
JID:YACHA AID:979 /COR [m3L; v 1.134; Prn:29/05/2014; 9:59] P.1 (1-18)
Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Contents lists available at ScienceDirect

Applied and Computational Harmonic Analysis

www.elsevier.com/locate/acha

Letter to the Editor

Irregular sampling of band-limited functions on the sphere ✩

Kamen Ivanov a, Pencho Petrushev a,b,∗

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
b Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 September 2013
Received in revised form 5 May 2014
Accepted 13 May 2014
Available online xxxx
Communicated by W.R. Madych

MSC:
65T99
42C10
33C55
65D15

Keywords:
Spherical harmonics
Irregular sampling
Band-limited functions on the sphere
Needlets
Fast computation

An iterative algorithm for stable and accurate reconstruction of band-limited 
functions from irregular samples on the unit 2-d sphere is developed. Geometric 
rate of convergence in the uniform norm is achieved. It is shown that a MATLAB 
realization of this algorithms can effectively recover high degree (≥ 2000) spherical 
polynomials from their values at sufficiently dense scattered points on the sphere.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In this article we consider the problem for irregular sampling of high degree spherical polynomials (band-
limited functions) on the unit 2-d sphere S2 in R3. More explicitly, denoting by ΠN the set of all spherical 
polynomials of degree N , we focus on the following

Problem 1. Given a finite set Y of irregular sampling points on the sphere S2 and the values f(y), y ∈ Y , 
of a spherical polynomial f ∈ ΠN compute to prescribed accuracy ε the values f(z) at the points z of an 
arbitrary set Z ⊂ S

2.
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Of course, this problem has a solution only if the density of sampling points is sufficiently high. Our main 
goal is to devise a fast and stable algorithm for solving Problem 1 with prescribed accuracy measured in 
the uniform norm, in the case when N is of magnitude 1000 or higher.

Our idea is to split this problem into two:

Problem 2. Given the irregular sampling values f(y), y ∈ Y , of a spherical polynomial f ∈ ΠN compute to 
prescribed accuracy ε its values f(ξ) at regular grid points ξ ∈ X ⊂ S

2.

Problem 3. Given the values f(ξ) of a spherical polynomial f ∈ ΠN at regular grid points ξ ∈ X compute 
to prescribed accuracy ε the values f(z) at the points z of an arbitrary set Z ⊂ S

2.

The notion of a set X of regular grid points needs clarification. In the periodic case, X would be a 
set of uniformly distributed points. A set X ⊂ S

2 will be deemed regular if the values f(ξ), ξ ∈ X , of 
any polynomial f ∈ ΠN allow for fast and accurate evaluation of f(z) at the points z of an arbitrary set 
Z ⊂ S

2. Necessarily the cardinality |X | of X must be larger than (N + 1)2. We shall utilize product-type 
sets of regular grid points based on 1-d uniformly distributed points and 1-d Gaussian points in spher-
ical coordinates. The notion of a set of regular grid points on S2 will be further precised in Sections 2
and 3.

Traditionally, to reconstruct a spherical polynomial means to compute its spherical harmonic coefficients, 
see e.g. [8,10,11]. Unlike the trigonometric case, however, currently there are no satisfactory practical al-
gorithms (like FFT) for fast, stable and accurate evaluation of high degree (≥2000) spherical polynomials. 
(The problem here is with the evaluation of the associated Legendre functions.) This is our motivation for 
putting forward and utilizing the following principle:

A spherical polynomial f ∈ ΠN is better represented by its values f(ξ) at regular grid points ξ ∈ X rather 
than by its spherical harmonics coefficients.

This article is devoted to the solution of Problem 2. We develop an iterative method based on ideas from 
[2–5] employing discrete, reproducing ΠN , operators of the form

ΦNf(x) =
∑
ξ∈X

wξKN (x · ξ)f(ξ), (1.1)

which rely on highly localized kernels (spherical needlets) KN (x · ξ), and their truncated versions:

ΦN,δf(x) =
∑
ξ∈X

ρ(x, ξ)≤δ

wξKN (x · ξ)f(ξ). (1.2)

Here x · ξ stands for the inner product of x, ξ ∈ R
3 and ρ(·, ·) denotes the geodesic distance on S2. The rate 

of convergence of the algorithm is geometric, measured in the uniform norm.
A fast, stable and memory efficient solution of Problem 3 based on operators ΦN and ΦN,δ as above is 

given in [7].
In this article, we put the emphasis on the computational feasibility and practical realization of the 

algorithms. Robust MATLAB code realizing our algorithm for solving Problem 2 is developed and examples 
of effective reconstruction of high degree (≥ 2000) spherical polynomials from irregular sampling values are 
demonstrated.

The sampling algorithm from this paper can be applied to sampling of band-limited functions or polyno-
mials in various other settings, including the d-dimensional sphere, ball, and simplex with classical weights.

The idea of using spherical needlets for sampling of high degree spherical polynomials is rooted in the 
highly localized kernels, developed in [13,14], where they are used for the construction of frames on the 
sphere (termed also needlets).
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There is a considerable body of work on sampling. We find, however, suitable to only exhibit the connec-
tions between our sampling algorithm and the relevant algorithms in the literature. As already mentioned 
our reconstruction algorithm borrows from [2–5]. The main distinction between our approach to sampling 
and the one in these papers is in our usage of discrete operators as in (1.2) with highly localized kernels 
and the recovery of the functions at regular grid points.

In [8,10,11] the authors apply a least squares approach to the problem for reconstruction of spherical 
polynomials from scattered sample values. The proposed algorithm recovers the spherical harmonics co-
efficients of the polynomials. However, the algorithm relies on the basis transformation from Legendre to 
Chebyshev polynomials, which creates instability. In a follow up paper [9] this instability was investigated 
in greater detail. In addition, as it will be explained in Remark 3.4 below, to work properly the algorithm 
from [8,10,11] requires much denser sets of scattered points on S2 compared with our algorithm.

The paper is organized as follows. In Section 2 we make the needed preparations for developing our 
algorithm for reconstruction of spherical polynomials from irregular samples. This algorithm is given in 
Section 3. A detailed description of the software realization of our sampling algorithm on the sphere along 
with examples is given in Section 4 and Section 5.

We will denote by c positive constants which may vary at every appearance and by c1, c2, c3 and the alike 
positive constants which preserve their values throughout the paper. For a finite set E we denote by |E| the 
number of its elements.

2. Discrete operators reproducing spherical polynomials

The present section lays down some of the ground work that will be needed for developing our sampling 
algorithm on the sphere. Our goal here is to construct linear operators with highly localized kernels that 
reproduce spherical polynomials.

2.1. Regular point sets on the sphere

Given M ∈ N we say that X is a set of M -regular points on the sphere if the following two conditions 
are verified:

(1) There exist non-negative weights wξ, ξ ∈ X , of a cubature formula with X as a nodal set which is exact 
for the polynomials from ΠM−1, i.e.

1
4π

∫
S2

f(y) dσ(y) =
∑
ξ∈X

wξf(ξ) ∀f ∈ ΠM−1, (2.1)

and there exists a companion to X disjoint partition {Dξ}ξ∈X of S2 (S2 = ∪ξ∈XDξ) consisting of 
measurable sets such that

Dξ ⊂ B
(
ξ, c1M

−1) and wξ ≤ c2μ(Dξ), ξ ∈ X , (2.2)

where c1, c2 > 0 are constants.
(2) The set X is structured in the sense that for every x ∈ S

2 and δ ∈ (0, π] one can determine effectively 
all points in B̄X (x, δ) = {ξ ∈ X : ρ(x, ξ) ≤ δ} using c3|B̄X (x, δ)| operations, where the constant c3 is 
independent of x, δ, M and |X |.

Observe that conditions (2.2) are not quite restrictive and allow us the freedom to choose convenient 
cubature formulae. The existence of cubature formulae in our setting follows from the general results in 
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[12,13]. The overriding requirement for computational efficiency (speed and minimum memory use), however, 
forces us to utilize product-type grid points whose spherical coordinates are equally distributed or Gaussian.

Examples of regular point sets on the sphere are X (i) = {ξ(i)
k,� = (θ(i)

k , λ(i)
� )}, i = 1, 2, that for given K, 

L ≥ 1 are defined by

θ
(1)
k = π

K
k, k = 0, 1, . . . ,K; λ

(1)
� = 2π

L
�, � = 0, 1, . . . , L− 1;

and

θ
(2)
k = π

K
k − π

2K , k = 1, 2, . . . ,K; λ
(2)
� = 2π

L
�, � = 0, 1, . . . , L− 1.

Here in X (1) we have L coinciding nodes for k = 0 (the North Pole) and L such nodes for k = K (the South 
Pole).

Another example of a regular point set is the set X (3) generated by the zeros uk of the K-th degree 
Legendre polynomial PK . In this case we define

θ
(3)
k = arccosuk, k = 1, 2, . . . ,K; λ

(3)
� = 2π

L
�, � = 0, 1, . . . , L− 1.

As is well-known each of the cubatures associated with X (1), X (2), X (3) can be represented as a tensor 
product of a one-dimensional algebraic quadrature in the co-latitude direction θ and a rectangular trigono-
metric quadrature in the latitude direction (see e.g. [7, Subsection 3.4]). Namely, the weights corresponding 
to the nodes ξ(i)

k,� are given by w(i)
k,� = v

(i)
k L−1, i = 1, 2, 3; � = 0, 1, . . . , L − 1, where

v
(1)
0 = v

(1)
K := 1

2K(2R + 1) ,

v
(1)
k := 1

K

(
1

2R + 1 + 4
R∑

r=1

sin2 rθ
(1)
k

4r2 − 1

)
, k = 1, . . . ,K − 1, R =

⌊
(K − 1)/2

⌋
;

v
(2)
k := 1

K

(
1

2R + 1 + 4
R∑

r=1

sin2 rθ
(2)
k

4r2 − 1

)
, k = 1, . . . ,K, R =

⌊
(K − 1)/2

⌋
;

v
(3)
k :=

(
P ′
K

(
cos θ(3)

k

)
sin θ

(3)
k

)−2
, k = 1, . . . ,K.

To compute the knots uk = cos θ(3)
k and weights v(3)

k of the Gaussian quadrature we use the MATLAB 
function legpts from Chebfun software system by Trefethen et al. [15]. It utilizes a fast and accurate 
algorithm from Glaser, Liu and Rokhlin [6], which shows very good results for quadratures with up to a 
million knots.

The relations between K, L and M are given by (see [7, Theorem 3.11])

M ≤ L, M ≤
{

2�(K + 1)/2	, i = 1, 2;
2K, i = 3.

Under the above restrictions the sets X (1), X (2), X (3) are M -regular [7, Theorems 3.11 and 3.12].
Other regular point sets can be obtained from X (1), X (2), or X (3) by applying rotations or reflections on 

the sphere. For example, consider the map T : R3 → R
3 given by

T (x1, x2, x3) = (x1, x3,−x2).
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This is π/2 rotation about the x1-axis. The restriction of T on the sphere T |S2 : S2 → S
2 relates the spherical 

coordinates (θ, λ) and (θ̃, ̃λ) of a point x and its image x̃ = T (x) by

(sin θ̃ cos λ̃, sin θ̃ sin λ̃, cos θ̃) = (sin θ cosλ, cos θ,− sin θ sinλ).

From the rotation invariance of ΠN it follows that the sets T (X (i)) and T−1(X(i)), i = 1, 2, 3, are also 
regular and induce similar cubatures as X (i).

All of the above regular point sets have a drawback – their points congregate near the poles (or the 
respective images of the poles). This will force us later on (see Section 3.2) to treat the points near the poles 
differently compared to the ones away from the poles.

2.2. Spherical needlets

Very well localized reproducing kernels (father needlets) for high degree spherical polynomials will be 
the main vehicle in designing our sampling algorithm. The father needlets will be defined via kernels of the 
form

KN (u) =
∞∑
ν=0

ϕ

(
ν

N

)
(2ν + 1)Pν(u), u ∈ [−1, 1], (2.3)

where Pν is the Legendre polynomial of degree ν normalized by Pν(1) = 1 and ϕ is a continuous cutoff 
function satisfying

ϕ(t) = 1, t ∈ [0, 1]; 0 ≤ ϕ(t) ≤ 1, t ∈ [1, 1 + τ ]; ϕ(t) = 0, t ≥ 1 + τ (2.4)

for some fixed τ > 0.
Clearly, the integral operator

Φ̆Nf(x) := 1
4π

∫
S2

KN (x · y)f(y) dσ(y) (2.5)

reproduces spherical polynomials of degree N , i.e. Φ̆Nf = f for f ∈ ΠN .
Note that kernels as KN (x · y) above have been widely used in Approximation theory and Numerical 

analysis. For example, see [1] and the references therein.
We next discretize Φ̆N . For a set of M -regular points X ⊂ S

2, M ≥ �(2 + τ)N�, using the weights wξ

from (2.1) we define the linear operator ΦN by

ΦNf(x) =
∑
ξ∈X

wξKN (x · ξ)f(ξ). (2.6)

Clearly, ΦNf = f for f ∈ ΠN and ΦN : �∞(X ) → ΠNτ
with

Nτ =
⌈
(1 + τ)N

⌉
− 1. (2.7)

The superb localization of the kernel KN implies that most of the terms in (2.6) are very small and this 
leads us to the idea of introducing the truncated operator

ΦN,δf(x) =
∑
ξ∈X

wξKN (x · ξ)f(ξ), (2.8)
ρ(x, ξ)≤δ



JID:YACHA AID:979 /COR [m3L; v 1.134; Prn:29/05/2014; 9:59] P.6 (1-18)
6 K. Ivanov, P. Petrushev / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
where δ > 0 is a small parameter. Observe that the above sum includes only summands corresponding to 
nodes ξ ∈ X , which are in the δ-neighborhood of the point x.

We shall also need the rotated by T versions Φ̃N , Φ̃N,δ of the operators ΦN , ΦN,δ defined in (2.6) and (2.8)
with X replaced by T (X ), i.e.

Φ̃Nf(x) =
∑

ξ∈T (X )

w̃ξKN (x · ξ)f(ξ), Φ̃N,δf(x) =
∑

ξ∈T (X )
ρ(x,ξ)≤δ

w̃ξKN (x · ξ)f(ξ),

where w̃ξ = wT−1(ξ) for ξ ∈ T (X ).

2.3. Localization of spherical needlets

In this subsection we discuss the question of how small δ in (2.8) can be in order that ΦN,δf be a good 
approximation to f ∈ ΠN . The following simple claim gives the first answer (see [7, Theorem 2.4]):

Proposition 2.1. If ∣∣KN (cos θ)
∣∣ ≤ ε for δ ≤ θ ≤ π, (2.9)

then for any function f : X → R we have

‖ΦNf − ΦN,δf‖L∞(S2) ≤ ε‖f‖�∞(X ). (2.10)

According to [7, Theorem 3.2] for any ε > 0 there exists a cutoff function ϕ satisfying (2.4) such that (2.9)
holds with

δ ≤ c
ln(N2) + ln(1/ε) + ln(1 + τ)

τN
. (2.11)

In Proposition 2.1 condition (2.9) can be replaced by

1
2

cos δ∫
−1

∣∣KN (u)
∣∣ du = ε

(
= ε

2

1∫
−1

KN (u) du
)

(2.12)

and still have (2.10) as an approximate inequality (see [7, (3.11)]). On account of [7, Theorem 3.6] for any 
ε > 0 there exists a cutoff function ϕ obeying (2.4) such that (2.12) holds with

δ ≤ c
ln(1/ε)
τN

. (2.13)

Estimate (2.13) is an improvement of (2.11) mainly due to the missing lnN term in the numerator. One 
can have c = 2.5 in (2.13) when working with cutoff functions ϕ (satisfying (2.4)) given by

ϕ(t) = κ−1
1∫

(t−1)/τ

eb
√

v(1−v) dv, κ =
1∫

0

eb
√

v(1−v) dv, b > 0, (2.14)

for t in [1, 1 + τ ]. In (2.14) b is a parameter, which for 4 < log10(1/ε) < 11 and τ ≥ 1 is given by

b = 4.8 log10(1/ε) + 3.4 − 0.2 min{τ, 3}. (2.15)

For more details, see [7].
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3. Sampling of band-limited functions on the sphere: algorithm

We begin by formulating somewhat more precisely the problem we want to solve.

Problem 2. Given a set of sampling points Y ⊂ S
2 and the values f(y) of a polynomial f ∈ ΠN at the points 

y ∈ Y compute to prescribed accuracy ε measured in the uniform norm the values f(ξ) of the polynomial f
at the �(2 + τ)N�-regular points ξ ∈ X ⊂ S

2. Here τ > 0 is the needlet parameter from (2.4).

The main input in Problem 2 are the set Y and the degree N . We are free to choose the regular set X
because the solution of Problem 2 for a particular regular set X combined with the solution of Problem 3
would imply a solution of Problem 1 and hence of Problem 2 for an arbitrary regular set X . Thus, the 
regular sets X = X (i), i = 1, 2, 3, from Section 2.1 can be utilized in solving Problem 2 as the respective 
cubature weights are known in advance.

A needlet based fast and stable algorithm for solving Problem 3 is developed in [7]. An exact solution of 
Problem 3 is given by f(z) = ΦNf(z) and an approximate solution by f(z) ≈ ΦN,δf(z), where ΦN and ΦN,δ

are defined in (2.6) and (2.8).

3.1. Exact solution of Problem 2

Given a finite set of sampling points Y ⊂ S
2 let A = {Ay}y∈Y be a disjoint partition of S2 consisting of 

measurable sets Ay, such that y ∈ Ay.
In particular, {Ay} can be the Voronoi tessellation of S2 induced by Y , where the common points from 

the boundaries of several cells are attached to exactly one of the cells. Another meaningful example are the 
HEALPix centers Y with the pixels collected in {Ay}.

The following notation will be useful: For any x ∈ S
2 we denote by yx the point in Y such that x ∈ Ayx

. 
Consider the extension operator

EAg(x) :=
∑
y∈Y

g(y)1Ay
(x) = g(yx) (3.1)

defined for any function g : Y → R, where 1Ay
is the characteristic function of Ay. Obviously ‖EA‖ = 1 (all 

operator norms are ∞ → ∞ norms). Denote

d(A) := max
y∈Y

sup
x∈Ay

ρ(x, y). (3.2)

Theorem 3.1. Assume that the bounded linear operator Φ : �∞(X ) → ΠNτ
preserves the polynomials 

from ΠN . Let

q := d(A)Nτ‖Φ‖ < 1. (3.3)

Set R = (I − EA)Φ, where I denotes the identity. Then for any f ∈ ΠN

f =
∞∑
k=0

Rk(EAf) (3.4)

with the series converging uniformly and∥∥∥∥∥f −
n−1∑
k=0

Rk(EAf)

∥∥∥∥∥
∞

≤ qn‖f‖∞, n ≥ 1. (3.5)
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Proof. For f ∈ ΠN and k ≥ 0 we use that Φf = f to write

Rkf −Rk+1f = Rk
(
f − (I − EA)Φf

)
= Rk(f − f + EAf) = Rk(EAf). (3.6)

Hence

f −
n−1∑
k=0

Rk(EAf) = Rnf, ∀f ∈ ΠN . (3.7)

We now estimate ‖R‖. Clearly

Rg(x) = Φg(x) − EAΦg(x) = Φg(x) − Φg(yx) for g ∈ L∞(
S

2), x ∈ S
2.

The restriction of Φg to the big circle connecting x and yx is a trigonometric polynomial of degree Nτ and, 
therefore, the mean-value theorem and the Bernstein inequality yield

∣∣Rg(x)
∣∣ ≤ ρ(x, yx)Nτ‖Φg‖∞ ≤ d(A)Nτ‖Φ‖‖g‖∞.

Hence

‖R‖ ≤ d(A)Nτ‖Φ‖. (3.8)

Now (3.8) and (3.3) give ‖R‖ ≤ q, which implies the uniform convergence of the series in (3.4). The last 
inequality coupled with (3.7) implies (3.5), yielding (3.4). �

Theorem 3.1 provides an exact reconstruction algorithm for f ∈ ΠN . Indeed, pick a (2 + τ)N−regular
point set X ⊂ S

2 and set Φ := ΦN with ΦN being the operator from (2.6). Denote briefly gk = Rk(EAf). 
Then Theorem 3.1 implies

f(ξ) =
∞∑
k=0

gk(ξ), ξ ∈ X , (3.9)

which solves Problem 2, and the solution f(z) = ΦNf(z) of Problem 3 gives exact reconstruction of f at 
every z ∈ Z ⊂ S

2. Observe that the values gk(ξ), ξ ∈ X , can be recursively computed by g0(ξ) = f(yξ) and

gk+1(ξ) = Rgk(ξ) = ΦNgk(ξ) − ΦNgk(yξ). (3.10)

Note that the evaluation of ΦNg(x) by (2.6) uses only the values g(ξ) for ξ ∈ X .
Of course, for practical purposes we truncate the series in (3.9) to obtain the approximation

f(ξ) ≈
n−1∑
k=0

gk(ξ),

where n is determined by the target accuracy via (3.5).
The complexity of this algorithm is as follows. To determine the yξ’s one needs O(|X | + |Y |) operations 

using that X is structured. Every step in (3.10) requires O(|X |2) operations if KN (u) can be evaluated with 
O(1) operations within the machine precision. Thus, the algorithm evaluates f(ξ), ξ ∈ X , with accuracy ε
using O(|X |2 ln(1/ε)/ ln(1/q) + |Y |) operations.
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3.2. Approximate solution of Problem 2

As already mentioned the regular point sets from Section 2.1 have the deficiency that the points in each 
of them concentrate around the poles or the images of the poles via some rotation. This drawback along 
with the fact that the value of ΦNf(x) is obtained by O(|X |) operations makes the sampling algorithm 
from Section 3.1 impractical. To overcome the second deficiency we shall use the truncated version ΦN,δ

of the operator ΦN defined in (2.8), and to remedy the first deficiency we shall utilize the rotated ver-
sion Φ̃N,δ of ΦN,δ for the regions around the poles. In this way we will decrease substantially the algorithm’s 
computational cost outlined at the end of Subsection 3.1.

To realize these ideas we first introduce some notation. Given N ∈ N and ε > 0 (to be determined) 
we assume that X ⊂ S

2 is one of the M -regular set points X (1), X (2), or X (3) from Section 2.1 with 
M := �(2 + τ)N�. In fact, to us the best choice is X := X (3).

Let δ > 0 be a constant such that (2.9) holds and let ΦN,δ be the operator defined in (2.8). We subdivide S2

into two: The equatorial area (belt) U1 and its compliment (the polar regions) U2, defined in spherical 
coordinates by

U1 :=
{
x ∈ S

2 : π/4 ≤ θ ≤ 3π/4
}
, U2 := S

2 \ U1. (3.11)

We also introduce the following sets of nodes on S2:

X1 := X ∩ {π/4 − δ0 ≤ θ ≤ 3π/4 + δ0},

X2 := T (X ) ∩
(
{0 ≤ θ ≤ π/4 + δ0} ∪ {3π/4 − δ0 ≤ θ ≤ π}

)
,

X0 := X1 ∪ X2, (3.12)

where δ0 := δ + d(A). We assume δ0 < π/4.
We now introduce the linear operator

Rg(x) := (I − EA)ΦN,δg(x) · 1U1(x) + (I − EA)Φ̃N,δg(x) · 1U2(x). (3.13)

The above operator only uses the values of g at the points of X0. Indeed, if x ∈ U1 then EAΦN,δg(x) =
ΦN,δg(yx) uses the values g(ξ) for ξ ∈ X and ρ(yx, ξ) ≤ δ, hence ρ(x, ξ) ≤ δ + d(A), i.e. ξ ∈ X1. Let us 
point out that for these x the value of ΦN,δg at yx is determined by the values of g at X1 even in the case 
when yx itself belongs to U2. Similar considerations holds for x ∈ U2.

Our algorithm for approximate solution of Problem 2 is contained in the following

Theorem 3.2. Assume that (2.9) or (2.12) holds for some ε > 0 and 0 < δ < π. Using the notation from 
above assume also that

q := d(A)Nτ‖ΦN‖ + 2ε < 1. (3.14)

Then for any f : Y → R the series 
∑∞

k=0 Rk(EAf) converges uniformly and for any f ∈ ΠN∥∥∥∥∥f −
n−1∑
k=0

Rk(EAf)

∥∥∥∥∥
∞

≤
(
qn + 2ε

1 − q

)
‖f‖∞. (3.15)

Proof. We first estimate the norm of the operator R. By (3.13) we have for any function g : Y → R and 
x ∈ U1



JID:YACHA AID:979 /COR [m3L; v 1.134; Prn:29/05/2014; 9:59] P.10 (1-18)
10 K. Ivanov, P. Petrushev / Appl. Comput. Harmon. Anal. ••• (••••) •••–•••
Rg(x) = ΦN,δg(x) − ΦN,δg(yx)

= ΦNg(x) − ΦNg(yx) + (ΦN,δ − ΦN )g(x) − (ΦN,δ − ΦN )g(yx).

Now just as in the proof of Theorem 3.1 we get∣∣ΦNg(x) − ΦNg(yx)
∣∣ ≤ ρ(x, yx)Nτ‖ΦN‖‖g‖∞ ≤ d(A)Nτ‖ΦN‖‖g‖∞

and by Proposition 2.1∣∣(ΦN,δ − ΦN )g(x)
∣∣ ≤ ε‖g‖∞,

∣∣(ΦN,δ − ΦN )g(yx)
∣∣ ≤ ε‖g‖∞.

Putting the above together we arrive at∣∣Rg(x)
∣∣ ≤ (

d(A)Nτ‖ΦN‖ + 2ε
)
‖g‖∞.

Exactly in the same way, using Φ̃N,δ, Φ̃N instead of ΦN,δ, ΦN we obtain the same estimate for x ∈ U2. 
Therefore,

‖R‖ ≤ d(A)Nτ‖ΦN‖ + 2ε = q. (3.16)

The uniform convergence of 
∑∞

k=0 Rk(EAf) follows from (3.16) and (3.14).
Let f ∈ ΠN . Clearly,

Rkf −Rk+1f = Rk(f −Rf) = Rk(EAf) + Rk(f − EAf −Rf), k ≥ 0,

and iterating this identity we obtain

f −
n−1∑
k=0

Rk(EAf) = Rnf +
n−1∑
k=0

Rk(f − EAf −Rf). (3.17)

By the definition of R in (3.13) we have for x ∈ S
2

f(x) − EAf(x) −Rf(x) = f(x) − f(yx) −
(
ΦN,δf(x) − ΦN,δf(yx)

)
· 1U1(x)

−
(
Φ̃N,δf(x) − Φ̃N,δf(yx)

)
· 1U2(x)

and using the fact that ΦNf = f and Φ̃Nf = f we infer

f(x) − EAf(x) −Rf(x) =
[
(ΦN − ΦN,δ)f(x) − (ΦN − ΦN,δ)f(yx)

]
· 1U1(x)

+
[
(Φ̃N − Φ̃N,δ)f(x) − (Φ̃N − Φ̃N,δ)f(yx)

]
· 1U1(x),

which can be written in the form

f − EAf −Rf = (I − EA)(ΦN − ΦN,δ)f · 1U1 + (I − EA)(Φ̃N − Φ̃N,δ)f · 1U2 .

We now use (2.9)–(2.10) to obtain

‖f − EAf −Rf‖∞ ≤ 2ε‖f‖∞. (3.18)

Combining this with (3.17) and (3.16) yields (3.15). �
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We next explain how the sampling (reconstruction) algorithm based on Theorem 3.2 works. We are given 
the values f(y), y ∈ Y , of a band-limited function f ∈ ΠN . We only need to compute the values f(ξ) at the 
points ξ ∈ X0 = X1 ∪ X2. Then the algorithm for solving Problem 3 enables us to compute the values f(z)
at the points z ∈ Z for an arbitrary set Z ⊂ S

2.
Denote briefly gk := Rk(EAf) with R defined in (3.13) and EA from (3.1). The values f(ξ) are approxi-

mated by

f(ξ) ≈
n−1∑
k=0

gk(ξ), ξ ∈ X0. (3.19)

The gist of our method is that the values gk(ξ), ξ ∈ X0, can be computed recursively. More explicitly, we 
start from g0(ξ) = EAf(ξ) = f(yξ), ξ ∈ X0, and for k = 0, 1, . . . , n − 2,

gk+1(ξ) = Rgk(ξ) = ΦN,δgk(ξ) − ΦN,δgk(yξ) if ξ ∈ X0 ∩ U1 (3.20)

and

gk+1(ξ) = Rgk(ξ) = Φ̃N,δgk(ξ) − Φ̃N,δgk(yξ) if ξ ∈ X0 ∩ U2. (3.21)

Observe that identities (3.20)–(3.21) are in fact local – the evaluation of gk+1(ξ) involves only the val-
ues gk(η) for η satisfying ρ(η, ξ) ≤ δ + d(A). Therefore, the evaluation of gk+1(ξ) for ξ ∈ X0 ∩ U1 involves 
only points η ∈ X1 and the evaluation of gk+1(ξ) for ξ ∈ X0 ∩ U2 involves only points η ∈ X2.

Remark 3.1. The series in Theorem 3.2 converges to a function g ∈ L∞ which is in general different from 
the polynomial f but satisfies ‖f − g‖∞ ≤ 2ε

1−q‖f‖∞.

Remark 3.2. The “remainder” operators R in Theorem 3.1 can be replaced by R	 = Φ(I − EA). Then 
Theorem 3.1 remain valid with (3.5) replaced by

∥∥∥∥∥f −
n−1∑
k=0

Rk
	(ΦEAf)

∥∥∥∥∥
∞

≤ qn‖Φ‖‖f‖∞.

The proof is carried out along the lines of the proof of Theorem 3.1 using the identity Rk
	Φ = ΦRk. The 

advantage of this representation is that we approximate f by polynomials (because the partial sums of the 
series belong to ΠNτ

) and the price we pay is that the error estimate is worsen by the factor ‖Φ‖ > 1.
A similar observation applies to Theorem 3.2, where we can replace R by R	 defined by

R	g(x) := ΦN,δ(I − EA)g(x) · 1U1(x) + Φ̃N,δ(I − EA)g(x) · 1U2(x)

and (3.15) by

∥∥∥∥∥f −
n−1∑
k=0

Rk
	(ΦN,δEAf)

∥∥∥∥∥
∞

≤
(
qn + 2ε

1 − q

)
‖ΦN,δ‖‖f‖∞.

Remark 3.3. Note that the smaller q the faster the convergence in (3.4) or in (3.15). Turning our attention 
to (3.3) or (3.14) we observe that the smallest d(A) is realized whenever A is the Voronoi tessellation of S2

induced by Y . Instead of (3.1) one can use other extension operators, e.g. local interpolation.
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Remark 3.4. The norm ‖ΦN‖ plays an essential role in conditions (3.3) and (3.14). This norm has been 
computed numerically for various values of τ and ε and the results are displayed in Table 6 in Subsection 5.2. 
For example, if τ = 1 and ε = 10−5, then ‖ΦN‖ ≈ 4.2324, which implies that the condition d(A)N < 1/9
is sufficient for successful reconstruction of spherical polynomials of degree N with relative error ε = 10−5

(or smaller error if δ is increased). For comparison, the similar sufficient condition in [8, Theorem 1] in our 
notations reads d(A)N < 1/308. Therefore, our condition on the sampling set Y is a lot more relaxed than 
the condition given in [8].

4. Approximate reconstruction algorithm

Assume in Problem 2 we would like to find the approximate values F (ξ) to the unknown values f(ξ), 
ξ ∈ X0, with absolute error ε0, i.e. |F (ξ) − f(ξ)| ≤ ε0. We determine the relative error ε1 = ε0/‖f‖�∞(Y )
and split it into two parts ε1 = ε2 + 2ε/(1 − q), where ε2 will be the iteration accuracy and ε – the needlet 
accuracy.

Here we describe our algorithm for approximate reconstruction. If we consider Problem 2 as a step in the 
solution of Problem 1, then we are free to chose the regular set X0 from (3.12) in Subsection 3.2. This case 
is described below. In the case of fixed X0 in Problem 2 step (1) from the Pre-computation part has to be 
moved to the Input part.

Input:

(1) Values f(y), y ∈ Y , at an irregular sampling set Y .
(2) Degree N of f , the cutoff parameter τ , the target relative accuracy ε1, the iteration accuracy ε2 and 

the needlet accuracy ε.

Pre-computation:

(1) Compute the number of knots K, L so that the cubature be exact for polynomials of degree M − 1
with M = �(2 + τ)N�.

(2) Compute the knots and weights of the one-dimensional quadratures.
(3) Compute the nodes of a regular set X = X (3) (see Subsection 2.1).
(4) Compute the weights wξ of the cubature (2.1) as tensor product of the one-dimensional quadratures 

weights.
(5) For every ξ ∈ X ∪ T (X ) find the closest point yξ in Y .
(6) Compute δ for the given N, ε, τ and a cutoff function ϕ from (2.14)–(2.15).
(7) Compute the values ϕ(k/N) for the given N, ε, τ and ϕ from (2.14)–(2.15).
(8) Compute KN (cos t∗r), r = −s, −s + 1, . . . , R + s with downward Clenshaw recurrence (see [7, Subsec-

tion 3.3]).
(9) Compute d = maxξ∈X ρ(ξ · yξ) and form the sets Xi, i = 0, 1, 2, with parameter δ0 = δ+d (see (3.12)).

(10) Compute the matrices:
V (1) = {v(1)

ξ,η : ξ ∈ X1 ∩ U1, η ∈ X}, V (2) = {v(2)
ξ,η : ξ ∈ X2 ∩ U2, η ∈ T (X )},

V (3) = {v(3)
ξ,η : ξ ∈ X1 ∩ U2, η ∈ T (X )}, V (4) = {v(4)

ξ,η : ξ ∈ X2 ∩ U1, η ∈ X}, defined by

v
(j)
ξ,η = wη

(
K̃N (ξ · η) − K̃N (yξ · η)

)
, j = 1, 4,

v
(j)
ξ,η = w̃η

(
K̃N (ξ · η) − K̃N (yξ · η)

)
, j = 2, 3, (4.1)

where K̃N (t) = KN (t) for t ≥ cos δ and K̃N (t) = 0 for t < cos δ.
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Iterations:

(1) Initial values: g0(ξ) = f(yξ), F (ξ) = g0(ξ), ξ ∈ X0.
(2) Iteration steps: For k = 0, 1, . . . do

(a)

gk+1(ξ) =
∑
η∈X1

v
(1)
ξ,ηgk(η), ξ ∈ X1 ∩ U1; (4.2)

(b)

gk+1(ξ) =
∑
η∈X2

v
(2)
ξ,ηgk(η), ξ ∈ X2 ∩ U2; (4.3)

(c)

gk+1(ξ) =
∑
η∈X2

v
(3)
ξ,ηgk(η), ξ ∈ X1 ∩ U2; (4.4)

(d)

gk+1(ξ) =
∑
η∈X1

v
(4)
ξ,ηgk(η), ξ ∈ X2 ∩ U1; (4.5)

(e) F (ξ) = F (ξ) + gk+1(ξ), ξ ∈ X0;
(3) Stopping criterion: ‖gk+1‖ ≤ ε2‖g0‖.

Output: The approximate values F (ξ) of f(ξ) at all points ξ ∈ X0.

The only condition which has to be met for the work of the algorithm is (3.14). Under this condition the 
algorithm has geometric convergence and we have

Proposition 4.1. Under the assumption of Theorem 3.2 the relative error of the algorithm output is given by

‖F − f‖�∞(X0)

‖f‖�∞(Y )
< ε2 + 2ε

1 − q
= ε1, (4.6)

max
{
‖ΦN,δF − f‖�∞(Y ∩U1), ‖Φ̃N,δF − f‖�∞(Y ∩U2)

}
< ε1‖ΦN,δ‖‖f‖�∞(Y ). (4.7)

Proof. Inequality (4.6) follows from (3.17), (3.16), (3.18) and the Stopping criterion of the Iterations part. 
Inequality (4.7) follows by the same argument if we use the operator R	 from Remark 4.2 instead of R. �

Inequality (4.6) shows that the prescribed accuracy is achieved by the algorithm, while (4.7) give us a 
tool to verify whether the computed values F (ξ), ξ ∈ X0, reconstruct the spherical polynomial f , known by 
its values at the scattered points y ∈ Y .

Complexity of the algorithm. We determine the complexity for the best choice of K and L in step (1), which 
means K = O(N), L = O(N). Steps (1), (2), (3), (4), (6), (7), and (8) are analyzed in [7, Subsection 3.7]. In 
view of the structure condition for regular points in Subsection 2.1 step (5) requires O(N2 + |Y |) operations. 
The complexity of step (9) is O(N2).

Step (10) is the most demanding one on both memory and number of operations (i.e. speed) in the 
whole algorithm. The “matrices of influence” V (j), j = 1, 2, 3, 4, express the relative distances between the 
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elements of the two sets X0 and Y . Their size is huge: V (1) and V (2) have O(N4) elements and V (3) and 
V (4) have O(N4δ0) elements. If one wants to work with the whole “matrices of influence” then polynomial 
degrees exceeding 200 will be practically prohibitive. For comparison, for degree 1000 we work with a regular 
set X0 with close to 6 000 000 points and the nodal sets X = X (3) and T (X ) have 8 000 000 points each. This 
makes a total of 4.8 × 1013 elements in the “matrices of influence” and only the storage of such amount of 
data on a “hard disk” as 8 bytes numbers will require 350 TB of memory!

Using the superb localization of the father needlet kernel KN(x · ξ) we make the “matrices of influence” 
sparse by setting K̃N (t) = 0 for t < cos δ in (4.1). Thus, the total number of non-zero elements in these 
matrices is O(N2n̄) = O(N4δ2) = O(N2 ln2(1/ε)), where n̄ is the average number per point ξ of non-zero 
elements in (4.1). Several values of n̄ are given in Table 1 below. For τ = 2 they range from 267 for ε = 10−5

to 1150 for ε = 10−11. Other important parameters of the problem as memory requirements and time of 
execution are also given in Subsection 5.1. In sum, step (10) requires O(N2 ln2(1/ε)) operations but the O
constant is quite large.

Every step in the Iterations part performs a matrix-times-vector multiplication, where every non-zero 
element of the “matrices of influence” is used once. This means O(N2 ln2(1/ε)) operations. The number of 
iterations is ln(1/ε2)/ ln(1/q). Hence the choice ε2 = ε1/3 and ε = (1 − q)ε1/3 will give O(N2 ln3(1/ε1)) for 
the complexity of the algorithm.

Memory requirements. For N = 1000 and ε = 10−7 the values of the elements of the sparse “matrices 
of influence” will occupy some 21 GB memory (see Table 1). With additional 12 GB for the indexes of the 
non-zero elements we arrive at 33 GB of memory for storage of these matrices. This fact made us decide to 
save the “matrices of influence” in pieces on the hard disk. Then the operations in (4.2)–(4.5) are executed 
by reading one piece at a time from HD, performing the multiplication and clearing the matrix piece from 
the memory before reading a new piece. In this way the execution time for 20 iterations is comparable to 
the time necessary to compute matrix element values in (4.1) and to save them on HD (see Table 2 below).

Each of the other input, work, and output variables as F , old and new g (i.e. gk and gk+1), spherical 
coordinates of the irregular sample points and the polynomial values requires O(N2) memory. In view of 
the small number of such variables this is easily manageable for N in the range of several thousand.

Optimal choice of needlet parameter τ . For M = �(2 + τ)N�, K = �M/2�, L = M we have:

• The number of nodes in X0 is proportional to M2.
• The average number of nodes from X0 in a δ neighborhood is proportional to δ2M2.

Hence, both the size of the “matrices of influence” and the number of operation in (4.2)–(4.5) for a single 
iteration step are proportional to δ2M4. Using (2.13) we get δ2M4 = O((2 + τ)4τ−2N2) and the minimal 
value of the last expression is attained for τ = 2. Therefore, the best choice of the needlet parameter τ
relative to memory usage as well as speed is τ = 2.

5. Numerical examples

5.1. Reconstruction

We have implemented our reconstruction algorithm in a MATLAB R2012b code and have extensively 
tested it on a 2.4 GHz PC, CPU Intel Core i7 with 16 GB of RAM. The code does not relay on variable 
precision arithmetic.

For irregular points we have taken the HEALPix pixel centers and their rotations on the sphere.
The optimal speed and memory requirements were achieved for τ = 2 according to the theory. Hence, 

we report in this subsection results only for this value of the cutoff parameter. In the latitude direction the 
quadrature is Gaussian.
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Table 1
Size of the “influence matrices”: number of points in X0 and average number of non-zero elements.

N ε

10−5 10−7 10−9 10−11

250 384 728× 270 396 300× 494 408 016× 786 419 836× 1150
500 1 470 932× 268 1 493 560× 488 1 516 332× 773 1 539 128× 1127

1000 5 749 660× 267 5 794 400× 485 5 839 244× 767 5 884 128× 1117

Table 2
Execution times (in minutes) of the reconstruction algorithm.

Degree N

250 500 1000 2000
Pre-computation part 6.2 23.0 92.7 363.5
Iterations part (20 iterations) 6.2 24.2 96.1 384.4
Total 12.4 47.2 188.8 747.9

The dimensions of the “influence martices”, i.e. the number of points in X0 and the average number of 
non-zero elements in (4.1), are displayed in Table 1 for K = 2N , L = 4N and ϕ from (2.14)–(2.15).

For different irregular sampling sets Y the average number of non-zero elements may slightly vary. The 
number of points in X0 grows slowly when ε decreases due to the log ε enlargement of the adjacent sets 
X1 ∩ U2 and X2 ∩ U1.

The polynomial values were provided by several low and high degree polynomials. Among them were the 
polynomials GN and G̃N given by

GN (θ, λ) :=
N∑

m=1
m−1/3qm,NPm,N (cos θ) sin(mλ) +

N−3∑
m=1

m−1/3qm,N−3Pm,N−3(cos θ) sin(mλ),

G̃N (θ, λ) := q0,NP0,N (cos θ) + 2
N∑

m=1
qm,NPm,N (cos θ) cos(mλ),

where Pm,n are the associated Legendre functions and the coefficients qm,n are selected so that they normalize 
to 1 in L2(S2, 1

4πdσ) each spherical harmonic term.
The uniform norms of GN and G̃N for selected values of N are given in Tables 3 and 4, respectively. 

The global extrema of GN and G̃N are localized around the points (π2 , 
π
2 ) and (π2 , 

3π
2 ). We believe that the 

polynomials GN and G̃N are good for testing of our reconstruction algorithm since they have relatively 
large spherical harmonic coefficients and highly oscillatory behavior.

Table 2 contains the execution times of the Pre-computation and Iterations parts of the reconstruction 
algorithm. The Pre-computation time is the total of the times for execution of all steps of Pre-computation
from Section 4 plus the saving time on HD. The Iterations time includes the execution times for all steps of 
Iterations plus the “matrices of influence” loading time from HD. The number of irregular sampling points 
is about 8 times larger than the number of regular points in X0, but their influence on the times reported 
below is minimal (apart from the number of iterations for achieving the target accuracy). The values of the 
other parameters are ε = 10−7, K = 2N , L = 4N , and the number of iterations is 20.

We see that the execution times are proportional to N2 according to the theory given in Section 4. The 
saving time is approximately 27% of the Pre-computation time, while the loading time is approximately 
63% of the Iterations time.

The relative errors defined in (4.6) for f = GN and f = G̃N at the regular points X0 are given in Tables 3
and 4, respectively. These errors are obtained from the algorithm from Section 4 and its modification 
described in Remark 3.2 with accuracy parameters ε = 10−7 and ε2 = 10−8.
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Table 3
Uniform norms and relative errors from (4.6) for GN .

Degree N

250 500 1000 2000
Uniform norm ‖GN‖∞ 76.45 121.35 192.65 305.86
Algorithm from Section 4 8.4667e−09 7.8133e−09 5.7893e−09 5.8170e−09
Algorithm from Remark 3.2 9.6770e−09 1.1789e−08 9.2821e−09 9.5697e−09

Table 4
Uniform norms and relative errors from (4.6) for G̃N .

Degree N

250 500 1000 2000

Uniform norm of ‖G̃N‖∞ 480.60 958.99 1915.4 3828.0
Algorithm from Section 4 5.6226e−09 5.6581e−09 5.4573e−09 5.3932e−09
Algorithm from Remark 3.2 6.5248e−09 6.6718e−09 6.0687e−09 6.0394e−09

As a rule the observed relative errors are 10 to 15 times smaller than the target relative accuracy ε1! 
Our experiments also show that the relative errors from (4.7) at the sampling points Y are very close to 
the respective errors at the regular points X0.

5.2. Norms of operators

The operator norms in this subsection are ∞ → ∞ norms. The norm of the integral needlet operator 
(2.5) is given by

‖Φ̆N‖ = sup
x∈S2

1
4π

∫
S2

∣∣KN (x · y)
∣∣ dσ(y) = 1

2

1∫
−1

∣∣KN (t)
∣∣ dt. (5.1)

For ϕ from (2.14)–(2.15) and for various τ and ε the numerical values of the norm from (5.1) for N = 40, 
N = 400, N = 4000 are displayed in Table 5.

As Table 5 shows the norm practically does not depend on the degree N . This fact is in compliance with 
the theory which states that these norms have majorants, which are independent of N . The slight decrease 
of the norm with N is predictable and is due to the increased smoothness of the kernel KN . The variations 
of the norm with τ and ε are due to the different functions ϕ defined in (2.14)–(2.15).

Table 5
Numerical evaluation of norm from (5.1).
τ N ε

10−5 10−7 10−9 10−11

1 40 3.1364 3.4067 3.6306 3.8230
400 3.1280 3.3996 3.6251 3.8194

4000 3.1267 3.3982 3.6236 3.8179

2 40 2.4559 2.6774 2.8613 3.0197
400 2.4487 2.6700 2.8538 3.0123

4000 2.4478 2.6691 2.8529 3.0114

3 40 2.1905 2.3927 2.5606 2.7054
400 2.1849 2.3867 2.5545 2.6991

4000 2.1842 2.3861 2.5538 2.6984

4 40 2.0510 2.2421 2.4010 2.5380
400 2.0465 2.2373 2.3960 2.5328

4000 2.0460 2.2368 2.3954 2.5323
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Table 6
Numerical evaluation of ‖ΦN‖ for X = X (3).

τ ε

10−5 10−7 10−9 10−11

1 4.2324 4.6610 5.0166 5.3227
2 3.1562 3.5077 3.7990 4.0497
3 2.7355 3.0577 3.3245 3.5540
4 2.5137 2.8193 3.0724 3.2901

Table 7
Numerical evaluation of ‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ for X = X (3).

τ ε

10−5 10−7 10−9 10−11

1 3.7265 4.0423 4.3022 4.5245
2 2.9159 3.1833 3.4026 3.5898
3 2.5899 2.8396 3.0438 3.2178
4 2.4152 2.6549 2.8507 3.0174

The norms of the discrete operators ΦN and ΦN,δ are given by

‖ΦN‖ = sup
x∈S2

∑
ξ∈X

wξ

∣∣ΦN (x · ξ)
∣∣ (5.2)

and

‖ΦN,δ‖ = sup
x∈S2

∑
ξ∈X

ρ(x, ξ)≤δ

wξ

∣∣ΦN (x · ξ)
∣∣. (5.3)

Let us recall that due to (2.10) the two norms are quite close, namely,

0 < ‖ΦN‖ − ‖ΦN,δ‖ ≤ ε.

The norms in (5.2) and (5.3) depend on N , δ, ϕ, τ , ε, K, L, and the type of the regular nodes used. As in 
the case of the norm in (5.1) the relative variation of these norms with respect to N is less than one percent.

For N = 500 and for various τ and ε the numerical values of the norm from (5.2) are displayed in Table 6. 
The other parameters for the computations are: Gaussian quadrature with K = 2�(2 + τ)N/4�, L = 2K, 
and ϕ from (2.14)–(2.15).

In Theorem 3.2 and in the solution of Problem 3 from [7] instead of ΦN,δ we in fact use the operators 
ΦN,δ · 1U1 + Φ̃N,δ · 1U2 . Their norms are given by

‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ = sup
x∈S

2

π/4≤θ≤3π/4

∑
ξ∈X

ρ(x,ξ)≤δ

wξ

∣∣ΦN (x · ξ)
∣∣. (5.4)

These norms are given in Table 7 for the same values of the parameters as in Table 6.
According to (5.3) and (5.4)

‖ΦN,δ · 1U1 + Φ̃N,δ · 1U2‖ ≤ ‖ΦN,δ‖. (5.5)

For the nodes X = X (3) generated by the Gaussian quadrature one has strict inequality in (5.5) as evidenced 
by Tables 6 and 7. The reason for this is that the supremums in (5.2) and (5.3) are attained for x at one of 
the poles, while the supremum in (5.4) is attained for x at the equator.
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For X = X (1) or X = X (2) all supremums above are attained for x’s at the equator and, hence, in (5.5) we 
have an equality. For these types of nodes and minimal possible K and L the norm values are approximately 
in the middle between the norm in (5.1) given in Tables 5 and the norm in (5.4) given in Table 7. The main 
reason for the decrease of the norm is that the number of knots in latitude direction is doubled. The general 
rule is that for a fixed cutoff function ϕ whenever the nodes get denser then the norm becomes smaller and 
tends to the value given in Table 5. Note that the parameters K and L are optimized for speed, but not to 
minimize ‖ΦN‖.

The results in this subsection show that the norms of our needlet-type operators are quite small, which 
in turn guarantees the stability of the described algorithms.
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