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Abstract. We study the regularity of centered Gaussian processes (Zx(ω))x∈M ,

indexed by compact metric spaces (M,ρ). It is shown that the almost every-

where Besov space regularity of such a process is (almost) equivalent to the
Besov regularity of the covariance K(x, y) = E(ZxZy) under the assumption

that (i) there is an underlying Dirichlet structure on M which determines the

Besov space regularity, and (ii) the operator K with kernel K(x, y) and the
underlying operator A of the Dirichlet structure commute. As an application

of this result we establish the Besov space regularity of Gaussian processes

indexed by compact homogeneous spaces and, in particular, by the sphere.

1. Introduction

Gaussian processes have been at the heart of probability theory for very long
time. There is a huge literature about it (see among many others [32], [29], [30]
[2], [1] [34]). They also have been playing a key role in applications for many years
and seem to experience an active revival in the recent domains of machine learning
(see among others [36], [39]) as well as in Bayesian nonparametric statistics (see for
example [48], [26]).

In many areas it is important to develop regularization procedures or sparse
representations. Finding adequate regularizations as well as the quantification of
the sparsity play an essential role in the accuracy of the algorithms in statistical
theory as well as in Approximation theory. A way to regularize or to improve
sparsity which is at the same time genuine and easily explainable is to impose
regularity conditions.

The regularity of Gaussian processes has also been for a long time in the essentials
of probability theory. It goes back to Kolmogorov in the 1930s (see among many
others [18], [45], [47] [28], [31]).

In applications, an important effort has been put on the construction of Gaussian
processes on manifolds or more general domains, with the two especially challenging
examples of spaces of matrices and spaces of graphs to contribute to the emerging
field of signal processing on graphs and extending high-dimensional data analysis
to networks and other irregular domains.
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Motivated by these aspects we explore in this paper the regularity of Gaussian
processes indexed by compact metric domains verifying some conditions in such a
way that regularity conditions can be identified.

In effect, to prove regularity properties, we need a theory of regularity, compat-
ible with the classical examples: Lipschitz properties and differentiability. At the
same time we want to be able to handle more complicated geometries. For this
aspect we borrow the geometrical framework developed in [14], [25].

Many of the constructions for regularity theorems are based on moments bounds
for the increments of the process. Our approach here is quite different, it utilizes the
spectral properties of the covariance operator. In particular, we use the Littlewood-
Paley theory (this point of view was implicitly in [12]) to show that the Besov
space regularity of the process is (almost) equivalent to the Besov regularity of the
covariance operator. Especially, it is shown that the almost everywhere Besov space
regularity of such a process is (almost) equivalent to the Besov regularity of the
covariance K(x, y) = E(ZxZy).

It is also important to notice that unlike many results in the literature, the
regularity is expressed using the genuine distance of the domain, not the distance
induced by the covariance.

We illustrate our approach by revisiting the Brownian motion as well as the
fractional Brownian motion on the interval. We show the standard Besov regularity
of these processes but also prove that they can be associated to a genuine geometry
which finally appears in a nontrivial way.

We also illustrate our main result on the more refined case of two points homo-
geneous spaces and the special case of the unit sphere Sd in Rd+1.

In the two subsequent sections, we recall the needed background information
about Gaussian processes, the geometrical framework introduced in [14], [25], and
how it allows to develop a smooth functional calculus as well as a description of reg-
ularity. In Section 4, we state the main results of the paper: the regularity theorem,
The Ito-Nisio representation and the link with the RKHS. Subsection 4.3 details the
seminal case of the Neumann operator and the standard Brownian motion. In this
case, the salient fact is not the regularity result (which is known) but the original
geometry corresponding to this process. The proofs of the main results are carried
out in Section 5. Section 6 recalls some basic facts (and less basic) about positive
and negative definite functions on two point homogeneous spaces. Section 7 estab-
lishes the Besov regularity of Gaussian processes indexed by the sphere. Section 8
is an appendix where we detail some facts on positive definite and negative definite
functions as well as Gaussian probability on separable Banach spaces.

2. Gaussian processes: Background

In this section we recall some basic facts about Gaussian processes and establish
useful notation.

2.1. General setting for Gaussian processes. Let (Ω,A, P ) be a probability
space. Consider a centered Gaussian process on a set M , i.e. a family of real random
variables Zx(ω) with x ∈ M and ω ∈ Ω such that for all n ∈ N, x1, . . . , xn ∈ M ,
and α1, . . . , αn ∈ R

n∑
i=1

αiZxi is a centered Gaussian random variable.



REGULARITY OF GAUSSIAN PROCESSES ON DIRICHLET SPACES 3

The covariance function K(x, y) associated to such a process (Zx)x∈M is defined
by

K(x, y) := E(ZxZy) for (x, y) ∈M ×M.

It is readily seen that K(x, y) is real-valued, symmetric, and positive definite (P.D.),
i.e.

K(x, y) = K(y, x) ∈ R, and

∀n ∈ N, ∀ x1, . . . , xn ∈M, ∀α1, . . . , αn ∈ R,
∑
i,j≤n

αiαjK(xi, xj) ≥ 0.

Remark 2.1. In this paper, we only consider real Gaussian variables and real
Hilbert spaces.

2.2. Gaussian processes with a zest of topology. We now consider the follow-
ing more specific setting. Let M be a compact space and let µ be a Radon measure
on (M,B) with support M and B being the Borel sigma algebra on M . Assuming
that (Ω,A, P ) is a probability space we let

Z : (M,B)⊗ (Ω,A) 7→ Zx(ω) ∈ R be a measurable map

such that (Zx)x∈M is a Gaussian process. In addition, we assume that K(x, y) is a
symmetric, continuous, and positive definite function on M ×M . Then obviously
the operator K defined by

Kf(x) :=

∫
M

K(x, y)f(y)dµ(y), f ∈ L2(M,µ),

is a self-adjoint compact positive operator (even trace-class) on L2(M,µ). More-
over, K(L2) ⊂ C(M), the Banach space of continuous functions on M . Let
ν1 ≥ ν2 ≥ · · · > 0 be the sequence of eigenvalues of K repeated according to
their multiplicities and let (uk)k≥1 be the sequence of respective normalized eigen-
functions: ∫

M

K(x, y)uk(y)dµ(y) = νkuk(x).

The functions uk are continuous real-valued functions and the sequence (uk)k≥1

is an orthonormal basis for L2(M,µ). By Mercer’s theorem we have the following
representation:

K(x, y) =
∑
k

νkuk(x)uk(y),

where the convergence is uniform.
Let H ⊂ L2(Ω, P ) be the closed Gaussian space spanned by finite linear combi-

nations of (Zx)x∈M . Clearly, interpreting the following integral as Bochner integral
with value in the Hilbert space H, we can define

Bk(ω) =
1
√
νk

∫
M

Zx(ω)uk(x)dµ(x) ∈ H.

It is not difficult to prove that Bk is a sequence of independent N(0, 1) variables
and that the process

Z̃x(ω) :=
∑
k

√
νkuk(x)Bk(ω)

is a modification of Zx(ω), i.e. P (Zx = Z̃x) = 1, ∀x ∈M .
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We are interested in the regularity of the ”trajectory” x ∈M 7→ Zx(ω) for almost
all ω ∈ Ω and for a suitable modification of Zx(ω) and for this reason, we will focus

on the version Z̃x(ω).

3. Regularity spaces on metric spaces with Dirichlet structure

On a compact metric space (M,ρ) one has the scale of s-Lipschitz spaces defined
by the norm

(3.1) ‖f‖Lips := ‖f‖∞ + sup
x 6=y

|f(x)− f(y)|
ρ(x, y)s

, 0 < s ≤ 1.

In Euclidian spaces a function can be much more regular than Lipschitz, for
instance differentiable at different order, or belong to some Sobolev space, or even in
a more refine way to a Besov space. For this purpose, we consider metric measured
spaces with Dirichlet structure. This setting is rich enough to develop a Littlewood-
Paley theory in almost complete analogy with the classical case on Rd, see [14, 25].
In particular, it allows to develop Besov spaces Bspq with all set of indices. At the
same time this framework is sufficiently general to cover a number of interesting
cases as will be shown in what follows. We next describe the underlying setting in
detail.

3.1. Metric spaces with Dirichlet structure. We assume that (M,µ) is a com-
pact connected measure space, where µ is a Radon measure with support M . Also,
assume that A is a self-adjoint non-negative operator mapping real-valued to real-
valued functions with dense domain D(A) ⊂ L2(M,µ). Let Pt = e−tA, t > 0, be
the associate self-adjoint semi-group. Furthermore, we assume that A determines
a local and regular Dirichlet structure, see [14] and for details [19], [43], [41], [42],
[44], [11], [22]. In fact, we assume that Pt is a Markov semi-group (A verifies the
Beurling-Deny condition):

0 ≤ f ≤ 1 and f ∈ L2 imply 0 ≤ Ptf ≤ 1,

and also Pt1M = 1M (equivalently A1M = 0). From this it follows that Pt can be
extended as a contraction operator on Lp(M,µ) for 1 ≤ p ≤ ∞, i.e. ‖Ptf‖p ≤ ‖f‖p,
and PtPsf = Pt+sf , t, s > 0.

The next assumption is that there exists a sufficiently rich subspace D̃ ⊂ D(A)

such that f ∈ D̃ =⇒ f2 ∈ D(A) (see [11]). Then we define a bilinear operator

“square gradiant” Γ : D̃ × D̃ 7→ L1 by

Γ(f, g) := −1

2
[A(fg)− fA(g)− gA(f)].

Consequently, Γ(f, f) ≥ 0 and
∫
M
A(f)gdµ =

∫
M

Γ(f, g)dµ (formula for integration
by parts).

Main assumptions:

(1) Let

(3.2) ρ(x, y) := sup
Γ(f,f)≤1

f(x)− f(y) for x, y ∈M .

We assume that ρ is a metric on M that generates the original topology on
M .
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(2) The doubling property: Denote B(x, r) = {y ∈ M : ρ(x, y) < r}. The
assumption is that there exists a constant c0 > 0 such that

(3.3) µ(B(x, 2r)) ≤ c0µ(B(x, r)), ∀x ∈M, ∀r > 0.

This means that (M,ρ, µ) is a homogeneous space in the sense of Coifman
and Weiss [13]. Observe that from (3.3) it follows that

(3.4) µ(B(x, λr)) ≤ c0λdµ(B(x, r)) for x ∈M , r > 0, and λ > 1,

where d := log2 c0; the constant d plays the role of a dimension.

(3) Poincaré inequality: There exists a constant c > 0 such that for all f ∈ D̃,
x ∈M , and r > 0

inf
λ∈R

∫
B(x,r)

(f − λ)2dµ ≤ cr2

∫
B(x,r)

Γ(f, f)dµ.

As a consequence the associated semi-group Pt = e−tA, t > 0, consists of integral
operators of continuous (heat) kernel pt(x, y) ≥ 0, with the following properties:

(a) Gaussian localization: For all x, y ∈M and t > 0

(3.5)
c1 exp{−ρ

2(x,y)
c2t
}√

µ(B(x,
√
t))µ(B(y,

√
t))
≤ pt(x, y) ≤

c3 exp{−ρ
2(x,y)
c4t
}√

µ(B(x,
√
t))µ(B(y,

√
t))
.

(b) Hölder continuity: There exists a constant κ > 0 such that

(3.6)
∣∣pt(x, y)− pt(x, y′)

∣∣ ≤ c1(ρ(y, y′)√
t

)κ exp{−ρ
2(x,y)
c2t
}√

µ(B(x,
√
t))µ(B(y,

√
t))

for x, y, y′ ∈M and t > 0, whenever ρ(y, y′) ≤
√
t.

(c) Markov property:

(3.7)

∫
M

pt(x, y)dµ(y) = 1 for x ∈M and t > 0.

Above c1, c2, c3, c4 > 0 are structural constants.

Remark 3.1. The setting described above is quite general. This setting covers, in
particular, the case of compact Riemannian manifolds. It naturally contains the
cases of the sphere, interval, ball, and simplex with weights. For more details, see
[14].

Notation. Throughout we will use the notation |E| := µ(E) and 1E will stand
for the characteristic function of E ⊂ M . Also ‖ · ‖p = ‖ · ‖Lp := ‖ · ‖Lp(M,µ).
Positive constants will be denoted by c, c′, c1, C, C

′, . . . and they may vary at every
occurrence. The notation a ∼ b will stand for c1 ≤ a/b ≤ c2. As usual we will
denote by N the set of all natural numbers and N0 := N ∪ {0}.

From the compactness of M and the fact that A is an essentially self-adjoint
non-negative operator it follows that the spectrum of A is discrete and of the form:
0 ≤ λ1 < λ2 < · · · . Furthermore, the respective eigenspaces Hλk := Ker(A−λk Id)
are finite dimensional and

L2(M,µ) =
⊕
k≥1

Hλk .
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Denoting by PHλk the orthogonal projector onto Hλk the above means that all

f ∈ L2(M,µ) can be expressed in the following form f =
∑
k≥1 PHλk f . In addition,

(3.8)

Af =
∑
k≥1

λkPHλk f, ∀f ∈ D(A), and Ptf =
∑
k≥1

e−tλkPHλk f, ∀f ∈ L2.

More generally, for a function g ∈ L∞(R+) the operator g(
√
A) is defined by

(3.9) g(
√
A)f :=

∑
k≥1

g(
√
λk)PHλk f, ∀f ∈ L2.

The spectral spaces Σλ, λ > 0, associated with
√
A are defined by

Σλ :=
⊕
√
λk≤λ

Hλk .

Observe that Σλ ⊂ L∞ and hence Σλ ⊂ Lp for 1 ≤ p ≤ ∞.
From now on we will assume that the eigenvalues (λk)k≥1 are enumerated with

algebraic multiplicities taken into account, i.e. if the algebraic multiplicity of λ is
m then λ is repeated m times in the sequence 0 ≤ λ1 ≤ λ2 ≤ · · · . We let (uk)k≥1

be respective real orthogonal and normalized in L2 eigenfunctions of A, that is,
Auk = λkuk.

Let Πδ(x, y) :=
∑
√
λk≤δ−1 uk(x)uk(y), δ > 0, be the kernel of the orthogonal

projector onto Σ1/δ. Then as is shown in [14, Lemma 3.19]

(3.10) Πδ(x, x) ∼ |B(x, δ)|−1.

A key trait of our setting is that it allows to develop a smooth functional calculus.
In particular, if g ∈ C∞(R) is even, then the operator g(t

√
A) defined in (3.9) is an

integral operator with kernel g(t
√
A)(x, y) having this localization: For any σ > 0

there exists a constant cσ > 0 such that

(3.11)
∣∣g(t
√
A)(x, y)

∣∣ ≤ cσ|B(x, t)|−1
(
1 + t−1ρ(x, y)

)−σ
, ∀x, y ∈M.

Furthermore, g(t
√
A)(x, y) is Hölder continuous. An immediate consequence of

(3.11) is that the operator g(t
√
A) is bounded on Lp(M):

(3.12) ‖g(t
√
A)f‖p ≤ c‖f‖p, ∀f ∈ Lp(M), 1 ≤ p ≤ ∞.

For more details and proofs, see [14, 25].
For discretization (sampling) purposes, we will use maximal δ-nets. Recall that

a set X ⊂M is a maximal δ-net on M (δ > 0) if ρ(x, y) ≥ δ for all x, y ∈ X , x 6= y,
and X is maximal with this property. It is easily seen that a maximal δ-net on M
always exists. Of course, if δ > Diam(M), then X will consists of a single point.
The following useful assertion is part of Theorem 4.2 in [14].

Proposition 3.2. There exists a constant γ > 0, depending only on the structural
constant of our setting, such that for any λ > 0 and δ := γ/λ there exists a δ-net
X obeying

(3.13) 2−1‖g‖∞ ≤ max
ξ∈X
|g(ξ)| ≤ ‖g‖∞, ∀g ∈ Σλ.
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Finally, if N(δ,M) is the covering number of M (or the cardinality of a maximal
δ−net), then
(3.14)

dim(Σ 1√
t
) ∼

∫
M

|B(x,
√
t)|−1dµ(x) ∼ N(

√
t,M) ∼ ‖e−tA‖2HS ≤ ct−d/2, t > 0.

Here ‖e−tA‖2HS :=
∫
M

∫
M
|pt(x, y)|2dµ(x)dµ(y) is the Hilbert-Schmidt norm.

3.2. Regularity spaces. In the general setting described above, the full scales of
Besov and Tribel-Lizorkin spaces are available [14, 25].

The Sobolev spaces W k
p = W k

p (A), k ≥ 1, 1 ≤ p ≤ ∞, are standardly defined by

(3.15) W k
p :=

{
f ∈ D(A

k
2 ) : ‖f‖Wk

p
:= ‖f‖p + ‖A k

2 f‖p <∞
}
.

The Besov space Bspq = Bspq, s > 0, 1 ≤ p, q ≤ ∞, is defined by interpolation as in
[35]:

(3.16) Bspq :=
(
Lp,W k

p

)
θ,q
, θ := s/k,

where
(
Lp,W k

p

)
θ,q

is the real interpolation space between Lp and W k
p , see [14].

The following Littlewood-Paley decomposition of functions will play an impor-
tant role in the sequel. Suppose Φ ∈ C∞(R) is real-valued, even, and such that
supp Φ ⊂ [−2, 2], 0 ≤ Φ ≤ 1, and Φ(λ) = 1 for λ ∈ [0, 1]. Let Ψ(λ) := Φ(λ)−Φ(2λ).
Evidently supp Ψ ∩ R+ ⊂ [1/2, 2]. Set

(3.17) Ψ0 := Φ and Ψj(λ) := Ψ(2−jλ) for j ≥ 1.

It is readily seen that Ψ0,Ψ ∈ C∞(R), Ψ0,Ψ are even, supp Ψ0 ⊂ [−2, 2], supp Ψj∩
R+ ⊂ [2j−1, 2j+1], j ≥ 1, and

∑
j≥0 Ψj(λ) = 1 for λ ∈ R+. Consequently, for any

f ∈ Lp(M,µ), 1 ≤ p ≤ ∞, one has

(3.18) f =
∑
j≥0

Ψj(
√
A)f in Lp.

The Littlewood-Paley characterization of Besov spaces uses the functions Ψj

from above: If s > 0 and 1 ≤ p, q ≤ ∞, then for a function f ∈ Lp(M,µ) we have

(3.19) f ∈ Bsp,q ⇐⇒ ‖Ψj(
√
A)f‖p = εj2

−js, j ≥ 0, with {εj} ∈ `q.

Furthermore, if f ∈ Bsp,q, then ‖f‖Bsp,q ∼ ‖{εj}‖`q . We refer the reader to [14, 25]
for proofs and more details on Besov spaces in the setting from §3.1. In particular,
the following proposition clarifying the relationship between Bs∞,∞ and Lip s (see
[14, Proposition 6.4]).

Proposition 3.3. (a) For any 0 < s ≤ 1 we have Lip s ⊂ Bs∞,∞.
(b) Assuming that κ > 0 is the constant from (3.6), then Bs∞,∞ ⊂ Lip s for

0 < s < κ.

Remark 3.4. In the most interesting cases κ = 1, Proposition 3.3 implies that
Lip s = Bs∞,∞ for 0 < s < 1.
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4. Main results

In this section we state and discuss our main results. The proofs are carried out
in the next section.

We consider a centered Gaussian process (Zx)x∈M with covariance function
K(x, y) as described in § 2.2, indexed by a metric space M with Dirichlet structure
just as described in § 3.1. We will adhere to the assumptions and notation from
§ 3.1.

4.1. Commutation property. We now make the fundamental assumption that
the operator K with kernel K(x, y) and the operator A from § 3.1 commute in the
following sense:

Definition 4.1. If K is a bounded operator on a Banach space B (K ∈ L(B)) and
A is an unbounded operator with domain D(A) ⊂ B, we say that K and A commute
if K(D(A)) ⊂ D(A) and

KAf = AKf, ∀f ∈ D(A).

Remark 4.2. Let A be the infinitesimal generator of a contraction semi-group Pt.
Then K and A commute in the sense of Definition 4.1 if and only if

KPt = PtK, ∀t > 0.

We refer the reader to [16], Theorem 6.1.27.

We now return to the covariance operator K and the underlying self-adjoint non-
negative operator A from our setting. In light of Proposition 4.2 our assumption
that K and A commute implies that they have the same eigenspaces.

Recall that the eigenvalues of A are ordered in a sequence 0 = λ1 ≤ λ2 ≤
· · · , where the eigenvalues are repeated according to their multiplicities, and the
respective eigenfunctions (uk)k≥1 are real-valued, orthogonal, and normalized in
L2. Let (νk)k≥1 be the eigenvalues of the covariance operator K. Then

(4.1) Auk = λkuk and Kuk = νkuk, k ≥ 1.

Remark 4.3. As a consequence of the commutation property of K and A, the
operator AK is defined everywhere on L2(M,µ) and is closed. Therefore, AK is a
continuous operator from L2(M,µ) to L2(M,µ). Clearly,

KAf =
∑
k≥1

〈f, uk〉λkνkuk, ∀f ∈ L2 and hence ‖KA‖L(L2) = sup
k≥1

λkνk <∞.

Remark 4.4. Assume that we are in the geometric setting described in §3.1, as-
sociated to an operator A. As in §4.1, suppose K(x, y) is a P.D. kernel such that
the associate operator K commutes with A. It is easy to see that

(4.2) A1M = 0 and dim Ker(A) = 1.

Indeed, the Markov property (3.7) yields A1M = 0. To show that dim Ker(A) = 1,
assume that Af = 0, f ∈ D(A). Then Γ(f, f) = 0. Assume that f 6= constant.
Then f(x) 6= f(y) for some x, y ∈M , x 6= y. Since Γ(f, f) = 0 we have Γ(af, af) =
0 for each a > 0. Then by (3.2) ρ(x, y) ≥ a|f(x) − f(f)|, ∀a > 0, implying
ρ(x, y) =∞, which is a contradiction because M is connected (see [14]). Therefore,
Af = 0 implies f = constant and hence dim Ker(A) = 1.
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As a consequence of (4.2) we have

AK1M = KA1M = 0.

However, as dim Ker(A) = 1, necessarily K1M = C1M .

4.2. Regularity theorem, Ito-Nisio representation and RKHS. We now
come to the main results of this paper.

Theorem 4.5. Let (Zx)x∈M be a centered Gaussian process with covariance func-
tion K(x, y) := E(ZxZy) indexed by a metric space M with Dirichlet structure
induced by a self-adjoint operator A such that K and A commute in the sense of
Definition 4.1. Then the following assertions hold:

(a) If the covariance kernel K(x, y) has the regularity described by

(4.3) sup
x∈M
‖K(x, •)‖Bs∞,∞ <∞ for some s > 0,

then the Gaussian process Zx(ω) has the following regularity: For any 0 < α < s
2

Zx(ω) ∈ Bα∞,1 for almost all ω (Bα∞,1 ⊂ Bα∞,∞).

(b) Conversely, suppose there exists α > 0 such that Zx(ω) ∈ Bα∞,∞ for almost
all ω. Then

sup
x∈M
‖K(x, •)‖B2α

∞,∞
<∞.

Remark 4.6. It is interesting to observe that because of the second part of the
theorem condition (4.3) is necessary.

Another key point is that in the above theorem the Besov space smoothness pa-
rameter s > 0 can be arbitrarily large, while 0 < s ≤ 1 in the case when the
regularity is characterized in terms of Lipschitz spaces.

4.2.1. Ito-Nisio representation. The following theorem gives an Ito-Nisio represen-
tation of the process.

Theorem 4.7 (Wiener measure). In the setting from above, if K(x, y) is a con-
tinuous positive definite function on M such that

sup
x∈M
‖K(x, •)‖Bs∞,∞ <∞

and the associated kernel operator K commutes with A, then there is a unique
probability measure Q on the Borelian sets of Bα∞,1, α < s

2 , such that the family of
random variables:

∀x ∈M, ω ∈ Bα∞,1
δx−→ ω(x) ∈ R

is a centered Gaussian process of covariance K(x, y).

4.2.2. Reproducing Kernel Hilbert Spaces (RKHS). We finally connect condition
(4.3) with the RKHS associated to the process Zx (see the appendix).

As is well known the covariance kernel K determines a real Hilbert space HK of
functions for which the evaluation:

∀x ∈M, δx : f ∈ H∗K 7→ f(x) is continuous.

Moreover,

y 7→ K(x, y) = Kx(y) ∈ HK , ∀f ∈ HK , δx(f) = 〈f,Kx〉HK ,
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and (Kx)x∈M is a total set in HK . The space HK is the completion of span {K(x, ·) :
x ∈M}, more precisely

H◦K :=
{
h(y) =

∑
i∈F

αiK(xi, y) : ‖h‖2H =
∑
i,j∈F

αiαjK(xi, xj) =
∑
j∈F

αjh(xj)
}
.

It is also well known (see e.g. [15]) that

‖h‖2H = 0 for h ∈ H◦K ⇐⇒ h(y) = 0, ∀y ∈M.

Furthermore (see [33]),

K(x, y) =
∑
i∈I

gi(x)gi(y) ⇐⇒ gi ∈ HK , ∀i and (gi)i∈I is a tight frame for HK .

In our geometric framework, (4.1) entails the following representation of K

(4.4) K(x, y) =
∑
k

νkuk(x)uk(y) and νk ≥ 0.

Therefore, (
√
νkuk)k∈N,νk 6=0 is a tight frame of H, and moreover (δx)x∈M ⊂ H∗K is

dense in H∗K in the weak σ(H∗K ,HK) topology. Actually, by Mercer’s theorem we
have (see [40], [24]): Let N(ν) := {k ∈ N, νk 6= 0} and define

H :=
{
f : M 7→ R : f(x) =

∑
k∈N(ν)

αk
√
νk uk(x), (αk) ∈ `2

}
with inner product

〈f, g〉H =
〈 ∑
k∈N(ν)

αk
√
νk uk(·),

∑
k∈N(ν)

βk
√
νkuk(·)

〉
H

:= 〈(αk), (βk)〉`2(N(ν)).

Then H is a Hilbert space of continuous functions and (
√
νkuk)k∈N(ν) is an or-

thonormal basis for H and hence HK = H.
In fact, the following theorem holds.

Theorem 4.8. We have for s > 0

HK ⊆ B
s
2∞,∞ ⇐⇒ sup

x∈M
‖K(x, •)‖Bs∞,∞ <∞.

4.3. Seminal example: the Neumann operator on [0, 1] and the Brownian
motion. Here we show that the classical Brownian motion on [0, 1] is a particular
case of our general theory.

4.3.1. The Neumann operator on [0, 1]. Let H2([0, 1]) be the space of the functions
f ∈ L2([0, 1]) twice weakly differentiable and such that f ′, f ′′ ∈ L2([0, 1]). Consider
the operator

Af := −f ′′, D(A) := {f ∈ H2([0, 1]) : f ′(0) = f ′(1) = 0}.

Clearly, ∫ 1

0

(Af)gdx =

∫ 1

0

f ′g′dx =

∫ 1

0

fAgdx

and hence A is positive and symmetric. In fact, A generates a Dirichlet space, and
also

cos kπx ∈ D(A) and A(cos kπ•)(x) = (πk)2 cos kπx, k ≥ 1.
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Therefore, {1, (
√

2 cos kπx)k∈N} is an orthonormal basis of L2([0, 1]) consisting of

eigenvectors of A. Write H1([0, 1]) :=
{
f ∈ L2([0, 1]) :

∫ 1

0
|f ′(u)|2du < ∞

}
. This

allows to define a Dirichlet form:

A,D(A) =
{
f ∈ H1([0, 1]) :

∣∣∣ ∫ 1

0

f ′(x)φ′(x)dx
∣∣∣ ≤ c‖φ‖2, ∀φ ∈ H1([0, 1])

}
.

Thus ∫ 1

0

f ′(x)φ′(x)dx =

∫ 1

0

Af(x)φ(x)dx

and the distance is defined by

ρ(x, y) = sup
φ∈H1([0,1]):|φ′|≤1

φ(x)− φ(y) = |x− y|.

The Poincaré inequality is well known to be valid in this case. Hence we are now
in the setting described above.

4.3.2. Brownian motion. Clearly, ψ(x, y) = |x − y| is a negative definite function
on [0, 1] (see the appendix) as

|x− y| =
∫

[0,1]

|1[0,x](u)− 1[0,y](u)|2du

Therefore, there is a natural positive definite function K̃(x, y) associated to ψ (see
again the appendix):

K̃(x, y) =
1

2

(∫ 1

0

|x− u|du+

∫ 1

0

|y − u|du− |x− y|
)

=
1

4
[x2 + (1− x)2 + y2 + (1− y)2 − 2|x− y|]

= x ∧ y +
(1− x)2 + (1− y)2 − 1

2
.

It is easy to verify that K̃ and A commute, as

K̃(cos kπ•)(x) =
cos kπx

(πk)2
, ∀k ∈ N, and K̃1 = (1/6)1.

(It is easy to see that
∫ 1

0
|x− y| cos kπy dy = − 2 cos kπx

(πk)2 + 1+(−1)k

(πk)2 .)

So: K̃(x, y) =
1

6
+ 2

∑
k≥1

cos kπx. cos kπy

(πk)2
.

Also, K̃(x, •) is uniformly Lip 1. Therefore, Zx the centered Gaussian process

associated to K̃ is almost surely Lipα, α < 1
2 . The process Yx(ω) = Zx(ω)−Z0(ω)

has the same regularity and

E(YxYy) =
1

2
(|x|+ |y| − |x− y|) = x ∧ y

is the well known associated kernel. So, {Yx : x ∈ [0, 1]} is the classical Brownian
motion.

5. Proof of the main results

The purpose of this section is to prove Theorems 4.5, 4.7, 4.8. For this we need
some preparation.
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5.1. Uniform Besov property of K(x, y) and discretization. Recalling (4.4)
we next represent the Besov norm of K(x, •) in terms of the eigenvalues and eigen-
functions of K and A.

Theorem 5.1. Let s > 0. Then

sup
x∈M
‖K(x, •)‖Bs∞,∞(5.1)

∼ max
{

sup
x∈M

∑
k:
√
λk≤1

νku
2
k(x), sup

j≥1
2js sup

x∈M

∑
k:2j−1<

√
λk≤2j

νku
2
k(x)

}
.

Proof. Note first that from (3.19) it follows that (with Ψj from (3.17))

sup
x
‖K(x, •)‖Bs∞,∞ ∼ sup

j≥0
2js sup

x
‖Ψj(

√
A)K(x, •)‖∞.

But, using (4.4) we have
(
Ψj(
√
A)K(x, •)

)
(y) =

∑
k Ψj(

√
λk)νkuk(x)uk(y) and

hence, applying the Cauchy-Schwarz inequality it follows that

sup
x,y

∣∣(Ψj(
√
A)K(x, •)

)
(y)
∣∣ = sup

x

∑
k

Ψj(
√
λk)νku

2
k(x).

Consequently,

sup
x
‖K(x, •)‖Bs∞,∞ ∼ sup

j
2js sup

x

∑
k

Ψj(
√
λk)νku

2
k(x).(5.2)

Clearly, from (3.17) we have 0 ≤ Ψj ≤ 1, supp Ψ0∩R+ ⊂ [0, 2], and supp Ψj∩R+ ⊂
[2j−1, 2j+1] for j ≥ 1. Therefore,

sup
x

∑
k

Ψ0(
√
λk)νku

2
k(x) ≤ sup

x

∑
√
λk<2

νku
2
k(x) and

sup
x

∑
k

Ψj(
√
λk)νku

2
k(x) ≤ sup

x

∑
2j−1<

√
λk<2j+1

νku
2
k(x), j ≥ 1.

These estimates and (5.2) readily imply that the left-hand side quantity in (5.1) is
dominated by a constant multiple of the right-hand side.

In the other direction, observe that by construction Ψ0(λ) = 1 for λ ∈ [0, 1] and
Ψj−1(λ) + Ψj(λ) = 1 for λ ∈ [2j−1, 2j ], j ≥ 1. Hence

sup
x

∑
√
λk≤1

νku
2
k(x) ≤ sup

x

∑
k

Ψ0(
√
λk)νku

2
k(x) and

sup
x

∑
2j−1<

√
λk≤2j

νku
2
k(x) ≤ sup

x

∑
k

Ψj−1(
√
λk)νku

2
k(x)

+ sup
x

∑
k

Ψj(
√
λk)νku

2
k(x), j ≥ 1.

These inequalities and (5.2) imply that the right-hand side in (5.1) is dominated
by a constant multiple of the left-hand side. This completes the proof. �

The following corollary is an indication of how the Besov regularity relates with
the “dimension” d of the set M , which appears here through the doubling condition
(3.3).
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Corollary 5.2. Let γ > d and s = γ − d. Then

νk = O
(√

λk
)−γ

=⇒ sup
x
‖K(x, •)‖Bs∞,∞ ≤ c.

Proof. If νk ≤ c
(√
λk
)−γ

, then using (3.10) and (3.4) we get for any j ≥ 1 and
x ∈M ∑

k:2j−1≤
√
λk≤2j

νku
2
k(x) ≤ c2−γ(j+1)

∑
k:2j−1≤

√
λk≤2j

u2
k(x) ≤ c2−γj

∑
k:
√
λk≤2j

u2
k(x)

= c2−γjΠ2j (x, x) ≤ c2−γj |B(x, 2−j)|−1 ≤ c2−j(γ−d).

A similar estimate with j = 0 holds for all k such that
√
λk ≤ 1. Then the corollary

follows by Theorem 5.1. �

Remark 5.3. Observe that

sup
x

∑
k:2j−1≤

√
λk≤2j

νku
2
k(x) ≤ c2−js

implies ∑
k:2j−1≤

√
λk≤2j

νk =
∑

k:2j−1≤
√
λk≤2j

∫
M

νku
2
k(x)dµ(x) ≤ c2−js|M |.

We will utilize maximal δ-nets onM along with Proposition 3.2 for discretization.
For any j ≥ 0 we denote by Xj the maximal δ-net from Proposition 3.2 with
δ := γ2−j−1 such that

(5.3) 2−1‖g‖∞ ≤ max
ξ∈Xj

|g(ξ)| ≤ ‖g‖∞, ∀g ∈ Σ2j+1 .

The following claim will be instrumental in the proof of Theorem 4.5.

Proposition 5.4. We have

sup
x∈M

∑
k:
√
λk≤1

νku
2
k(x) ∼ max

ξ∈X0

∑
k:
√
λk≤1

νku
2
k(ξ)

and for any j ≥ 1

sup
x∈M

∑
k:2j−1<

√
λk≤2j

νku
2
k(x) ∼ max

ξ∈Xj

∑
k:2j−1<

√
λk≤2j

νku
2
k(ξ)

with absolute constants of equivalence.

This proposition follows readily from the following

Lemma 5.5. Let Xj be the maximal δ-net from above with δ := γ2−j, j ≥ 0, and
let

H(x, y) :=
∑
√
λk≤2j

αkuk(x)uk(y), where αk ≥ 0.

Then

max
ξ∈Xj

H(ξ, ξ) ≤ sup
x,y∈M

|H(x, y)| ≤ 4 max
ξ∈Xj

H(ξ, ξ).
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Proof. Clearly H(x, y) is a positive definite function and hence |H(x, y)| ≤√
H(x, x)H(y, y), implying

(5.4) max
ξ,η∈Xj

|H(ξ, η)| = max
ξ∈Xj

H(ξ, ξ).

Evidently, for any fixed x ∈ M the function H(x, y) ∈ Σ2j as a function of y and
by (5.3)

sup
y∈M
|H(x, y)| ≤ 2 max

η∈Xj
|H(x, η)|.

Now, using that H(x, η) ∈ Σ2j as a function of x, we again apply (5.3) to obtain

sup
x,y∈M

|H(x, y)| ≤ 2 sup
x∈M

max
η∈Xj

|H(x, ξ)| = 2 max
η∈Xj

sup
x∈M
|H(x, η)|

≤ 4 max
η∈Xj

max
ξ∈Xj

|H(ξ, η)| = 4 max
ξ∈Xj

H(ξ, ξ).

Here for the last equality we used (5.4). This completes the proof. �

5.2. Proof of Theorem 4.5. (a) Assume supx∈M ‖K(x, •)‖Bs∞,∞ < ∞. Let

(Bk(ω))k≥1 be a sequence of independent N(0, 1) variables. Then as alluded in
§2.2

Z̃x(ω) :=
∑
k

√
νkuk(x)Bk(ω)

is also a version of Zx(ω). Let Ψj , j ≥ 0, be the functions from (3.17) and observe

that f ∈ Bs∞,1 if and only if ‖f‖Bs∞,1 ∼
∑
j≥0 2js‖Ψj(

√
A)f‖∞ <∞. Clearly,

(5.5)
(
Ψj(
√
A)Z̃•(ω)

)
(x) =

∑
k

Ψj(
√
λk)
√
νkuk(x)Bk(ω).

For each x ∈M this is a Gaussian variable of variance

σ2
j (x) =

∑
k

Ψ2
j (
√
λk)νkuk(x)2 ≤ c2−js.

Here we used that Ψ2
j (
√
λk) ≤ 1, the assumption supx∈M ‖K(x, •)‖Bs∞,∞ <∞, and

Theorem 5.1.
For any α > 0 we have

E
(∑

j

2jα‖Ψj(
√
A)Z̃•(ω)‖∞

)
=
∑
j

2jαE
(
‖Ψj(

√
A)Z̃•(ω)‖∞

)
∼
∑
j

2jαE
(

sup
ξ∈Xj

|
(
Ψj(
√
A)Z̃•(ω)

)
(ξ)|
)

≤ c
∑
j

2jα2−js/2(1 + log(card(Xj))1/2.

Above for the equivalence we used (5.3) and for the last inequality the following well
known inequality (see e.g. [21, Lemma 2.3.4] or [32, lemma 10.1]): If Z1, . . . , ZN
are centered Gaussian variables (with arbitrary variances), then

E
(

max
1≤k≤N

|Zk|
)
≤ c(1 + logN)1/2 max

k

(
E|Zk|2

)1/2
.

By (3.14), we have card(Xj) ≤ c2jd. Therefore, if α < s
2 , then∑

j

2jα2−js/2(1 + log(card(Xj))1/2 ≤ c
∑
j

2−j(s/2−α)
(

log(c2jd)
)1/2

<∞.
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Consequently, E
(∑

j 2jα‖Ψj(
√
A)Z•(ω)‖∞

)
< ∞ and hence x 7→ Z̃x(ω) ∈ Bα∞,1,

0 < α < s/2, ω-a.s.

(b) Suppose now that ω − a.e., x 7→ Zx(ω) ∈ Bα∞,∞, α > 0. Then by (5.5) and
(3.19)

sup
j

2jα
∥∥∥∑

k

Ψj(
√
λk)
√
νkuk(x)Bk(ω)

∥∥∥
∞
<∞, ω − a.s.

By (5.3) this is equivalent to

(5.6) sup
j

2jα max
ξ∈Xj

∣∣∣∑
k

Ψj(
√
λk)
√
νkuk(ξ)Bk(ω)

∣∣∣ <∞, ω − a.s.

However, {2jα
∑
k Ψj(

√
λk)
√
νkuk(ξ)Bk(ω)}j∈N,ξ∈Xj is a countable set of Gaussian

centered variables. The Borell-Ibragimov-Sudakov-Tsirelson theorem (see e.g. [29],
§7), in particular, asserts that if (Gt)t∈T is a centered Gaussian process indexed by a
countable parameter set T and supt∈T Gt <∞ almost surely, then supt∈T E(G2

t ) <
∞. Consequently, (5.6) implies

sup
j∈N,ξ∈Xj

E
(

2jα
∑
k

Ψj(
√
λk)
√
νkuk(ξ)Bk

)2

<∞.

Therefore, there exists a constant C > 0 such that

max
ξ∈Xj

∑
k

Ψ2
j (
√
λk)νku

2
k(ξ) ≤ C2−2jα.

But as before, this yields

max
ξ∈X0

∑
k:
√
λk≤1

νku
2
k(ξ) ≤ max

ξ∈X0

∑
k

Ψ2
0(
√
λk)νku

2
k(ξ)

and, for j ≥ 1,

max
ξ∈Xj

∑
k,2j−1≤

√
λk≤2j

νku
2
k(ξ) ≤ 2 max

ξ∈Xj

∑
k

Ψ2
j−1(

√
λk)νku

2
k(ξ)

+ 2 max
ξ∈Xj

∑
k

Ψ2
j (
√
λk)νku

2
k(ξ) ≤ c2−2jα.

Here we used that Ψj−1(λ) + Ψj(λ) = 1 for λ ∈ [2j−1, 2j ], implying Ψ2
j−1(λ) +

Ψ2
j (λ) ≥ 1/2.
Finally, applying Proposition 5.4 we conclude from above that

sup
x∈M
‖K(x, •)‖B2α

∞,∞
<∞. �

5.3. Proof of Theorem 4.7. We begin with the following

Lemma 5.6. Assume s > 0 and 1 ≤ p ≤ ∞, and let Ψj, j ≥ 0, be the functions
from (3.17). Then

f ∈ Bsp,1 ⇐⇒
∑
j≥0

‖Ψj(
√
A)f‖Bsp,1 <∞ and ‖f‖Bsp,1 ∼

∑
j≥0

‖Ψj(
√
A)f‖Bsp,1 .

Proof. From (3.18) we have for any f ∈ Lp

(5.7) f =
∑
j≥0

Ψj(
√
A)f, ∀f ∈ Lp,



16 G. KERKYACHARIAN, S. OGAWA, P. PETRUSHEV, AND D. PICARD

implying ‖f‖Bsp,1 ≤
∑
j≥0 ‖Ψj(

√
A)f‖Bsp,1 .

For the estimate in the other direction, note that by (3.19)

‖Ψj(
√
A)f‖Bsp,1 ∼

∑
`≥0

2`s‖Ψ`(
√
A)Ψj(

√
A)f‖p.

However, supp Ψj ∩ R+ ⊂ [2j−1, 2j+1], j ≥ 1, and hence Ψ`(
√
A)Ψj(

√
A) = 0 if

|`− j| > 1. Therefore,

‖Ψj(
√
A)f‖Bsp,1 ∼

∑
j−1≤`≤j+1

2`s‖Ψ`(
√
A)Ψj(

√
A)f‖p.

On the other hand, by estimate (3.12) it follows that ‖Ψj(
√
A)g‖p ≤ c‖g‖p, ∀g ∈ Lp,

and hence ‖Ψ`(
√
A)Ψj(

√
A)f‖p ≤ c‖Ψj(

√
A)f‖p, implying

‖Ψj(
√
A)f‖Bsp,1 ≤ c2

js‖Ψj(
√
A)f‖p.

This in turn leads to∑
j≥0

‖Ψj(
√
A)f‖Bsp,1 ≤ c

∑
j≥0

2js‖Ψj(
√
A)f‖p ≤ c‖f‖Bsp,1 .

The proof is complete. �

We now precise Theorem 4.5 with the following

Proposition 5.7. Under the hypotheses of Theorem 4.5 and with the functions Ψj,
j ≥ 0, from (3.17), if supx∈M ‖K(x, •)‖Bs∞,∞ <∞, then

(5.8) E
(∑
j≥0

‖Ψj(
√
A)Z•(ω))‖Bα∞,1

)
∼ E

(∑
j≥0

2jα‖Ψj(
√
A)Z•(ω)‖∞

)
<∞,

the map

I : ω ∈ Ω 7→
∑
j

ψj(
√
A)Z•(ω)(·) ∈ Bα∞,1

is measurable, the series converges in the norm of Bα∞,1, and the image probability
Q on Bα∞,1 satisfies:

ω ∈ Bα∞,1
δx−→ ω(x)

is a centered Gaussian process with covariance K(x, y).

Proof. The equivalence (5.8) follows from the proof of Theorem 4.5, (a) and
Lemma 5.6.

As is well known, for any Banach space B with a measure space (Ω,B), if G is
a finite set of indices bi ∈ B and Xi(ω) are real-valued measurable functions, then
ω 7→

∑
i∈GXi(ω)bi is measurable from Ω to B. Hence,

ω ∈ Ω 7→ Ψj(
√
A)Z•(ω) =

∑
k

Ψj(
√
λk)
√
νkuk(•)Bk(ω) ∈ Bα∞,1

is measurable. Consequently, by almost everywhere convergence

I : ω ∈ Ω 7→
∑
j

Ψj(
√
A)Z•(ω)(·) ∈ Bα∞,1

is also measurable, and I∗(P ) = Q is a probability measure on the Borelian sigma-
algebra such that under Q the family of random variables δx

ω ∈ Bα∞,1
δx−→ ω(x)



REGULARITY OF GAUSSIAN PROCESSES ON DIRICHLET SPACES 17

is a centered Gaussian process with covariance K(x, y) =
∫
Bα∞,1

ω(x)ω(y)dQ(ω). �

Finally, Theorem 4.7 holds due the fact that Bα∞,1 is separable. (see Appendix
II). It also proves Part (b) of Theorem 4.5.

5.4. Proof of theorem 4.8. Suppose that supx∈M ‖K(x, •)‖Bs∞,∞ < ∞ and let

f(x) =
∑
k∈N(ν) αk

√
νk uk(x), where (αk) ∈ `2. Then

Ψj(
√
A)f(x) =

∑
k∈N(ν)

Ψj(
√
λk)αk

√
νk uk(x),

implying, for j ≥ 1,

|Ψj(
√
A)f(x)| ≤

( ∑
k∈N(ν)

|αk|2
) 1

2
( ∑
k∈N(ν)

|Ψj(
√
λk)|2νk|uk(x)|2

) 1
2

≤ ‖f‖HK
( ∑
k:2j−1≤λk≤2j+1

νk|uk(x)|2
) 1

2 ≤ c‖f‖HK2−js/2,

where for the last inequality we used the assumption and Theorem 5.1. Similarly
|Ψ0(
√
A)f(x)| ≤ c‖f‖HK . Therefore, in light of (3.19),

(5.9) ‖f‖
B
s
2
∞,∞
≤ c‖f‖HK .

Assume that (5.9) holds. Then for every sequence (αk) ∈ `2 with ‖(αk)‖`2 ≤ 1
we have ∣∣ ∑

k∈N(ν)

Ψj(
√
λk)αk

√
νk uk(x)

∣∣∣ ≤ c2−js/2, ∀x ∈M,

which by duality implies( ∑
k∈N(ν)

|ψj(
√
λk)|2νk |uk(x)|2

) 1
2 ≤ c2−js/2, j ≥ 0.

Just as in the proof of Theorem 5.1 we get for j ≥ 1∑
k:2j−1≤

√
λk≤2j

νku
2
k(x) ≤

∑
k∈N(ν)

|Ψj−1(
√
λk)|2νk |uk(x)|2

+
∑

k∈N(ν)

|Ψj(
√
λk)|2νk |uk(x)|2 ≤ c2−js

and similarly
∑
k:
√
λk≤1 νku

2
k(x) ≤ c. Consequently, supx∈M ‖K(x, •)‖Bs∞,∞ < ∞.

�

Remark 5.8. Let f ∈ L2(M,µ). Clearly

f̃(ω) : ω ∈W = Bα∞,1 7→
∫
M

f(x)ω(x)dµ(x)
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belongs to W ∗. Hence, under Qα, f̃ is a Gaussian variable and

E(f̃)2 =

∫
W

(∫
M

f(x)ω(x)dµ(x)
)2

dQα(ω)

=

∫
W

∫
M

f(x)ω(x)dµ(x)

∫
M

f(y)ω(y)dµ(y)dQα(ω)

=

∫
M

∫
M

f(x)f(y)
(∫

W

ω(x)ω(y)dQα(ω)
)
dµ(x)dµ(y) = 〈Kf, f〉L2(M,µ).

Consequently, ∫
W

eif̃(ω)dQα(ω) = e−
1
2 〈Kf,f〉L2(M,µ) .

6. Positive and negative definite functions on compact homogeneous
spaces

For reader’s convenience we recall the basics of the general theory of positive
definite (P.D.) and negative definite (N.D.) functions in Appendix I. Here we present
some basic facts about positive and negative definite kernels in the general setting
of compact two point homogeneous spaces. In the next section, we use these results
and Theorem 4.5 to establish the Besov regularity of Gaussian processes indexed
by the sphere.

6.1. Group acting on a space. Let (M,µ) be a compact space equipped with a
positive Radon measure µ. Assume that there exists a group G acting transitively
on (M,µ), that is, there exists a map (g, x) ∈ G×M 7→ g · x ∈M such that

1. h · (g · x) = (hg) · x, ∀g, h ∈ G,

2. ∃e ∈ G s.t. e · x = x, ∀x ∈M (e is the neutral element in G),

3. ∀x, y ∈M , ∃g ∈ G s.t. g · x = y (transitivity),

4.
∫
M

(γ(g)f)(x)dµ(x) =
∫
M
f(g−1 ·x)dµ(x) =

∫
M
f(x)dµ(x) ∀g ∈ G , ∀f ∈ L1,

where (γ(g)f)(x) := f(g−1 ·x). Hence, (γ(g))g∈G is a group of isometry of L1.

Definition 6.1. A continuous real-valued kernel K(x, y) on M ×M is said to be
G-invariant if

K(g · x, g · y) = K(x, y), ∀g ∈ G, ∀x, y ∈M.

If K is the operator on L2 with kernel K(x, y), then K is called G−invariant if
γ(g)K = Kγ(g), ∀g ∈ G, that is,∫

M

K(g−1 · x, y)f(y)dµ(y) =

∫
M

K(x, y)f(g−1 · y)dµ(y), ∀f ∈ L2.

Remark 6.2. (a) If K(x, y) is a continuous G-invariant kernel, then
(i) K(x, x) = K(g · x, g · x) and hence K(x, x) ≡ |M |−1 Tr(K), and

(ii)∫
M

K(x, y)dµ(y) =

∫
M

K(x, g · y)dµ(y) =

∫
M

K(g−1 · x, y)dµ(y), ∀g ∈ G,

and hence 1 := 1M is an eigenfunction of K, i.e.,∫
M

K(x, y)1(y)dµ(y) = λ1(x),

∫
M

∫
M

K(x, y)dµ(x)dµ(y) = λ|M |.
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(b) If K(x, y) is a continuous positive G-invariant kernel, then

ψK(x, y) := K(x, x) +K(y, y)− 2K(x, y)

= 2(C −K(x, y)) = 2(|M |−1 Tr(K)−K(x, y))

is G-invariant and by (8.3),

K̃(x, y) = K(x, y) + |M |−1(Tr(K)− 2C ′).

(c) Suppose ψ(x, y) is a G−invariant N.D. kernel and consider the associated

P.D. kernel K̃, defined as in (8.2). Then K̃(x, y) is G-invariant, and

x 7→ 1

|M |

∫
M

ψ(x, u)dµ(u) ≡ C0 and K̃(x, y) = C0 −
1

2
ψ(x, y).

Thus, in this framework there is one-to-one correspondence up to a constant between
invariant P.D. and N.D. kernels.

6.2. Composition of operators. Let K(x, y) and H(x, y) be two continuous ker-
nels on M×M as above, and let K and H be the associate operators. The operator
K ◦H is also a kernel operator with kernel K ◦H(x, y):

K ◦H(x, y) =

∫
M

K(x, u)H(u, y)dµ(u).

Observe that:

(1) If K(x, y) = K(y, x), H(x, y) = H(y, x) then

K ◦H(x, y) =

∫
M

K(x, u)H(u, y)dµ(u) =

∫
M

H(y, u)K(u, x)dµ(u) = H ◦K(y, x).

(2) If K(x, y) and H(x, y) are G−invariant, then so is K ◦H. Indeed,

K ◦H(g · x, g · y) =

∫
M

K(g · x, u)H(u, g · y)dµ(u)

=

∫
M

K(g · x, g · u)H(g · u, g · y)dµ(u)

=

∫
M

K(x, u)H(u, y)dµ(u) = K ◦H(x, y).

6.3. Group action and metric. Assume that we are in the setting of a Dirichlet
space defined through a non-negative self-adjoint operator on L2(M,µ) just as in
§3.1. Suppose now that,

γ(g)A = Aγ(g), ∀g ∈ G
or equivalently

γ(g)Pt = Ptγ(g), ∀t > 0, ∀g ∈ G,
i.e. ∀t > 0, pt(x, y) isG−invariant. Clearly Γ(f1, f2) is alsoG-invariant: Γ(f1, f2) =
Γ(γ(g)f1, γ(g)f2) and the associate metric ρ(x, y) is G-invariant:

ρ(g · x, g · y) = ρ(x, y), ∀g ∈ G.

Definition 6.3. In the current framework, (M,µ,A, ρ,G) is said to be a two point
homogeneous space if

∀x, y, x′, y′ ∈M s.t. ρ(x, y) = ρ(x′, y′), ∃g ∈ G s.t. g · x = x′, g · y = y′.

In particular, ∀(x, y) ∈M ×M, ∃g ∈ G s.t. g · x = y, g · y = x.
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Theorem 6.4. Let (M,µ,A, ρ,G) be a compact two point homogeneous space.
Then

(1) Any G-invariant continuous kernel K(x, y) is symmetric.
(2) If K(x, y) and H(x, y) are two G-invariant continuous kernels, then K ◦H =

H◦K. In particular, if K(x, y) is a G-invariant continuous kernel, then KA = AK.
(3) Any G-invariant real-valued continuous kernel K(x, y) depends only on the

distance ρ(x, y), that is, there exist a continuous function k : R 7→ R, such that

K(x, y) = k(ρ(x, y)), ∀x, y ∈M.

This theorem is a straightforward consequence of the observations from §6.2 and
the definition of two point homogeneous spaces.

Let now M be a compact Riemannian manifold and assume that A := −∆M is
the Laplacian on M , ρ is the Riemannian metric, and µ is the Riemannian measure.
Also, assume that there exists a compact Lie group G of isometries on M such that
(M,µ,−∆M , ρ,G) is a compact two point homogeneous space. For the connection
of the above setting with Gaussian processes, see [6], [20].

Let 0 ≤ λ1 < λ2 < · · · be the spectrum of −∆M . Then the eigenspaces Hλk :=
Ker(∆M + λk Id) are finite dimensional and

L2(M,µ) =
⊕
k≥1

Hλk .

Let PHλk (x, y) be the kernel of the orthogonal projector onto Hλk . Then if K(x, y)
is a G-invariant positive definite kernel we have the following decomposition of
K(x, y), which follows from Bochner-Godement theorem ([17], [23]):

K(x, y) =
∑
k≥0

νkPHλk (x, y), νk ≥ 0.

7. Gaussian process on the sphere

In this section we apply our main result (Theorem 4.5) to a Gaussian process
parametrized by the unit sphere Sd in Rd+1. This is a Riemannian manifold and a
compact two point homogeneous space. More explicitly,

G = SO(d+ 1), H = SO(d), G/H = Sd.

The geodesic distance ρ on Sd is given by

ρ(ξ, η) = arccos〈ξ, η〉,

where 〈ξ, η〉 is the inner product of ξ, η ∈ Rd+1. Clearly,

∀ξ, η ∈ Sd, ∀g ∈ G, ρ(g ·ξ, g ·η) = ρ(ξ, η), and ∀ξ, η ∈ Sd, ∃g ∈ G s.t. g ·ξ = η.

Thus G acts isometrically and transitively on Sd. Furthermore, ∀ξ, η, ξ′, η′ ∈ Sd s.t.
ρ(ξ, η) = ρ(ξ′, η′) there exists g ∈ G s.t. g · ξ = ξ′ and g · η = η′. Therefore, Sd is a
compact two point homogeneous space.

Let −∆Sd be the (positive) Laplace-Beltrami operator on Sd. As is well known
the eigenspaces of −∆Sd are the spaces of spherical harmonics, defined by

Hλk := Ker(∆Sd + λkId), λk := k(k + d− 1) = k(k + 2ν), k ≥ 0 ν :=
d− 1

2
.
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One has L2(Sd) =
⊕

k≥0Hλk and the kernel of the orthogonal projector PHλk onto
Hλk is given by

PHλk (ξ, η) = Ldk(〈ξ, η〉), Ldk(x) := |Sd|−1
(

1 +
k

ν

)
Cνk (x).

Here Cνk (x), k ≥ 0, are the Gegenbauer polynomials defined on [−1, 1] by the
generating function

1

(1− 2xr + r2)ν
=
∑
k≥0

rkCνk (x).

Therefore,

−∆Sdf =
∑
k≥0

k(k + 2ν)PHλk f

and the invariant continuous positive definite functions on Sd are of the form

K(ξ, η) =
∑
k

νkL
d
k(〈ξ, η〉) =

∑
k

νkL
d
k(cos ρ(ξ, η)),

where ∑
k

νkL
d
k(1) =

∑
k

νkL
d
k(〈ξ, ξ〉) <∞.

Note that

Lνk(1)|Sd| =
∫
Sd
Lνk(〈ξ, ξ〉)dµ(ξ) = dim(Hλk(Sd)) =

(
k + d

d

)
−
(
k − 2 + d

d

)
∼ kd−1.

Let

W ν
k (x) :=

Lνk(x)

Lνk(1)
=
Cνk (x)

Cνk (1)
. Clearly, W ν

k (1) = sup
x∈[−1,1]

|W ν
k (x)| = 1.

Then (see [8])

lim
ν 7→0

Cνk (x)

Cνk (1)
= Tk(x) (= W 0

k (x) by convention),

lim
ν 7→∞

Cνk (x)

Cνk (1)
= xk (= W∞k (x) by convention).

Here Tk is the Chebyshev polynomial of first kind (Tk(cos θ) = cos kθ). The invari-
ant continuous positive definite functions on Sd are of the form

Kν(ξ, η) =
∑
k≥0

aνkW
ν
k (〈ξ, η〉) =

∑
k≥0

aνkW
ν
k (cos ρ(ξ, η)), aνk ≥ 0,

∑
k

aνk <∞.

Clearly,

(7.1)
∑
k

aνkW
ν
k (cos ρ(ξ, η)) =

∑
k

aνk
Lνk(1)

Lνk(cos ρ(ξ, η)), Lνk(1) ∼ kd−1.

Therefore,

νk = |Sd| aνk
dim(Hλk)

= O
( aνk
kd−1

)
.

The following Schoenberg-Bingham result (see e.g. [8]) plays a key role here:
If f is a continuous function defined on [−1, 1], then f(〈ξ, η〉) is a positive definite
function on Sd and invariant with respect to SO(d+ 1) for all d ∈ N if and only if

f(x) =
∑
n≥0

anx
n, where an ≥ 0 and

∑
n≥0

an = f(1) <∞.
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Therefore, for such a function f

f(x) =
∑
k≥0

aνkW
ν
k (x), aνk ≥ 0, and

∑
k≥0

aνk =
∑
k≥0

ak = f(1),

and hence

f(〈ξ, η〉) =
∑
k≥0

aνkW
ν
k (〈ξ, η〉) =

∑
k≥0

aνk
Lνk(1)

Lνk(〈ξ, η〉) = f(cos ρ(ξ, η)).

7.1. Fractional Brownian process on the sphere.

Theorem 7.1. For any 0 < α ≤ 1 the function

ψ(ξ, η) = ρ(ξ, η)α, ξ, η ∈ Sd,
is negative definite, and the associated Gaussian process has almost everywhere
regularity Bγ∞,1, γ < α

2 .

Proof. Consider first the case when α = 1 (Brownian process). We will show that
for some constant C > 0 the function C − ρ(ξ, η) is an invariant positive definite
function. To this end, by Schoenberg-Bingham result we have to prove that there
exists a function

f(x) =
∑

anx
n, with an ≥ 0,

∑
n≥0

an <∞,

such that f(〈ξ, η〉) = f(cos ρ(ξ, η)) = C − ρ(ξ, η). Luckily the function π
2 − arccosx

does the job. Indeed, it is easy to see that

f(x) :=
π

2
− arccosx = arcsinx =

∑
j≥0

( 1
2 )j(

1
2 )j

j!( 3
2 )j

x2j+1

and ∑
j≥0

( 1
2 )j(

1
2 )j

j!( 3
2 )j

=
π

2
(Gauss).

Here we use the standard notation (a)j := a(a+ 1) · · · (a+ j − 1) = Γ(a+ j)/Γ(a).
Therefore,

f(〈ξ, η〉) =
π

2
− arccos〈ξ, η〉 =

π

2
− ρ(ξ, η).

Clearly, |f(〈ξ, η〉)− f(〈ξ, η′〉)| ≤ ρ(η, η′) and by Theorem 4.5 the associated Gauss-
ian process (Zdξ (ω))ξ∈Sd is almost surely in Bs∞,1(Sd) (hence in Lip s) for 0 < s < 1

2 .
Furthermore,

E(Zdξ − Zdη )2 = 2f(1)− 2f(〈ξ, η〉) = 2ρ(ξ, η).

Consider now the general case: 0 < α ≤ 1 (Fractional Brownian process). From
above it follows that ψ(ξ, η) := ρ(ξ, η) is an invariant negative definite kernel.
Then the general theory of negative definite kernels yields that for any 0 < α ≤ 1
the kernel ψα(ξ, η) = ρ(ξ, η)α is invariant and negative definite. Therefore, for a
sufficiently large constant C > 0,

K(ξ, η) = C − 1

2
ρ(ξ, η)α

is an invariant positive definite kernel. On the other hand,

|K(ξ, η)−K(ξ, η′)| = 1

2
|ρ(ξ, η)α − ρ(ξ, η′)α| ≤ 1

2
ρ(η′, η))α.
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By Theorem 4.5 it follows that the associated Gaussian process (Zdξ (ω))ξ∈Sd is

almost surely in Bγ∞,1, γ < α
2 , and hence in Lip s, s < α

2 , and the proof is complete.
�

Remark 7.2. From the definition of the process, we have

E(Zαξ − Zαη )2 = ρ(ξ, η)α.

This directly connects to the regularity proof of such a process using generalization
of Kolmogorov-Csensov inequalities. See for instance [3] and [27].

Remark 7.3. If α > 1, then ρ(ξ, η)α is no more a negative definite function on
the sphere Sd. In fact, to prove such a result, it is suffices to prove it for S1, as the
closed geodesic of Sd are isometric to S1. As S1 is a commutative group, one can
apply the Bochner theorem: K(x − y) is a positive definite function if and only if
the Fourier coefficient of K are nonnegative.

Let α > 0 and let φ be the 2π-periodical function, such that for x ∈ [−π, π], φ(x) =
|x|α, so that on S1 = R/2πZ, φ(x− y) = dS1(x, y)α. Clearly, for any k ∈ Z

φ̂(k) =
1

2π

∫ π

−π
|x|αe−ikxdx =

1

π

∫ π

0

xα cos kxdx.

Integrating by parts we obtain, for k ≥ 1,∫ π

0

xα cos kxdx = −α
k

∫ π

0

xα−1 sin kxdx = − α

kα+1

∫ kπ

0

uα−1 sinudu

and in going further∫ kπ

0

uα−1 sinudu =

k−1∑
j=0

∫ (j+1π

jπ

uα−1 sinudu =

∫ π

0

k−1∑
j=0

(−1)j(u+ jπ)α−1 sinudu.

Now, if α > 1 it is easy to see that for 0 < u < π and k ≥ 1

k−1∑
j=0

(−1)j(u+ jπ)α−1 > 0 if k ≡ 1 (mod 2)

and
k−1∑
j=0

(−1)j(u+ jπ)α−1 < 0 if k ≡ 0 (mod 2).

Therefore, if α > 1, then K(x − y) = C − dS1(x, y)α is never a positive definite
function.

7.2. Regularity of Gaussian processes on the sphere: General result.

Theorem 7.4. Let

f(x) =
∑
n≥0

An
n!
xn, where An ≥ 0, and

An
n!

= O
( 1

n1+α

)
, α > 0.

Then

K(ξ, η) := f(cos〈ξ, η〉), ξ, η ∈ Sd, d ≥ 1,

is an invariant positive definite function and the associated Gaussian process (Zdξ (ω))ξ∈Sd

is almost surely in Bγ∞,1 for γ < α.
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Proof. By Corollary 5.2 it suffices to show that f(x) can be represented in the
following form (see (7.1)):

f(x) =
∑
j

BjW
ν
j (x), 0 ≤ Bj = O

( 1

j1+2α

)
,

implying νj = O
(

1
jd+2α

)
= O(

√
λj)

2α+d. By [8, Lemma 1] and the obvious identity

Γ(x+ n) = (x)nΓ(x) we obtain the representation

xn =
n!

2n

∑
0≤2k≤n

n− 2k + ν

k!(ν)n−k+1

(2ν)n−2k

(n− 2k)!
W ν
n−2k(x).

Substituting this in the definition of f(x) we obtain

f(x) =
∑
n≥0

An
n!
xn =

∑
n≥0

An
2n

∑
0≤2k≤n

n− 2k + ν

k!(ν)n−k+1

(2ν)n−2k

(n− 2k)!
W ν
n−2k(x)

=
∑
j≥0

(j + ν)(2ν)j
j!

W ν
j (x)

∑
n−2k=j

An
2nk!(ν)n−k+1

=
∑
j≥0

(j + ν)(2ν)j
j!

W ν
j (x)

1

2j

∑
k≥0

Aj+2k

22kk!(ν)j+k+1
=:
∑
j≥0

BjW
ν
j (x),

where for the third equality we applied the substitution j = n− 2k and shifted the
order of summation. We also have

Bj :=
(j + ν)(2ν)j

j!2j

∑
k≥0

Aj+2k

22kk!(ν)j+k+1

=
(j + ν)(2ν)j
j!2j(ν)j+1

∑
k≥0

Aj+2k

22kk!(ν + j + 1)k

=
(2ν)j

2jj!(ν)j

∑
k≥0

Aj+2k

22kk!(ν + j + 1)k
.

However, for n > α we have c1(α)
n1+α ≤ Γ(n−α)

n! ≤ c2(α)
n1+α and hence

An
n!

= O
( 1

n1+α

)
⇐⇒ An = O(Γ(n− α)).

We use this to obtain for j > α (with c = c(α))∑
k≥0

Aj+2k

22kk!(ν + j + 1)k
≤ c

∑
k≥0

Γ(j + 2k − α)

22kk!(ν + j + 1)k

= cΓ(j − α)
∑
k≥0

Γ(j + 2k − α)

Γ(j − α)

1

22kk!(ν + j + 1)k

= cΓ(j − α)
∑
k≥0

(j − α)2k

22k

1

k!(ν + j + 1)k

= cΓ(j − α)
∑
k≥0

(j − α
2

)
k

(j − α+ 1

2

)
k

1

k!(ν + j + 1)k
,
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where we used the Legendre duplication formula (see e.g. [4]):

(b)2k

22k
=

Γ(b+ 2k)

22kΓ(b)
=
( b

2

)
k

(b+ 1

2

)
k
.

By the Gaussian identity (see e.g. [4, Theorem 2.2.2])∑
k≥0

(j − α
2

)
k

(j − α+ 1

2

)
k

1

k!(ν + j + 1)k

=
Γ(ν + j + 1)Γ(ν + j + 1− j−α

2 −
j−α+1

2 )

Γ(ν + j + 1− j−α
2 )Γ(ν + j + 1− j−α+1

2 )

=
Γ(ν + j + 1)Γ(ν + 1

2 + α)

Γ(ν + j
2 + 1 + α

2 )Γ(ν + j
2 + 1

2 + α
2 )

and hence

Bj ≤ c
(2ν)j
j!2j(ν)j

Γ(j − α)Γ(ν + j + 1)Γ(ν + 1
2 + α)

Γ(ν + j
2 + 1 + α

2 )Γ(ν + j
2 + 1

2 + α
2 )
.

Applying again the Legendre duplication formula, we get

Γ
(1

2

)
Γ(2ν + j + 1 + α) = Γ

(
ν +

j

2
+ 1 +

α

2

)
Γ
(
ν +

j

2
+

1

2
+
α

2

)
22ν+j+α.

We use this above to obtain for j ≥ 2α

Bj ≤ c
(2ν)j
j!(ν)j

Γ(j − α)Γ(ν + j + 1)Γ(ν + 1
2 + α)

Γ( 1
2 )Γ(2ν + j + 1 + α)2−2ν−α

= c
Γ(2ν + j)Γ(ν)

Γ(j + 1)Γ(2ν)Γ(ν + j)

Γ(j − α)Γ(ν + j + 1)Γ(ν + 1
2 + α)

Γ( 1
2 )Γ(2ν + j + 1 + α)2−2ν−α

= c2α+1(j + ν)
Γ(ν + 1

2 + α)

Γ(ν + 1
2 )

Γ(j − α)

Γ(j − α+ 1 + α)

Γ(2ν + j)

Γ(2ν + j + 1 + α)

≤ c(j + ν)
1

(j − α)1+α

1

(2ν + j)1+α
≤ c

j1+2α
.

Here we used once again the the Legendre duplication formula. It is easy to show
that Bj ≤ c(α), if j < 2α. Therefore, Bj = O

(
1

j1+2α

)
and this completes the

proof. �

Corollary 7.5. Let a > 0, b > 0, c > a+ b, α = c− a− b, and let

Fa,b;c(x) :=
∑
n

(a)n(b)n
(c)n

xn

n!
.

Then Fa,b;c(〈ξ, η〉) is an invariant positive definite function on the sphere Sd and
the associated Gaussian process has regularity Bγ∞,1, γ < α, almost everywhere.

8. Appendix

8.1. Appendix I: Positive and negative definite functions.
We recall in this appendix some well known (or not so well known) facts about

positive definite and negative definite functions. For details we refer the reader to
[5], [7] [38], [9], [17].

Recall first the definitions of positive and negative definite functions:
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Definition 8.1. Given a set M , a real-valued function K(x, y) defined on M ×M
is said to be positive definite (P.D.), if K(x, y) = K(y, x), ∀x, y ∈M , and

∀α1, . . . , αn ∈ R, ∀x1, . . . , xn ∈M,

n∑
i,j=1

αiαjK(xi, xj) ≥ 0.

Clearly, if K(x, y) is P.D. then |K(x, y)| ≤
√
K(x, x)

√
K(y, y). It is well known

that the following characterization is valid:

K(x, y) is P.D. ⇐⇒ K(x, y) = E(ZxZy),

where (Zx)x∈M is some (centered ) Gaussian process.

Definition 8.2. For any u ∈M we associate to K(x, y) the following P.D. function

Ku(x, y) := K(x, y) +K(u, u)−K(x, u)−K(y, u) = E[(Zx − Zu)(Zy − Zu)],

where (Zx − Zu) is the process ”killed” at the point u ∈M.

Clearly,

Ku ≡ K ⇐⇒ K(u, u) = 0.

Definition 8.3. Given a set M , a real-valued function ψ(x, y) defined on M ×M
is said to be negative definite (N.D.), if

ψ(x, y) = ψ(y, x), ∀x, y ∈M, ψ(x, x) ≡ 0, and

∀α1, . . . , αn ∈ R s.t.
∑
i

αi = 0, ∀x1, . . . , xn ∈M,

n∑
i,j=1

αiαjψ(xi, xj) ≤ 0.

The following characterization is valid (see e.g. [7, Proposition 3.2]):

ψ(x, y) is N.D. ⇐⇒ ψ(x, y) = E(Zx − Zy)2,

where (Zx)x∈M is some Gaussian process.

Consequently, if ψ(x, y) is N.D. then ψ(x, y) ≥ 0, ∀x, y ∈ M , and
√
ψ(x, y)

verifies the triangular inequality.
The following proposition is easy to verified.

Proposition 8.4. (a) Let K(x, y) be a P.D. kernel on a set M , and set

(8.1) ψK(x, y) := K(x, x) +K(y, y)− 2K(x, y).

Then ψK is negative definite. The function ψK will be termed the N.D. function
associated to K. In fact, if K(x, y) = E(ZxZy), then ψK(x, y) = E(Zx − Zy)2.
Furthermore, ψK ≡ ψKu , ∀u ∈M .

(b) Let ψ be a N.D. function, and for any u ∈M define

N(u, ψ)(x, y) :=
1

2
[ψ(x, u) + ψ(y, u)− ψ(x, y)].

Thus, if ψ(x, y) = E(Zx−Zy)2, then N(u, ψ)(x, y) := E
[
(Zx−Zu)(Zy−Zu)

]
. Then

N(u, ψ) is P.D. Moreover,

N(u, ψK) = Ku.

(c) If K is P.D., then K(x, y) ≡ constant⇐⇒ ψK ≡ 0.
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Proposition 8.5. Let ψ(x, y) be a real-valued continuous N.D. function on the
compact space M , µ a positive Radon measure, with support M , and set

K̃(x, y) :=
1

2|M |

∫
M

[ψ(x, u) + ψ(y, u)− ψ(x, y)]dµ(u).

Then
(a) K̃ is positive definite, and ψK̃ = ψ.

(b) 1 is an eigenfunction of the operator K̃ with kernel K̃(x, y), that is,∫
M

K̃(x, y)dµ(y) ≡ λ̃, λ̃ =
1

2|M |

∫
M

∫
M

ψ(u, y)dµ(u)dµ(y)(≥ 0).

(c)

∃z ∈M s.t. K̃(z, z) = 0 ⇐⇒ K̃(x, y) ≡ 0 ⇐⇒ ψ(x, y) ≡ 0.

Proof. Parts (a) and (b) are straightforward. For the proof of (c) we first observe
the obvious implications:

ψ(x, y) ≡ 0 =⇒ K̃(x, y) ≡ 0 =⇒ K̃(z, z) = 0, ∀z ∈M.

Now, let K̃(z, z) = 0 for some z ∈M . Then

1

2|M |

∫
M

[ψ(z, u) + ψ(z, u)− ψ(z, z)]dµ(u) = 0.

By definition ψ(z, z) = 0 and hence
∫
M
ψ(z, u)dµ(u) = 0. However, ψ(z, u) is

continuous, ψ(z, u) ≥ 0 and supp (µ) = M . Therefore, ψ(z, u) = 0, ∀u ∈ M . Now,
by the triangular inequality, we obtain for x, y ∈M

0 ≤
√
ψ(x, y) ≤

√
ψ(x, z) +

√
ψ(z, y) = 0,

and hence ψ(x, y) ≡ 0. This completes the proof. �

Remark 8.6. One can verify easily that if K(x, y) is P.D. on M , then

Ku(x, y) := K(x, y) +K(u, u)−K(x, u)−K(y, u)

=
1

2
[ψK(x, u) + ψK(y, u)− ψK(x, y)].

The proof of the following proposition is straightforward.

Proposition 8.7. Let M be a compact space, equipped with a Radon measure µ.
Assume that K(x, y) is a continuous P.D. kernel and as previously let:

ψ(x, y) := ψK(x, y) = K(x, x) +K(y, y)− 2K(x, y) be the associated N.D. kernel,

Ku(x, y) := K(x, y) +K(u, u)−K(x, u)−K(y, u)

=
1

2
[ψ(x, u) + ψ(y, u)− ψ(x, y)],

K̃(x, y) :=
1

2|M |

∫
M

[ψ(x, u) + ψ(y, u)− ψ(x, y)]dµ(u) =
1

|M |

∫
M

Ku(x, y)dµ(u).

Denote by K and K̃ the operators with kernels K(x, y) and K̃(x, y). Then

(8.2) K̃(x, y) = K(x, y) + |M |−1 Tr(K)− |M |−1K1(x)− |M |−1K1(y).
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Moreover, ψK̃ = ψ, K̃u = Ku, and K̃1 = λ̃1, where

λ̃ = Tr(K)− 1

|M |

∫
M

∫
M

K(x, y)dµ(x)dµ(y)

=
1

2|M |

∫
M

∫
M

ψ(u, y)dµ(u)dµ(y) ≥ 0.

In addition,

(8.3) K = K̃ + C ⇐⇒ K1 = λ1

and, if so, λ̃ = (Tr(K)− λ), C = 1
|M | (Tr(K)− 2λ).

Remark 8.8. The following useful assertions can be found in e.g. [7], [38], [9],
[37]. For N.D. functions there exists a functional calculus that has no equivalent
for P.D. functions:

(1) Let F a bounded completely continuous function, i.e.

∀z > 0, ∀n ∈ N, DnF (z) ≥ 0

or equivalently

F (z) =

∫ ∞
0

e−tzdµ(t), µ ≥ 0, µ([0,∞)) <∞.

Then

ψ is N.D. =⇒ F (ψ) is P.D.

(2) If G is a Bernstein function, i.e.

G(z) = az +

∫ ∞
0

(1− e−tz)dµ(t), a ≥ 0, ;µ ≥ 0,

∫ ∞
0

t

1 + t
dµ(t) <∞,

then

ψ N.D. =⇒ G(ψ) is N.D.

For instance we have:

ψ is N.D. ⇐⇒ ∀t > 0, e−tψ is P.D.

ψ is N.D. =⇒ ∀ 0 < α ≤ 1, ψα is N.D.

ψ is N.D. =⇒ log(1 + ψ) is N.D.

8.2. Appendix II: Gaussian probability on separable Banach spaces.
For detailed account of the material in this section we refer the reader to [10].
Let E be a Banach space and let B(E) be the sigma-algebra of Borel sets on

E. Let E∗ be its topological dual, and assume F is a vector space of real-valued
functions defined on E, and γ(F , E) is the sigma-algebra generated by F .

If F = Cb(E,R) is the vector space of continuous bounded functions on E, then
γ(Cb(E,R), E) = B(E) is the Borel sigma-algebra.

If E is separable, it is well known that the sigma-algebra γ(E∗, E) generated by
E∗ is B(E) .

Proposition 8.9. Let E be a separable Banach space. Let H be a subspace of E∗,
endowed with the σ(E∗, E) topology. Then

H is closed ⇐⇒ H is stable by simple limit.
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Proof. The implication⇒ is obvious. We now prove⇐. By Banach-Krein-Smulian
theorem, H is σ(E∗, E)-closed if and only if ∀R > 0, B(0, R)∩H is σ(E∗, E)-closed.
As E is a separable Banach space, we have: For all R > 0

B(0, R) = {f ∈ E∗ : ‖f‖E∗ ≤ R} is metrizable (and compact) for σ(E∗, E).

Hence we only have to verify that for every sequence (fn) ⊂ B(0, R)∩H such that
limn 7→∞ fn = f in the σ(E∗, E)−topology, we have f ∈ B(0, R) ∩H. But clearly
this implies ∀x ∈ E, limn 7→∞ fn(x) = f(x), so we have f ∈ B(0, R) ∩H. �

Corollary 8.10. Let E is a separable Banach space and H is a subspace of E∗.
Then

(1) H
σ(E∗,E)

coincides with the smallest vector space of functions on E, stable
by simple limits containing H.

(2)

γ(H,E) = γ(H
σ(E∗,E)

, E).

(3) If H is a subspace of E∗ separating E, then

γ(H,E) = γ(E∗, E) = B(E).

Proof. (1) Clearly, as E∗ is stable by simple limits (by Banach-Steinhaus theorem),
the smallest vector space of functions on E, stable by simple limits containing H

is contained in E∗ and by the previous proposition it is H
σ(E∗,E)

.
(2) Let γ(H,E) is the sigma-algebra generated by H. The vector subspace V =

{u ∈ E∗ : u, γ(H,E)−measurable} is stable by simple limits. Hence H
σ(E∗,E) ⊂ V .

(3) By the Hahn-Banach theorem, if H is separating, H
σ(E∗,E)

= E∗ and hence

γ(H,E) = γ(E∗, E) = B(E). �

Lemma 8.11. Let E be a separable Banach space, and H be a subspace of E∗

separating E. There is at most one probability measure P on the Borel sets of E
such that, under P , γ ∈ H is a centered Gaussian variable with a given covariance
K(γ, γ′) :

K(γ, γ′) =

∫
E

γ(ω)γ′(ω)DP (ω)

on H. Moreover, if such a probability exists, then

(1) E∗ is a Gaussian space, and E∗
L2(E,P )

is the Gaussian space generated by
H.

(2) There exists α > 0 such that

(8.4)

∫
E

eα‖x‖
2
EdP (x) <∞.

Proof. If K(γ, γ′) is a positive definite function on H, it determines an additive
function on the algebra of cylindrical sets related to H:{

x ∈ E : (γ1(x), . . . , γn(x)) ∈ C
}
, γi ∈ H, C Borelian set of Rn.

Now, the sigma-algebra generated by this algebra is the Borelian of E.

Assume that such a probability P exists . Let H = E∗ ∩ HL2(E,P )
. Clearly

H
L2(E,P )

is the Gaussian space generated by H, and if (γn)n≥1 ∈ H is such
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that ∀x ∈ E, limn 7→∞ γn(x) = γ(x) exists, then clearly γ ∈ E∗ by the Banach-

Stheinhauss theorem, and γ ∈ HL2(E,P )
since a simple limit of random variables in

a closed Gaussian space belongs to this Gaussian space. Therefore, γ ∈ H, which

by Proposition 8.9 implies that H is closed. But H ⊂ H and H
σ(E∗,E)

= E∗ leads
to H = E∗.

Finally, (8.4) is just the Fernique theorem. �

8.2.1. Cameron-Martin space. Let us recall that, due to Fernique theorem, and
Bochner integration we have the following map from E∗ to E :

I : γ ∈ E∗ 7→
∫ E

E

ωγ(ω)dP (ω) ∈ E

as∥∥∥∫ E

E

ωγ(ω)dP (ω)
∥∥∥
E
≤
∫ E

‖ω‖|γ(ω)|dP (ω) ≤
(∫ E

‖ω‖2|dP (ω)
) 1

2 ‖γ‖L2(P,E)

and ∀γ, γ′ ∈ E∗, γ′(I(γ)) =

∫
E

γ′(ω)γ(ω)dP (ω).

Therefore, I can be extended to Ī : E∗
L2(E,P ) 7→ E. The subspace

H ⊂ E, H = Ī(E∗
L2(E,P )

)

with the induced Hilbert structure is the Cameron-Martin space associated to the
Gaussian probability space (E,B(E), P ), (see [10]).

Important special case. Let M be a set and let E be a separable Banach space
of real-valued functions on M . Let

∀x ∈M, f ∈ E δx−→ f(x) ∈ R.

Suppose δx ∈ E∗. So, H = {
∑

finite αiδxi} is dense in E∗ in the σ(E∗, E)− topology.
Let K(x, y) be a positive definite function on M ×M . There is at most one

probability measure P on the Borelian sets of E such that, under P , E∗ is a
Gaussian space and (δx)x∈M is a centered Gaussian process with covariance

K(x, y) =

∫
E

δx(ω)δy(ω)dP (ω), i.e. ∀t ∈ R,
∫
E

e−itδx(ω)dP (ω) = e−
1
2 t

2K(x,x).

The Cameron-Martin space is identified with the Reproducing Kernel Hilbert
Space HK associated to K, i.e. the closure of{

y ∈M 7→ f(y) =
∑
i

λiK(xi, y)}; ‖f‖2HK =
∑
i,j

λiλjK(xi, xj)
}
.

HK is characterized as a Hilbert space of functions on M such that

∀x ∈M,f ∈ HK 7→ f(x) = 〈K(x, .), f〉HK (is continuous).

Therefore, if such a P exists on E, then HK ⊆M .
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