithm from
Subsection 3.3 interpolate f at the equidistant knots in the case M = 2N + 7N.

3.5. Comparison with other methods for fast evaluation. The trigonometric
needlets are the main component in the construction of the tensor product needlets
to be used on the sphere. In this subsection we compare them with two other
algorithms for solving Problem 1 on T, that is, the problem for fast evaluation of
trigonometric polynomials, given by their coefficients, at scattered points within
a prescribed accuracy. From several existing algorithms for solving Problem 1 we
selected two algorithms that entail fast, stable and accurate methods for evaluation
of multi-dimensional trigonometric polynomials.
We begin with a short description of the algorithms:

A1: Trigonometric needlets;

A2: Spline interpolation with maximal defect (i.e. piece-wise polynomials)
based on Lagrange interpolation;

A3: Nonequispaced fast Fourier transform (NFFT) with Kaiser—Bessel win-
dow function.

3.5.1. Trigonometric needlets. The algorithm in Subsection 3.3 solves Problem 3
when trigonometric polynomial values are given at equispaced points. If the poly-
nomial is given by its coefficients we modify the algorithm by replacing the Input
and the first step of the pre-computation part with
Input: N, e, T, polynomial coefficients a_n,a_n+1,...,an and scattered points
x € Z.
(1) Determine M = [(2+7)N|, X = {& = 2nk/M,k = 0,...,M — 1} and
evaluate f(€),€ € X, using FFT.

This step increases the total count of operations by O(N In N).

3.5.2. Lagrange interpolation. Let X = Xps be defined just as in (3.11) and let
h:=2n/M. For x € [0,2m) set

j=j@) = [(«M/(27) — p/2] .
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Then = — ph/2 € [§;,€;41] (with the convention &,,4ar = &m, m € Z). Observe
that for even p = 2m we have @ € [€j4m,&j4m+1) and for odd p = 2m — 1 we have
T € [§4m — 1/2,§j4m + h/2).

Given M, € N, M > p, we define the operator Ly ,, by

(3'39) Ly u(fa ) £J(JL JEREIN 5J(¢)+u] f’ Zﬁk N 5](16) f(fj(gc)-&-k)a

O R
)= gy« He-4)

Here L, ., ..¢,,,(f) stands for the Lagrange interpolation polynomial of the 27
periodic function f with knots &41,...,&j4u-

From (3.39) it follows that Ly, (f, &) = f(§) for £ € X and Ly, (f) is a piece-
wise polynomial, more precisely, it is an algebraic polynomial of degree y — 1 on
every interval of the form [, 1) for even p and of the form [£; — h/2,&, + h/2)
for odd p. Hence Lar,,,(f) € C[0,2m) for even p or L, (f) may be discontinuous
at £+ /h2,& € X, for odd p. Thus, L, (f) is an interpolating spline with maximal
defect.

The following simple claim will be needed.

Theorem 3.9. Let M, € N, M > . Then

(340)  Laru(f) = flloo < w(li/2)) (35) 15 @lloe, VI € C7[0,20);
B4 Nar) ~ Tl < n(l/2)) () Ufles V7 €T,
where

wtm) = P~ (14 o)

mizozm vJT™m

Moreover the constant in (3.41) cannot be improved.

Here (3.40) follows from the error expression for the Lagrange interpolation for-
mula at the middle of the interpolating knots (cf. [6, §9.3]), (3.41) follows from
(3.40) and the Bernstein inequality. The examples of f(x) = cos N(t + h/2) and
2 =0 for even p and f(z) =sin Nt and @ = h/2 for odd p and M — oo show that
the constant in (3.41) cannot be improved.

Observe also that the operators Ly, : Loo[0,27) — Loo[0, 27) have small norms,
which are independent of M and increase logarithmically with .

The fast evaluation of a trigonometric polynomial f at many scattered points
can be done in two steps by: first, pre-computing the values f(£), £ € X, using FFT
and, second, applying (3.39) for every scattered point. The error estimate of this
algorithm, given in (3.41), indicates that the prescribed error £ will be guaranteed
if the parameters M and p are selected so that

w(L/2) (}f) <e
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3.5.3. Nonequispaced fast Fourier transform. The work on fast Fourier transforms
for nonequispaced data was initiated by Dutt and Rokhlin [3] and had attracted a
number of followers, see e.g. [1, 4, 13]. This method approximates a trigonometric
polynomial f(z) = ZkN:_ N are™™® given by its coefficients by a periodic function
of the form g1(z) = > ¢cx bep(z — §). Here ¢ is a window function with excellent
localization in both the space/time and frequency domains, M = o(2N + 1) or
M = 20N with ¢ > 1 (called oversampling factor) and the coefficients b¢, £ € X,
depend in a simple manner on the Fourier coefficients of ¢ and f.

The evaluation of g; at a point x is done by truncation of the sum to the closest
2m + 1 knots to z, i.e.

(3.42) g(z) = ) betp(z — §).
fex
p(@,&)<m(2m+1)/M

ikx

The algorithm proceeds as follows: (i) it pre-computes be, £ € X, using FFT and
(ii) it applies (3.42) for every scattered point.

The error of the method has two components — the approximation error || f — g1 |
and the truncation error ||g1 — g||. If ¢ is the Kaiser—Bessel window function (the
best known choice for small oversampling o) then an error estimate given in [18,
Satz 1.10] reads

N
(343) I~ gl < dn(vm+m) {1 - LoV S gy

k=—N

The relation between the NFFT notation and our notation is given by

r M M1
44 oM 1
(344) o=ttty =y ™ {%‘HQJ

3.5.4. Comparison. Each of the three algorithms consists of two parts: first, pre-
compute some quantities using FFT of length M and, second, apply local summa-
tion formulas: (3.18) for A1, (3.39) for A2 and (3.42) for A3. The amount of
computation in the first parts is approximately the same and in the second parts
the computations depend on the number of terms in these formulas and the com-
putation time for evaluating the basis functions (Ky, f,, and v, respectively).
Here ¢y, ;, and v are given in close forms. There is no close form for Ky known to
us, but we use an appropriate approximation to this kernel and achieve evaluation
speed which is independent of the degree N. Hence, the evaluation of these basis
functions for 2m + 1 arguments requires ¢m operatons (with eventually different
constants ¢). Therefore, we shall consider the number of terms 2m + 1 (in the A3
notation) and how they achieve the prescribed accuracy e for varying oversampling
parameter o.

The comparison of the three error estimates — (3.24) along with (3.31) for A1,
(3.41) for A2 and (3.43) for A3 — is not straightforward, because the first two
employ the uniform norm of the polynomial and the third uses the £; norm of the
polynomial coefficients. While A1 and A3 require only ¢ > 1 (i.e. 7> 0) to achieve
the prescribed accuracy, A2 requires oversampling o > /2 (i.e. 7 > 7 — 2) and
cannot work with lower oversampling because the estimate (3.41) is sharp. This
is not a problem in dimension 1, however, could cause memory problems in higher
dimensions.
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The leading terms of the error bounds for the three algorithms are:

exp(—n(1 —1/0)m); exp(—2In(20/m)m); exp(—2my/1—1/0m),

where the term for A1 is obtained from (3.37) with é = 2. Thus, all three algorithms
have exponential error decay in m but the constants in front of m are different.

In Table 3 we give the smallest values of m for algorithms A1, A2 and A3 which
ensure error bound e for various values of o = 1+ 7/2. For algorithm A1 m is
computed as the closest integer to 6;M/(2mw) + 1.5 and the values of ¢; are taken
from Table 1. Also ¢ is defined by (3.35)-(3.36) and M = 20 N. For algorithm A2
m is computed as the smallest integer such that the constant in front of the uniform
norm in (3.41) (with g = 2m + 1 and M = 20N) is at most . For algorithm A3
m is computed as the smallest integer such that the constant in front of the £!
coefficient norm in (3.43) is at most .

Al A2 A3
e\e [[15]20[25[30[1.5[20[25[30[1.5][20][25]3.0
w°12] 8761 -l20]11] 8 5 1 4] 471 4
10 %1410 8] 8| -T24a[13][9 5514714
10 7lw6l11]1w0]9]| -T29[15]11] 6571574
10819131110 -[33]18[13]7[61]5]5
10921 lwaf12]11] -138]20[15] 71671 6]5
10023161312 - [43[22[16] 8 [ 7616

TABLE 3. Values of m for algorithms A1, A2 and A3

Table 3 shows that the number of terms that A1l uses is approximately twice
bigger (for o > 2) than the terms in A3. Algorithm A2 is inferior to A1 and A3 for
small oversampling factor ¢. On the other hand, algorithm A2 has smaller number
of terms than A1 and A3 for large oversampling factor o (o > 6 if compared with
A1l and o > 35 if compared with A3). Currently we see no practical application
with such significant oversampling.

We now turn our attention to the norms in the the error estimates. They are
related by

N N
I fllem < Z lar| < V2N + 1| f|lc(r) for any f(z) = Z ape

k=—N k=—N

The constant 1 in the first inequality is exact and the constant v/2N + 1 in the
second inequality cannot be replaced by vv/2N + 1 for any v < 1 and independent
of N as the Kahane ultraflat polynomials [12] show. This gives some advantage to
algorithms A1 and A2 over A3 when absolute error €| f||¢(t) is to be achieved. In
such cases m for A3 in Table 3 is to be increased in order to compensate for the
additional /2N + 1 factor. Of course, such increase would be bigger when going
to the multidimensional case.

Finally, let us look at the structure of the approximating expressions. The de-
pendence of the summation formulas for A1 and A2 on the polynomial values at
the knots will be an essential stability advantage over the summation formulas for
A3 when going to the 2-d sphere in Section 5. Moreover, if f(£),£ € X, are not
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values of a trigonometric polynomial of degree IV, then A1 can be used for approx-
imation of f and (3.18) will be an approximation operator with very small error,
cf. (3.25).

4. TENSOR PRODUCT TRIGONOMETRIC NEEDLETS

The generalization of the trigonometric needlets from Section 3 to d-dimensional
tensor product operators is straightforward.

The function domain is T¢ with points & = (1, ...,z4) and distance p(x,y) :=
max{p(z1,v1), .., p(*a,ya)}. Denote by I1% the set of all d-dimensional trigono-
metric polynomials of coordinate degrees N. The tensor product trigonometric
needlet kernel is defined by

d
K:?V(.’B) = H /CN(JTk).
k=1

Using the knots X% = Xps x - - - x Xy, where Xy is defined in (3.11), we define the
truncated tensor product needlet operator by

(4.1) oY sf(x) = Y M K{(x—&)f (&)
cexd
p(&,x)<é

The next theorem follows directly from Theorems 3.3 and 3.4.
Theorem 4.1. Letd, NN M € N, 7 >0, M > N+ N,, and 0 < e < 1. Assume that

@ satisfies (3.2), Kn obeys (3.6) with some o > 1 and 0 is determined by (3.19) or
(3.20) with 1 = ¢/(d||®n||91) in the place of €. Then we have

(4.2) <I>j'lvy5 02X — L(T?) is a bounded linear operator;
(4.3) 1f = @% sl Lo cray < ell flles ey V€ TR
(4.4) If = ®% 5/l oo (ray < CEN(f)oo + €l fllgme(xay Vf € C(TY,

where En(f)oo == infyena ||f — gllzoe ().

Estimate (4.3) shows that (4.1) can be the base for a fast and stable needlet
algorithm for evaluating f € H‘}V at many scattered points on T¢. To be more
specific, first, the values of f(£),& € X9, are pre-computed using multidimensional
FFT and, second, (4.1) is applied to evaluate f(x) at every scattered point . The
number of operations for a scattered point consists of du evaluations of the one-
dimensional kernel Ky plus u? multiplications and additions, where y denotes the
number of terms in (3.18).

5. SPHERICAL TRIGONOMETRIC NEEDLETS

We now turn to the problem for effective evaluation of spherical polynomials.
We focus on Problem 3, stated in Subsection 2.2.

5.1. The main tenet of our method. Our method relies on the following rep-
resentation of spherical polynomials f € Py in spherical coordinates:

1 2 2m
61 ON =G /0 kw0 - 0)Cn (A — N)F(O, X )dNde,
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where Ky is the kernel from (3.1). Here f(60, \) is extended, first, by
(5.2) fON) :=f2r—0,\+m) for w<0<2m, AER,

and then 27-periodically in 6. This identity is an immediate consequence of Propo-
sition 2.1 and Theorem 3.3.
We now introduce the operator
2m 2m
(5.3)  BLFO,N) = — / Ko (0 — 0w (A — N) £ (8, X )dNde,
@2m)2 Jo  Jo
acting on any function f € L'(S?) defined on S? in spherical coordinates and
extended as in (5.2). From (5.1) it follows that ®% f = f for f € Py.

Our next step is to discretize the operator 5?\, by using quadrature formula
(3.10). Let X = {(0, A¢)} be one of the regular grids (2.6) or (2.7). We extend the
set X for m < 6 < 27 by simply letting k = K,...,2K — 1 in (2.6) or (2.7). We
define

2K—12L—1
1

(5.4) X f(0,)) = KL Z Z Kn (0 = 0p) N (A = Ao) f(Or, Ae),

k=0 £=0
where f(0, A) is extended as in (5.2). Note that \; = m+A,_p, (it is necessary for this
equation that we use even number of knots in the A direction), 91(:) =21 — 0&27 &

9,&2) =27 — Héa_k_l. Hence, in view of (5.2) only the values of f at the original
regular grids XM or X?) are used in (5.4).

We next record some useful properties of the operators ®%;, which follow by (5.4)
and Theorem 3.3.

Theorem 5.1. Let Ky be just as in Theorem 3.3. Then the operator ®3; from
(5.4) is a bounded operator as a map 9% : (°(X) — C(S?) and

(5.5) %[l (x)sc(s2) < C with C > 0 a constant independent of N.

Also, ®%f for any f € £>°(X) is a trigonometric polynomial in both 0 and X\ of
degree < N, with N, := [N +7N].
Furthermore, if 2K > N + N, and 2L > N + N, then

(5.6) A f=f VfePy and
(5.7) If =X flloe) < (1on]P + DEN(fleo VS € C(S?).

Here EN(f)oo = infyepy |f—gllc(s2) and || @ x| is the norm of the one-dimensional
operator @ studed in Subsection 3.3.

In order to achieve fast evaluation of spherical polynomials we introduce the
following truncated version of the operator ®%:

1
: ®3 = _ _
(5.8) Naf(0,2) = 0 Do D> Kn(0—0)KN(A = A f (ks M),
0<k<2K 0<e<2L
p(8,01)<0 p(A,Ae)<6
where ¢ is a small parameter.
As a consequence of Theorems 3.4 and 3.3 we obtain the following basic proper-
ties of the operators ®%; ;.
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Theorem 5.2. Let N K, L € N, 7 >0, 2K > N+ N, 2L > N + N, and
0 < e < 1. Assume that ¢ satisfies (3.2), Kn obeys (3.6) with some o > 1 and
d is determined by (3.19) or (3.20) with €1 = €/(2||®n||) in the place of €. Then
DY 51 L°(X) = L>=(S?) is a bounded linear operator,

(5.9) 19X f — ®N 5.f Lo (s2) < ellfllesery V€ £°(X);
(5.10) If = ®%sfllLeo(s2) < €llflleecry VS € Pws
(5.11) If = ®% s fllLe(s2) < (C+DEN(f)oo +llfllesxy VS € C(S%),

where C is the constant from (5.5) and ||®n|| is the norm of the one-dimensional
operator @ studed in Subsection 3.3.

Proof. Only (5.9) need to be verified; it follows from

2K—12L—1
1

A DD D D I LAl e ]
4K L

k=0 (=0 0<k<2K 0<f<2L
p(0,01) <0 p(A\A0)<d

| 2K 1
<ok Z IKn (0 — 9k)|i Z KN (A= Ao
k=0 0<£<2L
p(NAe)>d
1 | 2L
- — J— — < =
toe 2 KnO—00)l5p Y IKv(A= M) <2 @nler =¢
0<k<2K =0
p(0,0%)>5
on account of (3.26) or (3.27) applied with M = 2K or M = 2L. O

5.2. Spherical trigonometric needlet algorithm. Inequality (5.10) is the base
of the spherical trigonometric needlet algorithm. Theorem 5.2 specifies (3.19) or
(3.20) with &1 = ¢/(2||®n]|) in the place of e as sufficient conditions for (5.10).
Here the decrease of € to €1 is not big because ||®y] is bounded by an absolute
constant in view of (3.14). From Table 2 we observe that |® || < 2.5 for the values
of € and 7 under consideration. Thus, e = ¢/5 will ensure (5.10).
Now, we put forward the following algorithm for solving Problem 3.
Input: N, e, K,L (K > N,L>N), X =X" or X = X polynomial values
f(€),€ € X, and scattered points x € Z C S%.
Pre-computation:
(1) Determine 7 = 2(min{K, L}/N —1).
(2) For €, 7 and ¢ given by (3.35)—(3.36) with /5 in the place of € compute
o (n/N).
(3) Set 6 =1 + w/ min{ K, L}, where 4, is from (3.37) with £/5 in the place of
€.
(4) For ¢ and ¢ from Steps 2-3 approximate the one-dimensional kernel Ky (z)
for x € [0, d] (see [8, Subsection 3.3]).
Computation: For every x € Z compute the approximate value f(m) = @%75f(x)
of f(x) using (5.8).
Output: The approximate values f (z), z € Z.
We next determine the complexity of all steps. The values p(n/N) in Step 2
can be computed in O(N) operations. Step 4 requites O(N In1/e) operations. (We
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follow the kernel evaluation approach described in [8, Subsection 3.3]. Trigonomet-
ric polynomial evaluation is done by the Newbery modification of the Clenshaw
recurrence [17].) The total complexity of the preparatory Steps 1-4 is O(N1ln1/e).

From inequality (3.31) we get that the approximate evaluation of f by (5.8) at
a single point requires O(In1/e) kernel evaluations and O(In? 1/¢) multiplications
and additions. Thus, the total count of operations is O(N1n1/e + |Z]|In®1/e),
where | Z| stands for the number of elements in Z.

Remark 5.1. This algorithm and Theorem 5.2 cover the case when the regular
grid steps in the latitude and longitude directions are approximately equal (K =
L). In the case when the steps are not equal, say K — N > 1.2(L — N), we
can take advantage of the additional information we have about the trigonometric
polynomial and modify operator (5.8). We set 7 = 2(K —N)/N, 72 = 2(L—N)/N
and choose different cutoff functions and kernels: ¢, and Ky y corresponding to 7;
and @2 and Kg y corresponding to 7o. Then (5.8) is replaced by

(5.12)

P55, f (05 A) = . > > Kin(0 = 0)Kan (A= Xo) £ (O, Ae),

4KL
0<k<2K 0<£<2L
p(0,01)<01 p(X\,A) <02

where 51, b9 are small parameters. The appropriate modification of Theorem 5.2
holds for the operator (5.12) and the spherical trigonometric needlet algorithm can
take advantage of it. According to (3.37) the reduction of the number of terms in
(5.12) compared to (5.8) is approximately 7o/m = (L — N)/(K — N).

Remark 5.2. In our experiments we have extensively used (3.20) with ¢; = ¢/2
(instead of €1 = £/5) in the place of €. In all cases the relative error of the computed
polynomial values have not exceeded e.

5.3. Interpolating needlets. The spherical trigonometric needlet operators pre-
serve the interpolation property of the one-dimensional trigonometric needlet op-
erators. Indeed, from (5.4), (5.8) and Lemma 3.1 we immediately get

Theorem 5.3. Let N € N and 7 > 0 be such that TN is an even integer. Assume
that ¢ satisfies (3.38). Let K = L =N+ 7N/2 and X be given by (2.6) or (2.7).
Then the spherical trigonometric needlet operators defined by (5.4) and by (5.8) for
some § > 0 satisfy 3. f(n) = f(n) and ‘I)?v,af(n) = f(n) for everyn € X.

Note that if ¢ is defined by (3.35) then it satisfies (3.38). Hence, the corre-
sponding operators ®3, f and (I)?V,(S f and the spherical trigonometric needlet al-
gorithm from Subsection 5.2 interpolate f at the regular grid knots in the case
K=L=N-+7N/2.

5.4. Comparisons.

5.4.1. Comparison with spherical needlets. We have designed tensor product trigono-
metric needlets in an attempt to improve the speed and to simplify the algorithm
of the spherical needlets developed in [8]. The implemented simplifications are:

e use of equispaced knots instead of Gaussian quadrature knots in the latitude
direction;
e 1o need of separating the sphere in three regions;
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e 1o need of rotating the spherical polynomial in the polar regions in the
pre-computation part.

The improvement of the speed comes from:

e (mainly) the reduction of the number of kernel evaluations per scattered
point;

e the number of terms in the truncated needlet operator does not depend on
the latitude of the scattered point, as is the case of a spherical cap of fixed
radius.

Note that the number of kernel evaluations per scattered point is approximately
4(6M/(27)) for the tensor product needlets and m(§M/(2m))? for the spherical
needlets (when the evaluation point is on the equator or at the poles). Here § is
the spherical needlet truncation parameter and in view of (3.37) and [8, Subsection
3.2] we may take § ~ 1.155. Hence the number of kernel evaluations reduces
dM/(27) ~ m times, where the values of m are the entries for algorithm A1l in
Table 3.

On the other hand, the number of terms in the local approximation formulas is
approximately the same for both truncated operators (for one and the same values
of € and 7), which gives similar number of multiplications and additions.

The above reasoning is confirmed by the entries in Table 4. Here we compare
the speed of the computation part of tensor product trigonometric needlet and
of spherical needlet algorithms written in MATLAB 2012b with double-precision
variables. The experiments were conducted on an Intel Core i7, 2.4 GHz PC with
16 GB of RAM. The spherical polynomial degree is N = 2160, the parameters of
the regular grid (2.6) are K = L = [(1+7/2)N|, and the number of scattered
points is 1 000 000.

Tensor product needlet algorithm Spherical needlet algorithm
\e || 107° 1077 1072 [ | 10°]107]10° [1071
1 95520 | 75735 | 63804 |50551 | 8958 | 5155 | 3535 | 2553
2 ]/ 129 820 | 101 740 | 84 767 | 65 436 || 16 592 | 11 007 | 7 565 | 5 131
3 || 140 647 | 119 847 | 98 309 | 82 795 || 19 457 | 14 621 | 10 113 | 6 108
4 || 145 117 | 126 231 | 106 838 | 90 645 || 21 454 | 16 515 | 11 573 | 7 752

TABLE 4. Computed values per second of a spherical polynomial
of degree N = 2160

The two algorithms are stable.

5.4.2. Comparison with tensor product piece-wise polynomials (Lagrange interpola-
tion). The tensor product Lagrange interpolation operator is given by (cf. (3.39))

oo
(5.13) L3, 0,0 =D Lin(0 = &) kn(N = &) F (&5 0)+i,500+1)-

i=1 k=1

with an error estimate

aN\*
If = L3, flos2) < 20Laulls(p/2]) (M> I fllcs2y, Vfe€Pn.
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The difference between tensor product Lagrange interpolation operator (5.13)
and the tensor product trigonometric needlet operator (5.8) is in the basis func-
tions £; (0 — (o)) k(A — &) and Kn (0 — 0x)Kn (A — A¢) they use. So, they
would achieve approximately the same speed for equal number of terms in (5.13)
and (5.8). But the comparisons from Subsection 3.5 show that the tensor product
Lagrange interpolation operator will need more terms than tensor product trigono-
metric needlet operator to achieve the same error for small or moderate oversam-
pling.

The tensor product piece-wise polynomial algorithm is stable (if the Lagrange
interpolation is properly realized).

5.4.3. Comparison with nonequispaced fast spherical Fourier transform. We turn
our attention to Problem 1, where the spherical polynomial is given by its coeffi-
cients.

The first step in the needlet algorithm is the evaluation of f(£) for all knots
¢ from a regular grid, say (2.6) or (2.7). This can be done within the prescribed
precision e5 with O(N? In V) operations by Tygert’s algorithm [20, 21], who asserts
[20] that the algorithm is numerically stable. Then, as second step we apply the
spherical trigonometric needlet algorithm for polynomial evaluation at scattered
points. The error in the polynomial values introduced in the first step will slightly
increase, say two times, due to the small norm of the needlet operator. Therefore,
the total error of this algorithm is bounded by ||®y s|le2 + €3, where 3 stands for
the relative error of the spherical trigonometric needlet algorithm.

The first step in the nonequispaced fast spherical Fourier transform developed by
Kunis and Potts [15, 14] computes an approximation of the polynomial coefficients
cke in (2.4) if the polynomial is given by @, and by, in (2.2). This step is called
discrete Legendre function transform and in some parts follows the (transposed
version of) Driscoll and Healy algorithm [2, 5]. The discrete Legendre function
transform, however, seems in principle unstable and various modifications were
designed in order to overcome the problem. This instability makes the application
of this approach problematic for high degree spherical polynomials. The second
step is the two-dimensional nonequispaced fast Fourier transform.

We could not find in the literature error estimates for nonequispaced fast spher-
ical Fourier transform algorithm. But, if we extrapolate the discussion on the
one-dimensional nonequispaced fast Fourier transform from Subsection 3.5 then in
the second step the nonequispaced fast spherical Fourier transform algorithm will
require approximately 2 times less basis functions evaluations and 4 times less multi-
plications and summations than the tensor product needlet algorithm (cf. Table 3).
This advantage should be reduced because the norm multiplier dez_ ~ |cke| in the
error estimate for the two-dimensional nonequispaced fast Fourier transform is re-
lated to the norm multiplier || f||¢(s2) for the tensor product trigonometric needlets
by

N
IflleEy < Y lenel < @N + D] flloe-
kf=—N
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