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Abstract An algorithm for fast and accurate evaluation of band-limited functions at
many scattered points on the unit 2-d sphere is developed. The algorithm is based
on trigonometric representation of spherical harmonics in spherical coordinates and
highly localized tensor-product trigonometric kernels (needlets). It is simple, fast,
local, memory efficient, numerically stable and with guaranteed accuracy. Com-
parison of this algorithm with other existing algorithms in the literature is also
presented.

Keywords Spherical harmonics · Evaluation at scattered points · Needlets · Fast
computation
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1 Introduction

The fast and accurate evaluation of band limited functions on the sphere is impor-
tant for many areas such as Geodesy and Geomagnetism. In this article the band
limited functions on the 2-d sphere S

2 will be termed spherical polynomials and
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we are interested in developing an algorithm for efficient evaluation of high degree
(> 2000) spherical polynomials at many (millions) scattered locations on S

2. Our
requirements on the algorithm are to be fast, simple, local, numerically stable, and
memory efficient with the emphasis on its speed and stability.

A natural standard approach to evaluation of a spherical polynomial given by its
coefficients in the standard basis is to

(i) compute the values of the polynomial at regular grid points on S
2, and

(ii) use these to evaluate the polynomial at arbitrary points on S2.

We shall utilize this approach in the present paper.
Regular grid points on S

2 will be points which are equally spaced with respect to
their spherical coordinates (θ, λ). This kind of grid points have the obvious drawback
that they concentrate around the poles, but this is fully compensated by the possibility
of applying fast Fourier methods. Here we adhere to the fundamental principle, put
forward in [9], that high degree spherical polynomials are better represented by their
values at regular grid points than by their coefficients.

In the present paper we focus entirely on problem (ii). Our key observation is that
a simple extension of every spherical polynomial expressed in spherical coordinates
is a trigonometric polynomial in two variables and, therefore, can be represented by
highly localized tensor product trigonometric kernels (needlets). This allows us to
develop a simple and effective evaluation algorithm.

Thus our algorithm for evaluation of spherical polynomials hinges on our ability
to rapidly and accurately compute the values of high degree univariate trigonometric
polynomials given their values at equally distributed points. For this we deploy highly
localized reproducing kernels of the formKN(x) = 1+2

∑
n ϕ

(
n
N

)
cos nx, where the

cutoff function ϕ is smooth, ϕ = 1 on [0, 1] and suppϕ ⊂ [0, 1+τ ], for some τ > 0.
We term this kind of kernels trigonometric needlets. Clearly, KN ∗ f = f for every
trigonometric polynomial f of degree ≤ N . Denoting by X a set of M (sufficiently
large) equally spaced grid points on T = R/2πN the approximating needlet operator
takes the form

ΦN,δf (x) =
∑

ξ∈X :ρ(ξ,x)≤δ

M−1KN(x − ξ)f (ξ),

where δ > 0 is a small parameter and ρ(x, y) is the distance on T. As will be shown
in Section 3 the superb localization of the needlet kernel leads to a short sum above
and hence to a fast algorithm, while keeping the error of approximation small. A thor-
ough analysis of the relationship between the selection of the cutoff function ϕ, the
parameters δ, τ , the (relative) error ε and the degree N is conducted. It is shown that
for practical purposes the optimal δ ≈ 2 ln 1/ε

τN
in the case of our best cutoff function ϕ.

The operator norms of ‖ΦN,δ‖∞→∞ are explored for different values of τ , ε and N .
It turns out that ‖ΦN,δ‖∞→∞ ≈ 2 and these norms are practically independent of
the degree N . A surprising feature of the trigonometric needlet operator ΦN,δ is that
ΦN,δf interpolates f for the minimum value of M and symmetric cutoff functions
ϕ.



Numer Algor (2016) 71:585–611 587

The trigonometric needlet algorithm is compared with two other algorithms
for fast evaluation of trigonometric polynomials: (i) Spline interpolation based on
Lagrange interpolation, and (ii) Nonequispaced fast Fourier transform (NFFT) with
Kaiser–Bessel window function. A quantitative analysis of the error and complex-
ity of the algorithm is presented. The upsides and downsides of these algorithms are
clearly delineated.

As indicated above our algorithm for fast evaluation of spherical polynomials
at many scattered points relies on the simple fact that every spherical polynomial
expressed in spherical coordinates readily extends as a trigonometric polynomial in
two variables. The tensor product needlet operator takes the form

Φ2
N,δf (θ, λ) = 1

4KL

∑

k:ρ(θ,θk)≤δ

∑

�:ρ(λ,λk)≤δ

KN(θ − θk)KN(λ − λ�)f (θk, λ�), (1.1)

where {(θk, λ�)} are 4KL equally distributed grid points in spherical coordinates. Our
algorithms uses the operator Φ2

N,δ for fast and accurate evaluation or approximation
of high degree spherical polynomials. This algorithm inherits all valuable features
of the univariate algorithm for evaluation of trigonometric polynomials at scat-
tered points mentioned above, namely, it is fast, numerically stable, local, memory
efficient, and simple.

To put this algorithm in perspective we would like to compare it briefly with our
spherical needlet algorithm from [9]. In [9] we used reproducing kernels of the form
KN(x · ξ) with KN(u) = ∑

n ϕ
(

n
N

)
(2n + 1)Pn(u), where Pn is the nth degree Leg-

endre polynomial and ϕ is a cutoff function as above. This kernel is highly localised
and the operator ΦNf (x) := (4π)−1

∫
S2
KN(x · ξ)f (ξ)dσ(ξ) reproduces spherical

polynomials of degree ≤ N . In [9] we discretize this operator by using a cubature
formula on the sphere with nodes X and weights wξ , ξ ∈ X , and then truncate it to
derive an approximating operator of the form:

Φ�
N,δf (x) :=

∑

ξ∈X :ρ(ξ,x)≤δ

wξKN(x · ξ)f (ξ). (1.2)

Here X is a set of regular grid points on S
2, ρ is the geodesic distance on S

2 and
δ > 0 is a small parameter. The idea is the same, the superb localization of KN(x · ξ)

allows to use a short sum in (1.2) and at the same time to keep the error under control.
The algorithm that uses the operator Φ�

N,δ in the place of Φ2
N,δ , however, is more

complicated and is computationally more costly. More detailed comparison between
these two methods is given in Section 5.4. In Section 5.4 we also compare our tensor
product trigonometric needlet method with the tensor product Lagrange interpolation
method and the nonequispaced fast spherical Fourier transform algorithm of Kunis
and Potts [16].

A Matlab realization of the tensor product trigonometric needlet algorithm is cre-
ated and its performance is compared to our spherical needlet software on examples
of spherical polynomials of degree 2160.

This article is a followup of [9], where the spherical needlet algorithm mentioned
above is developed. The main ideas of this paper are rooted in [9], which is also a
useful source for references on the subject.
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The organization of the paper is as follows. The spherical harmonics standard basis
is reviewed in Section 2 and the problem for fast evaluation of spherical polynomi-
als is stated clearly. The development of our needlet algorithm for fast evaluation
of univariate trigonometric polynomials and its comparison with relevant algorithms
occupy Section 3. The general idea of the tensor product trigonometric needlet algo-
rithm is presented in Section 4. The tensor product trigonometric needlet algorithm
on S2 is developed in Section 5, where it is also compared with other algorithms. The
results of experiments are also provided in Section 5.

Notation We shall denote by c, c1, c2, . . . positive constants which may vary at
every appearance and by c̄, c̃, c′, c′′ and the alike positive constants which preserve
their values throughout the paper. The relation f ∼ g between functions f and g

means c1f ≤ g ≤ c2f , while f ≈ g is used when f/g → 1 under an appropriate
limit of the argument.

2 Background and statement of the problem

We next review the basics of spherical harmonics and state precisely the problems of
interest to us.

2.1 Spherical harmonics: background

Denote by Hn (n ≥ 0) the space of all spherical harmonics of degree n on S
2. We

shall represent spherical harmonics in spherical coordinates. Recall the relationship
between the cartesian coordinates (x1, x2, x3) and the spherical coordinates (θ, λ),
0 ≤ θ ≤ π , 0 ≤ λ < 2π , of a point x on the unit 2-d sphere S2: x = (x1, x2, x3) =
(sin θ cos λ, sin θ sin λ, cos θ).

The standard orthonormal basis {C̃nm}nm=0 ∪ {S̃nm}nm=1 forHn is defined in terms
of the associated Legendre functions Pnm. Namely, for x = (θ, λ)

C̃nm(x) = qnmPnm(cos θ) cosmλ, m = 0, 1, . . . , n,

S̃nm(x) = qnmPnm(cos θ) sinmλ, m = 1, 2, . . . , n,
(2.1)

where Pnm(u) = (1 − u2)m/2
(

d
du

)m
Pn(u) with Pn being the nth degree Legendre

polynomial and the coefficients qnm are selected so that C̃nm, S̃nm are normalized
in L2(S2). We refer the reader to [20] and [17] for more details about spherical
harmonics.

In the standard basis (2.1) a spherical polynomial f of degree ≤ N is usually
given by its coefficients {anm, bnm}, i.e.

f (x) =
N∑

n=0

n∑

m=0

(
anmC̃nm(x) + bnmS̃nm(x)

)
. (2.2)

We shall denote by PN the set of all spherical polynomials of degree ≤ N .
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Extension of spherical polynomials in spherical coordinates From (2.1) we have
for θ ∈ [0, π ] and λ ∈ [0, 2π)

C̃nm(θ, λ) = qnm sinm θ P
(m)
n (cos θ) cosmλ,

S̃nm(θ, λ) = qnm sinm θ P
(m)
n (cos θ) sinmλ.

(2.3)

We use these identities to extend C̃nm and S̃nm for all θ, λ ∈ R, and in turn we use
the latter and (2.2) to extend the spherical polynomial f (θ, λ) for θ, λ ∈ R.

The following claim will play a key role in this article:

Proposition 2.1 Let f be a spherical polynomial of degree ≤ N and assume that in
spherical coordinates f is extended as above. Then f (θ, λ) can be expressed in the
form

f (θ, λ) =
N∑

k=−N

N∑

�=−N

ck�e
i(kθ+�λ), (2.4)

where cnm are (complex) coefficients. More generally, the restriction of f over every
circle on S2 is a trigonometric polynomial of degree ≤ N .

Furthermore,

f (−θ, λ + π) = f (θ, λ) for θ, λ ∈ R. (2.5)

Proof The representation (2.4) is immediate from (2.3). It is well known that each
spaceHn of spherical harmonics is invariant with respect to the rotation group on S2.
Therefore, by applying an appropriate rotation (2.2) and (2.1) imply that the restric-
tion of f over every circle on S

2 is a trigonometric polynomial of degree ≤ N .
It is easily seen that C̃nm and S̃nm verify property (2.5) and hence (2.5) holds in
general.

2.2 The problem of spherical polynomial evaluation

We are interested in the following

Problem 1 Given a spherical polynomial f with its coefficients {anm, bnm}, evaluate
f (x) at arbitrary (scattered) points x ∈ Z , on the sphere S2 with prescribed precision
ε0 > 0, measured in the uniform norm.

We split this problem into two problems:

Problem 2 Given a spherical polynomial f with its coefficients {anm, bnm}, evaluate
f (ξ) at all points ξ from a regular grid X on S2.

Problem 3 Given the values f (ξ) of a spherical polynomial f at regular grid points
ξ ∈ X , evaluate f (x) at arbitrary (scattered) points x ∈ Z , on the sphere S

2 with
precision ε0.
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Regular grid points on S2 will be points {(θk, λ�)} in spherical coordinates, where
{λ�} and {θk} are equally distributed. Given K, L ≥ 1 we define two sets of regular

grid points X (i) =
{
ξ

(i)
k,� = (θ

(i)
k , λ

(i)
� )

}
, i = 1, 2, by

θ
(1)
k = π

K
k, k = 0, 1, . . . , K; λ

(1)
� = π

L
�, � = 0, 1, . . . , 2L − 1; (2.6)

and

θ
(2)
k = π

K

(

k + 1

2

)

, k = 0, 1, . . . , K − 1; λ
(2)
� = π

L
�, � = 0, 1, . . . , 2L − 1.

(2.7)
Here in X (1) we consider only one node for k = 0 (the North Pole) and one node for
k = K (the South Pole).

The relations between K, L and N above will be given in Section 5.
In this paper we focus on Problem 3. We shall use the representation of spherical

polynomials from Proposition 2.1 to develop an effective algorithm for this problem.

3 Fast and accurate evaluation of trigonometric polynomials

The first step in developing our method for evaluation of spherical polynomials is
to develop such an algorithm in the univariate case. Our method relies on highly
localized kernels (needlets) which reproduce trigonometric polynomials.

3.1 Trigonometric needlets

As is well known the N th partial sum of the Fourier series of a 2π -periodic function
f takes the form

SNf (x) = 1

2π

∫ π

−π

DN(x − y)f (y)dy, where DN(x) = 1 + 2
N∑

n=1

cos nx

is the Dirichlet kernel. Clearly f = SNf for every f ∈ ΠN , where ΠN denotes the
set of all trigonometric polynomials of degree ≤ N .

The Dirichlet kernel is poorly localized and hence not suitable for evaluation of
trigonometric polynomials. Instead we shall utilize reproducing operators with highly
localized kernels defined by

KN(x) = 1 + 2
∞∑

n=1

ϕ
( n

N

)
cos nx, (3.1)

where ϕ is a cutoff function with the properties:

ϕ ∈ C[0, ∞); ϕ(t) = 1, t ∈ [0, 1]; 0 ≤ ϕ(t) ≤ 1, t ∈ [1, 1 + τ ];
and ϕ(t) = 0, t ≥ 1 + τ ; (3.2)

for some τ > 0.
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Consider the linear operator

Φ̃Nf (x) = KN ∗ f (x) := 1

2π

∫ 2π

0
KN(x − y)f (y) dy. (3.3)

Clearly,

Φ̃Nf = f, ∀f ∈ ΠN, and (3.4)

Φ̃Nf ∈ ΠNτ −1, ∀f ∈ L1(T), with Nτ = �N + τN� , (3.5)

where T = R/2πN = [0, 2π). The kernel KN can be viewed as a mollified version
of the Dirichlet kernel.

Our method relies heavily on the fact that for cutoff functions ϕ ∈ C∞ the kernel
KN from (3.1) has nearly exponential localization. This follows from the following
somewhat more general assertion.

Theorem 3.1 Let ϕ ∈ C∞(R) be compactly supported and set

KN(x) :=
∑

n∈Z
ϕ
( n

N

)
einx.

Then for any σ > 0 there exists a constant cσ > 0 such that

|KN(x)| ≤ cσ N(1 + N |x|)−σ , |x| ≤ π. (3.6)

This claim is known and easy to prove but nowhere to be found in the standard
Fourier series literature, see [10] for a proof.

The nearly exponential localization of KN can be improved to subexponential by
selecting the cutoff function ϕ ∈ C∞[0, ∞) to be with “small” derivatives. As is
shown in [10, Theorem 3.1] for any ε > 0 there exists a cutoff function ϕ satisfying
(3.2) such that

‖ϕ‖∞ ≤ c,
1

k! ‖ϕ
(k)‖∞ ≤ c

(
c′ [ln(e + k − 1)]1+ε

)k

, k = 1, 2, . . . (3.7)

for some constants c, c′ > 0 depending only on ε and τ . (A more general statement
is established in [11, Theorem 2.3].)

Using this kind of cutoff functions we get the following sub-exponential localiza-
tion result for the kernels KN (see [10, Theorem 5.1]):

Theorem 3.2 If ϕ satisfies (3.2) and (3.7), then the kernels KN from (3.1) obey

|KN(x)| ≤ c1N exp

{

− c2N |x|
[ln(e + N |x|)]1+ε

}

, |x| ≤ π, (3.8)

where c1, c2 > 0 are constants depending only on ε and τ . Here ε > 0 cannot be
removed.

Observe that for cutoff functions ϕ ∈ C∞ (in fact, much less is needed) the

sequence of operators
{
Φ̃N

}∞
N=0

is uniformly bounded on Lp, i.e.

‖Φ̃Nf ‖Lp(T) ≤ c‖f ‖Lp(T), ∀f ∈ Lp(T), 1 ≤ p ≤ ∞, (3.9)
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with a constant c > 0 depending only on ϕ. This is immediate from the inequality
1
2π

∫
T

|KN(x)| dx ≤ c < ∞, which follows from (3.6) with some σ > 1.

3.2 Discrete trigonometric needlet operators

We next discretize the operator Φ̃N from (3.3) by using the simple quadrature formula

1

2π

∫ 2π

0
F(y) dy ∼

∑

ξ∈X
M−1F(ξ), (3.10)

where
X = XM := {ξk = 2πM−1k : k = 0, 1, . . . ,M − 1}. (3.11)

It is readily seen that this quadrature formula is exact for trigonometric polynomials
F of degree ≤ M − 1.

Applying quadrature (3.10) to the integral in (3.3) we obtain a discrete counterpart
of the operator Φ̃N , namely,

ΦNf (x) :=
∑

ξ∈X
M−1KN(x − ξ)f (ξ). (3.12)

In the next theorem we collect some simple properties of this operator.

Theorem 3.3 Let ϕ satisfy (3.2) for some τ > 0 and assume KN , defined in (3.1),
obeys (3.6) with some σ > 1. If M ≥ N , then ΦN satisfies:

ΦN : �∞(X ) → C(T) is a bounded linear operator; (3.13)

‖ΦN‖�∞(X )→C(T) ≤ C, whereC > 0 is a constant independent of N; (3.14)

ΦNf ∈ ΠNτ −1 ∀f ∈ �∞(X ) with Nτ = �N + τN� . (3.15)

Moreover, if M ≥ N + Nτ , then

ΦNf = f ∀f ∈ ΠN ; (3.16)

‖f − ΦNf ‖C(T) ≤ (‖ΦN‖ + 1)EN(f )∞ ∀f ∈ C(T). (3.17)

Here EN(f )∞ := infg∈�N
‖f − g‖∞.

Proof The boundedness of the operator ΦN in (3.13) follows from (3.12). For (3.14)
we use (3.6) to obtain

‖ΦN‖�∞(X )→C(T) ≤ cσ (N/M)

M/2∑

m=0

2(1 + 2πmN/M)−σ ≤ C.

Further, (3.15) follows from (3.12) and KN ∈ ΠNτ −1. Identity (3.16) follows from
(3.4) because KN(x −·)f (·) is a trigonometric polynomial of degree N +Nτ − 1 for
every x. Finally, (3.17) follows from (3.16) and (3.13).

Observe that Theorem 3.3 yields

ENτ −1(f )∞ ≤ ‖f − ΦNf ‖C(T) ≤ cEN(f )∞ for f ∈ C(T),
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which shows the excellent approximation property of the sequence of operators
�N .

However, the number of terms in (3.12) is quite large for any meaningful prac-
tical application. Having in mind the excellent localization of the kernel KN (see
Theorems 3.1 and 3.2) we truncate the sum in (3.12) and define

�N,δf (x) :=
∑

ξ∈X
ρ(x,ξ)≤δ

M−1KN(x − ξ)f (ξ), (3.18)

where δ > 0 is a small parameter and ρ(x, y) = minn∈Z |x−y−2πn| is the distance
on T.

In the following theorem we shall prove that a sufficient condition for evaluating
f (x), f ∈ ΠN, by ΦN,δ(f, x) with error ε‖f ‖∞ is

|KN(x)| ≤ ε for δ ≤ |x| ≤ π. (3.19)

However, the bounds obtained in Theorem 3.6 below for δ satisfying (3.19) are not
quite satisfactory. Observe that the majorants of |KN(x)| given in (3.6) and (3.8),
after reaching the value ε for x = δ from (3.19), preserve their fast decay for δ < x <

π . This means that it may be possible to select a smaller value of δ in the operator
ΦN,δ and still have the same relative error ε. This can be achieved, for example, by
replacing the uniform condition in (3.19) by an integral one:

δ = δ1 + 2πM−1,
1

π

∫ π

δ1

M(KN, t) dt = ε, (3.20)

whereM is the maximal function

M(g, x) := sup
y∈[x,2π−x]

|g(y)|, 0 ≤ x ≤ π. (3.21)

Theorem 3.4 Let N, M ∈ N, τ > 0, M ≥ N + Nτ , and 0 < ε ≤ 1. Assume that
ϕ satisfies (3.2), KN obeys (3.6) for some σ > 1 and δ is determined by (3.19) or
(3.20). Then the operator ΦN,δ , defined in (3.18), satisfies

ΦN,δ : �∞(X ) → L∞(T) is a bounded linear operator; (3.22)

‖ΦNf − ΦN,δf ‖L∞(T) ≤ ε‖f ‖�∞(X ) ∀f ∈ �∞(X ); (3.23)

‖f − ΦN,δf ‖L∞(T) ≤ ε‖f ‖�∞(X ) ∀f ∈ ΠN ; (3.24)

‖f − ΦN,δf ‖L∞(T) ≤ (C + 1)EN(f )∞ + ε‖f ‖�∞(X ) ∀f ∈ C(T), (3.25)

where C is the constant from (3.14).

Proof The boundedness of the operator ΦN,δ in (3.22) follows from (3.18). For the
proof of (3.23) we first assume that δ is determined by (3.19). Then

∑

ξ∈X
ρ(x,ξ)>δ

M−1|KN(x − ξ)| ≤
∑

ξ∈X
ρ(x,ξ)>δ

M−1 ε ≤ ε. (3.26)
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Second, assume that δ is determined by (3.20). Using thatM(g, ·) is a non-increasing
function in [0, π ] we infer from (3.21)

1

M
|KN(y)| ≤ 1

2π

∫ |y|

|y|−2πM−1
M(KN, t) dt for 2πM−1 ≤ |y| ≤ π.

Now we use this inequality separately for x − ξ = y ∈ (δ, π ] and for x − ξ = y ∈
[−π,−δ) and apply (3.20) to obtain for every x ∈ T

∑

ξ∈X
ρ(x,ξ)>δ

M−1|KN(x − ξ)| ≤ 2
1

2π

∫ π

δ−2πM−1
M(KN, t) dt = ε. (3.27)

In light of (3.12) and (3.18), estimates (3.26–3.27) yield

|�Nf (x) − �N,δf (x)| ≤
∑

ξ∈X
ρ(x,ξ)>δ

M−1 |KN(x − ξ)| ‖f ‖�∞(X ) ≤ ε‖f ‖�∞(X ).

This completes the proof of (3.23). We now appeal to Theorem 3.3 to complete the
proof of Theorem 3.4.

3.3 Selection of the cutoff function ϕ

Our choice of a cutoff function ϕ satisfying (3.2) will be guided by the following
rule: Find the smallest possible δ for which (3.23) holds. We first satisfy (3.19), which
implies (3.23).

3.3.1 The minimum δ for which (3.19) holds

Given τ > 0, a cutoff function ϕ satisfying (3.2), 0 < ε ≤ 1, and N ≥ 1 we denote
by δ∞(ϕ; ε, τ,N) the minimum δ for which (3.19) holds. Functions ϕ that produce
small δ are deemed good cutoff functions. Set

δ∞(ε, τ, N) = inf
ϕ

δ∞(ϕ; ε, τ,N),

where the infimum is taken on all ϕ satisfying (3.2). We are interested in establishing
lower and upper bounds on δ∞(ε, τ, N).

The upper bound relies on the following

Theorem 3.5 Let N ∈ N, σ ∈ R, 1 ≤ σ < N , and τ > 0. There exist a cutoff
function ϕ (defined by (7.4) in [9]) satisfying (3.2) and absolute constants c0, c1 > 0
such that

|KN(x)| ≤ c0(1 + τ)N min

{

1,

(
c1σ

τN |x|
)σ }

, |x| ≤ π. (3.28)

This theorem follows from [9, Theorem 7.1] with α = β = −1/2 and k = �σ�.
Theorem 3.5 provides an explicit form for the constant cσ in Theorem 3.1 under

the additional conditions (3.2), namely cσ = c0(1 + τ)(c1σ/τ)σ . Note that the form
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of dependence of cσ on the length of support 2 + 2τ and the rate of decay σ cannot
be essentially improved as follows from [12].

Matching lower and upper bounds for δ∞(ε, τ, N) are given in

Theorem 3.6 Let N ∈ N, 0 < ε ≤ 1 and τ ≥ 1. There exist absolute constants
c−, c+ > 0 such that for N > 2 ln(c0(1 + τ)/ε) with c0 from Theorem 3.5 we
have

c− ln(1/ε) + lnN + ln(1 + τ)

τN
≤ δ∞(ε, τ, N) ≤ c+ ln(1/ε) + lnN + ln(1 + τ)

τN
.

(3.29)

Proof Theorem 3.5 with δ = ec1σ/(τN) and σ = ln(c0(1 + τ)N/ε) (hence σ =
ln(c0(1 + τ)/ε) + lnN < N/2 + N/2 = N) implies (3.19). Thus, the inequality
δ∞(ε, τ, N) ≤ δ proves the upper bound in (3.29).

According to the proof of Theorem 3.2 in [9] a lower bound δ0 ≤ δ∞(ε, τ, N) is
determined as

δ0 = arccos(8S(S + 1)−2 − 1), S =
(
R +

√
R2 − 1

)1/ν
, R = ε−1KN(0),

where ν = �N + τN�−1 is the degree ofKN . From the above we infer the following
asymptotic representation of δ0 for large N and small ε

δ0 ≈ ln(2KN(0)/ε)

ν
>

ln(4(1 + c̃τ )N/ε)

2τN
, (3.30)

where the estimate KN(0) > 2(1+ c̃τ )N with some constant c̃ depending only on ϕ

is used in the last inequality. This completes the proof.

Remark 3.1 In fact, the upper bound in (3.29) holds for 0 < τ < ∞. The condition
τ ≥ 1 is used only in obtaining the lower bound via the inequality in (3.30). For
0 < τ < 1 the denominator of the lower bound in (3.29) is (1 + τ)N and does not
match the denominator of the upper bound. Note that the localization of KN gets
worse when τ → 0 and necessarily δ∞(ε, τ, N) → π in this case.

Remark 3.2 The upper estimate in (3.29) is achieved by Wσ∞ functions ϕ which
vary with σ and ε. This estimate cannot be achieved by any single “universal” (i.e.
independent on N and ε) cutoff function ϕ, no matter how smooth it might be.

3.3.2 The minimum δ for which (3.20) holds

As before, we set
δ1(ε, τ, N) = inf

ϕ
δ1(ϕ; ε, τ,N),

where the infimum is taken over all ϕ satisfying (3.2) and δ1(ϕ; ε, τ,N) is δ1 from
(3.20). From (3.19) and (3.20) we get immediately

δ1(ϕ; ε, τ, N) ≤ δ∞(ϕ; ε, τ,N).

Hence, the upper bound from Theorem 3.6 holds for δ1(ε, τ, N) as well. But using
again Theorem 3.5 one can improve this estimate as follows:
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Theorem 3.7 There exist absolute constants c#, c∗ > 0 such that for N ∈ N, 0 <

ε ≤ e−1, N > ln(1/ε) + c∗ and τ ≥ 1 we have

δ1(ε, τ, N) ≤ c#
ln(1/ε)

τN
. (3.31)

Proof Estimate (3.28) holds with KN(x) replaced by M(KN, x) due to the
monotonicity of the right-hand side in (3.28). Using this we obtain

1

π

∫ π

δ1

M(KN, t) dt ≤ c0(1 + τ)N

π

∫ ∞

δ1

( c1σ

τNt

)σ

dt

= c0c1σ(1 + τ)

πτ

∫ ∞
τN
c1σ

δ1

v−σ dv = c0c1σ(1 + τ)

π(σ − 1)τ

(
c1σ

τNδ1

)σ−1

.(3.32)

Set κ := | ln(c0c1)|+2, σ := ln(1/ε)+κ and δ1 := ec1σ/(τN). Noticing that σ ≥ 3
and τ ≥ 1 imply σ(1+τ)

π(σ−1)τ < 1, we infer from (3.32)

1

π

∫ π

δ1

M(KN, t) dt < c0c1e
−σ+1 ≤ c0c1e

− ln(1/ε)−κ+1 < ε. (3.33)

Thus, (3.33) proves the theorem with c# = ec1(κ + 1) and c∗ = κ (which leads to
N > σ ).

Note that for a fixed ε the upper bound for δ1(ε, τ, N) in (3.31) with the increase
of N becomes smaller than the lower bound for δ∞(ε, τ, N) in (3.29). This fact jus-
tifies the replacement of criterion (3.19) by criterion (3.20). Note that the product
Nδ1(ε, τ, N) is bounded from above by a quantity depending on ε and τ but not on
N . This means that the number of terms in (3.18) is independent of N and we can
use ΦN,δ for very high degrees N .

3.3.3 Selection of ϕ

During the testing of our algorithm we determined δ1 according to two criteria: (3.20)
and

δ = δ1 + 2πM−1,
1

π

∫ π

δ1

|KN(t)| dt = ε. (3.34)

For our best cutoff functions ϕ both criteria give very close values of δ1 for var-
ious ε, τ and N . Therefore, for practical applications one can determine δ1 using
(3.34) rather than (3.20). On the other hand, one cannot drop the second term in
δ := δ1+2πM−1 because there are functions f for which ‖ΦNf −ΦN,δf ‖L∞(T) >

ε‖f ‖�∞(X ), whenever δ is taken to be δ1. Note that the use of δ1 in (3.18) in the place
of δ would decrease the number of terms exactly by 2.

For fixed ϕ, ε, τ and N it is easy to write a code for approximate computa-
tion of δ1(ϕ; ε, τ,N) from (3.20) or (3.34) and thus to compare the values of δ1 for
different ϕ’s. This approach guided us in selecting a good cutoff function ϕ for our
purposes.
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We work with cutoff functions ϕ satisfying (3.2), which for t ∈ [1, 1 + τ ] are
given by

ϕ(t) = κ−1
∫ 1

(t−1)/τ
eb

√
v(1−v) dv, κ =

∫ 1

0
eb

√
v(1−v) dv, b > 0. (3.35)

In (3.35) b is a parameter, which is given by

b = 4.64 log10(1/ε) − 0.52 (3.36)

provided 4 < log10(1/ε) < 11 and τ ≥ 1.
The values of δ1(ϕ; ε, τ, 1000) for various ε and τ are given in Table 1.
The computed values of δ1(ϕ; ε, τ, N) for ϕ from (3.35) with b from (3.36) can

be very well approximated by the expression

δ1(ϕ; ε, τ, N) ≈ c̃
ln(1/ε)

τN
, c̃ = 2. (3.37)

In fact all values of δ1(ϕ; ε, τ, N)τN/ log(1/ε) for N = 1000 in Table 1 are between
1.9622 and 2.0031. Note that the approximation (3.37) corresponds to the upper limit
from (3.31). Moreover, our computations show that the quantity Nδ1(ϕ; ε, τ,N) is
practically a constant (less than 2 % deviation) for 100 ≤ N ≤ 10 000 for any fixed
ε and τ in the specified range.

3.3.4 Operator norms

The norms of Φ̃N , ΦN and ΦN,δ as operators from C[0, 2π) into L∞[0, 2π) are very
small, quite like the norms of their analogues on the sphere (cf. [8, Section 5.2]). The
norm of the integral needlet operator �̃N from (3.3) is given by

‖Φ̃N‖C[0,2π)→C[0,2π) = 1

2π

∫ π

−π

|KN(t)|dt

and the norms of the discrete needlet operators ΦN from (3.12) and ΦN,δ from (3.18)
are given by

‖ΦN‖C[0,2π)→L∞[0,2π) = sup
x∈[0,2π)

1
M

∑

ξ∈X
|KN (x − ξ)| ,

‖ΦN,δ‖C[0,2π)→L∞[0,2π) = sup
x∈[0,2π)

1
M

∑

ξ∈X
ρ(x,ξ)≤δ

|KN (x − ξ)| .

Table 1 Values of δ1(ϕ; ε, τ, 1000) for ϕ from (3.35–3.36)

τ\ε 10−5 10−6 10−7 10−8 10−9 10−10

1 0.02259 0.02744 0.03219 0.03678 0.04136 0.04585

2 0.01147 0.01374 0.01614 0.01834 0.02071 0.02300

3 0.00762 0.00922 0.01073 0.01224 0.01370 0.01537

4 0.00573 0.00689 0.00803 0.00917 0.01030 0.01141
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Their values for various ε, τ , M = �(2 + τ)N� and ϕ from (3.35–3.36) are given in
Table 2. Note that ϕ depends on both ε and τ and that 0 < ‖ΦN‖ − ‖ΦN,δ‖ < ε.

Our computations also show that these norms are practically independent of the
degree N .

3.3.5 Trigonometric needlet algorithm

We put forward the following algorithm for solving Problem 3.
Input: N , ε, M (M > 2N ), X = {ξk = 2πk/M, k = 0, . . . , M − 1}, polynomial

values f (ξ), ξ ∈ X , and scattered points x ∈ Z .
Pre-computation:

1. Determine τ = M/N − 2.
2. For ε, τ and ϕ given by (3.35–3.36) determine ϕ(n/N).
3. Determine δ = δ1 + 2π/M with δ1 from (3.37).
4. For ϕ and δ from Steps 2–3 approximate KN(x) for x ∈ [0, δ] (see [9, Section

3.3]).

Computation: For every x ∈ Z compute the approximate value f̃ (x) = ΦN,δf (x)

of f (x) using (3.18).
Output: The approximate values f̃ (x), x ∈ Z .
We next determine the complexity of all steps. The values ϕ(n/N) in Step 2 can be

computed in O(N) operations. Step 4 requires O(N ln 1/ε) operations. (We follow
the kernel evaluation approach described in [9, Section 3.3]. Trigonometric polyno-
mial evaluation is done by the Newbery modification of the Clenshaw recurrence
[18].) The total complexity of the preparatory Steps 1–4 is O(N ln 1/ε).

From inequality (3.31) it follows that the approximate evaluation of f by (3.18)
at a single point requires O(ln 1/ε) operations. Thus, the total count of operations is
O(N ln 1/ε + |Z| ln 1/ε), where |Z| stands for the number of elements in Z .

3.4 Interpolating needlets

One surprising property of the trigonometric needlet operators is that ΦNf and
ΦN,δf interpolate f at the knots of X for the minimum possible value of M , i.e.

Table 2 Uniform norms of the integral operator Φ̃N and the discrete operators ΦN and ΦN,δ for N =
1000 and various values of τ and ε

‖Φ̃N‖ ‖ΦN‖ and ‖ΦN,δ‖

τ\ε 10−5 10−7 10−9 10−11 10−5 10−7 10−9 10−11

1 1.6874 1.7515 1.8002 1.8395 2.0583 2.1591 2.2357 2.2975

2 1.5227 1.5869 1.6357 1.6750 1.7987 1.8999 1.9768 2.0387

3 1.4485 1.5127 1.5616 1.6010 1.6816 1.7830 1.8600 1.9221

4 1.4056 1.4699 1.5187 1.5581 1.6136 1.7153 1.7925 1.8546
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M = (2 + τ)N , and for symmetric cutoff functions (see (3.38)); no smoothness of
the cutoff function is required.

We start with

Lemma 3.1 Let N ∈ N and τ > 0 be such that τN ∈ N. Assume that the cutoff
function ϕ satisfies the conditions: ϕ(t) = 0 for t > 2 + τ and

ϕ(2 + τ − t) + ϕ(t) = 1, 0 ≤ t ≤ 1 + τ/2. (3.38)

Let M = 2N +τN and xk = 2πM−1k, k = 0, 1, . . . , M −1. Then the needlet kernel
KN , defined in (3.1), satisfies KN(x0) = M and KN(xk) = 0 for k = 1, 2, . . . , M −
1.

Proof From sinMxk/2 = sin kπ = 0 we get for n ≤ M/2

cos(M − n)xk − cos nxk = 2 sinMxk/2 sin(M/2 − n)xk = 0.

Also (3.38) implies

ϕ((M − n)/N) + ϕ(n/N) = 1, n ≤ M/2.

If M = 2m (M even), then for k ≥ 1 we have

KN(xk) = 1 + 2
m−1∑

n=1

cos nxk + cosmxk = sinmxk cos xk/2

sin xk/2
= 0

and for k = 0 we have KN(0) = KN(x0) = 1 + 2(m − 1) + 1 = M .
If M = 2m + 1 (M odd), then for k ≥ 1 we have

KN(xk) = 1 + 2
m∑

n=1

cos nxk = sin(m + 1/2)xk

sin xk/2
= 0

and for k = 0 we have KN(0) = KN(x0) = 1 + 2m = M .

Note that in the case of a symmetric cutoff function ϕ satisfying (3.2) Lemma 3.1
identifies 2N+τN−1 of the zeros of the needlet kernelKN , which is a trigonometric
polynomial of degree N +τN −1. The remaining τN −1 (complex) zeros apparently
are used for generating the superb localization of the kernel for cutoff functions as
those considered in Theorems 3.1 and 3.2.

As an immediate consequence of Lemma 3.1 we get

Theorem 3.8 Let N ∈ N, τ > 0 be such that τN ∈ N and M = 2N + τN . Assume
that ϕ satisfies (3.38) and X is given by (3.11). Then the needlet operators defined by
(3.12) and by (3.18) for some δ > 0 satisfy ΦNf (η) = f (η) and ΦN,δf (η) = f (η)

for every η ∈ X .

Proof Note that (η − ξ)M/(2π) ∈ Z for every η, ξ ∈ X . Therefore, Lemma 3.1
implies that all terms but one (for η = ξ ) in the sums in (3.12) and (3.18) are equal
to zero.
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Note that if ϕ is defined by (3.35) then it satisfies (3.38). Hence, the corresponding
needlets ΦNf and ΦN,δf and the trigonometric needlet algorithm from Section 3.3
interpolate f at the equidistant knots in the case M = 2N + τN .

3.5 Comparison with other methods for fast evaluation

The trigonometric needlets are the main component in the construction of the tensor
product needlets to be used on the sphere. In this section we compare them with two
other algorithms for solving Problem 1 on T, that is, the problem for fast evaluation
of trigonometric polynomials, given by their coefficients, at scattered points within
a prescribed accuracy. From several existing algorithms for solving Problem 1 we
selected two algorithms that entail fast, stable and accurate methods for evaluation of
multi-dimensional trigonometric polynomials.

We begin with a short description of the algorithms:

A1: Trigonometric needlets;
A2: Spline interpolation with maximal defect (i.e. piece-wise polynomials) based

on Lagrange interpolation;
A3: Nonequispaced fast Fourier transform (NFFT) with Kaiser–Bessel window

function.

3.5.1 Trigonometric needlets

The algorithm in Section 3.3 solves Problem 3 when trigonometric polynomial val-
ues are given at equispaced points. If the polynomial is given by its coefficients we
modify the algorithm by replacing the Input and the first step of the pre-computation
part with

Input: N , ε, τ , polynomial coefficients a−N, a−N+1, . . . , aN and scattered points
x ∈ Z .

1. Determine M = �(2 + τ)N�, X = {ξk = 2πk/M, k = 0, . . . , M − 1} and
evaluate f (ξ), ξ ∈ X , using FFT.

This step increases the total count of operations by O(N lnN).

3.5.2 Lagrange interpolation

Let X = XM be defined just as in (3.11) and let h := 2π/M . For x ∈ [0, 2π)

set

j = j (x) := �xM/(2π) − μ/2� .

Then x − μh/2 ∈ [ξj , ξj+1] (with the convention ξm+M = ξm, m ∈ Z). Observe that
for even μ = 2m we have x ∈ [ξj+m, ξj+m+1) and for odd μ = 2m − 1 we have
x ∈ [ξj+m − h/2, ξj+m + h/2).



Numer Algor (2016) 71:585–611 601

Given M, μ ∈ N, M ≥ μ, we define the operator LM,μ by

LM,μ(f, x) = L[ξj (x)+1,...,ξj (x)+μ](f, x) :=
μ∑

k=1

�k,μ(x − ξj (x))f (ξj (x)+k), (3.39)

�k,μ(t) := ω(t)

(t − ξk)ω′(ξk)
, ω(t) :=

μ∏

i=1

(t − ξi).

Here L[ξj+1,...,ξj+μ](f ) stands for the Lagrange interpolation polynomial of the 2π
periodic function f with knots ξj+1, . . . , ξj+μ.

From (3.39) it follows that LM,μ(f, ξ) = f (ξ) for ξ ∈ X and LM,μ(f ) is a piece-
wise polynomial, more precisely, it is an algebraic polynomial of degree μ − 1 on
every interval of the form [ξk, ξk+1) for even μ and of the form [ξk − h/2, ξk + h/2)
for odd μ. Hence LM,μ(f ) ∈ C[0, 2π) for even μ or LM,μ(f ) may be discontinuous
at ξ +/h2, ξ ∈ X , for odd μ. Thus, LM,μ(f ) is an interpolating spline with maximal
defect.

The following simple claim will be needed.

Proposition 3.1 Let M, μ ∈ N, M ≥ μ. Then

‖LM,μ(f ) − f ‖∞ ≤ κ(�μ/2�)
( π

M

)μ ‖f (μ)‖∞, ∀f ∈ Cμ[0, 2π); (3.40)

‖LM,μ(f ) − f ‖∞ ≤ κ(�μ/2�)
(

πN

M

)μ

‖f ‖∞, ∀f ∈ �N, (3.41)

where

κ(m) = (2m)!
m!222m = 1√

πm
(1 + o(1)).

Moreover the constant in (3.41) cannot be improved.

Here (3.40) follows from the error expression for the Lagrange interpolation for-
mula at the middle of the interpolating knots (cf. [7, Section 9.3]), (3.41) follows
from (3.40) and the Bernstein inequality. The examples of f (x) = cosN(t + h/2)
and x = 0 for even μ and f (x) = sinNt and x = h/2 for odd μ and M → ∞ show
that the constant in (3.41) cannot be improved.

Observe also that the operators LM,μ : L∞[0, 2π) → L∞[0, 2π) have small
norms, which are independent of M and increase logarithmically with μ.

The fast evaluation of a trigonometric polynomial f at many scattered points can
be done in two steps by: first, pre-computing the values f (ξ), ξ ∈ X , using FFT
and, second, applying (3.39) for every scattered point. The error estimate of this
algorithm, given in (3.41), indicates that the prescribed error ε will be guaranteed if
the parameters M and μ are selected so that

κ(�μ/2�)
(

πN

M

)μ

≤ ε.
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3.5.3 Nonequispaced fast Fourier transform

The work on fast Fourier transforms for nonequispaced data was initiated by Dutt
and Rokhlin [3] and had attracted a number of followers, see e.g. [1, 5, 14]. This
method approximates a trigonometric polynomial f (x) = ∑N

k=−N ake
ikx given by

its coefficients by a function of the form g1(x) = ∑
ξ∈X bξψ(x − ξ). Here ψ is

a window function with excellent localization in both the space/time and frequency
domains, M = σ(2N +1) or M = 2σN with σ > 1 (called oversampling factor) and
the coefficients bξ , ξ ∈ X , depend in a simple manner on the Fourier coefficients of
ψ and f .

The evaluation of g1 at a point x is done by truncation of the sum to the closest
2m + 1 knots to x, i.e.

g(x) =
∑

ξ∈X
ρ(x,ξ)≤π(2m+1)/M

bξψ(x − ξ). (3.42)

The algorithm proceeds as follows: (i) it pre-computes bξ , ξ ∈ X , using FFT and
(ii) it applies (3.42) for every scattered point.

The error of the method has two components – the approximation error ‖f − g1‖
and the truncation error ‖g1 − g‖. If ψ is the Kaiser–Bessel window function (the
best known choice for small oversampling σ ) then an error estimate given in [19, Satz
1.10] reads

‖f − g‖∞ ≤ 4π(
√

m + m)
4

√

1 − 1

σ
e−2πm

√
1−1/σ

N∑

k=−N

|ak|. (3.43)

The relation between the NFFT notation and our notation is given by

σ = 1 + τ

2
= M

2N
, m =

⌊
M

2π
δ + 1

2

⌋

. (3.44)

3.5.4 Comparison

Each of the three algorithms consists of two parts: first, pre-compute some quantities
using FFT of length M and, second, apply local summation formulas: (3.18) for
A1, (3.39) for A2 and (3.42) for A3. The amount of computation in the first parts
is approximately the same and in the second parts the computations depend on the
number of terms in these formulas and the computation time for evaluating the basis
functions (KN , �k,μ and ψ , respectively). Here �k,μ and ψ are given in closed forms.
There is no closed form forKN known to us, but we use an appropriate approximation
to this kernel and achieve evaluation speed which is independent of the degree N .
Hence, the evaluation of these basis functions for 2m + 1 arguments requires cm

operatons (with eventually different constants c). Therefore, we shall consider the
number of terms 2m + 1 (in the A3 notation) and how they achieve the prescribed
accuracy ε for varying oversampling parameter σ .

The comparison of the three error estimates – (3.24) along with (3.31) for A1,
(3.41) for A2 and (3.43) for A3 – is not straightforward, because the first two employ



Numer Algor (2016) 71:585–611 603

the uniform norm of the polynomial and the third uses the �1 norm of the polyno-
mial coefficients. While A1 and A3 require only σ > 1 (i.e. τ > 0) to achieve
the prescribed accuracy, A2 requires oversampling σ > π/2 (i.e. τ > π − 2) and
cannot work with lower oversampling because the estimate (3.41) is sharp. This is
not a problem in dimension 1, however, could cause memory problems in higher
dimensions.

The leading terms of the error bounds for the three algorithms are:

exp(−π(1 − 1/σ)m); exp(−2 ln(2σ/π)m); exp(−2π
√
1 − 1/σ m),

where the term for A1 is obtained from (3.37) with c̃ = 2. Thus, all three algorithms
have exponential error decay in m but the constants in front of m are different.

In Table 3 we give the smallest values of m for algorithms A1, A2 and A3 which
ensure error bound ε for various values of σ = 1 + τ/2. For algorithm A1 m is
computed as the closest integer to δ1M/(2π) + 1.5 and the values of δ1 are taken
from Table 1. Also ϕ is defined by (3.35–3.36) and M = 2σN . For algorithm A2
m is computed as the smallest integer such that the constant in front of the uniform
norm in (3.41) (with μ = 2m+1 and M = 2σN) is at most ε. For algorithm A3 m is
computed as the smallest integer such that the constant in front of the �1 coefficient
norm in (3.43) is at most ε.

Table 3 shows that the number of terms thatA1 uses is approximately twice bigger
(for σ ≥ 2) than the terms in A3. Algorithm A2 is inferior to A1 and A3 for small
oversampling factor σ . On the other hand, algorithm A2 has smaller number of terms
than A1 and A3 for large oversampling factor σ (σ ≥ 6 if compared with A1 and
σ ≥ 35 if compared with A3). Currently we see no practical application with such
significant oversampling.

We now turn our attention to the norms in the the error estimates. They are related
by

‖f ‖C(T) ≤
N∑

k=−N

|ak| ≤ √
2N + 1‖f ‖C(T) for any f (x) =

N∑

k=−N

ake
ikx.

The constant 1 in the first inequality is exact and the constant
√
2N + 1 in the second

inequality cannot be replaced by γ
√
2N + 1 for any γ < 1 and independent of N

Table 3 Values of m for algorithms A1, A2 and A3

A1 A2 A3

ε\σ 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0 1.5 2.0 2.5 3.0

10−5 12 8 7 6 – 20 11 8 5 4 4 4

10−6 14 10 8 8 – 24 13 9 5 5 4 4

10−7 16 11 10 9 – 29 15 11 6 5 5 4

10−8 19 13 11 10 – 33 18 13 7 6 5 5

10−9 21 14 12 11 – 38 20 15 7 6 6 5

10−10 23 16 13 12 – 43 22 16 8 7 6 6
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as the Kahane ultraflat polynomials [13] show. This gives some small advantage to
algorithms A1 and A2 over A3 when absolute error ε‖f ‖C(T) is to be achieved. In
such cases m for A3 in Table 3 is to be slightly increased in order to compensate for
the additional

√
2N + 1 factor. Of course, such increase would be bigger when going

to the multidimensional case.
Finally, let us look at the structure of the approximating expressions. The depen-

dence of the summation formulas for A1 and A2 on the polynomial values at the
knots will be an essential stability advantage over the summation formulas for A3
when going to the 2-d sphere in Section 5. Moreover, if f (ξ), ξ ∈ X , are not values
of a trigonometric polynomial of degree N , then A1 can be used for approxima-
tion of f and (3.18) will be an approximation operator with very small error, cf.
(3.25).

4 Tensor product trigonometric needlets

The generalization of the trigonometric needlets from Section 3 to multidimensional
tensor product operators is straightforward.

The function domain is Td with points x = (x1, . . . , xd) and distance ρ(x, y) :=
max{ρ(x1, y1), . . . , ρ(xd, yd)}. The set of all d-dimensional trigonometric polyno-
mials of coordinate degrees N is denoted by �d

N . The tensor product trigonometric
needlet kernel is defined by

Kd
N(x) :=

d∏

k=1

KN(xk).

Using the knots X d = XM ×· · ·×XM , where XM is defined in (3.11), we define the
truncated tensor product needlet operator by

Φd
N,δf (x) :=

∑

ξ∈X d

ρ(ξ ,x)≤δ

M−dKd
N(x − ξ)f (ξ). (4.1)

The next theorem follows directly from Theorems 3.3 and 3.4.

Theorem 4.1 Let d, N, M ∈ N, τ > 0, M ≥ N + Nτ , and 0 < ε ≤ 1. Assume that
ϕ satisfies (3.2), KN obeys (3.6) with some σ > 1 and δ is determined by (3.19) or
(3.20) with ε1 = ε/(d‖ΦN‖d−1) in the place of ε. Then we have

Φd
N,δ : �∞(X d) → L∞(Td) is a bounded linear operator; (4.2)

‖f − Φd
N,δf ‖L∞(Td ) ≤ ε‖f ‖�∞(X d ) ∀f ∈ Πd

N ; (4.3)

‖f − Φd
N,δf ‖L∞(Td ) ≤ cEN(f )∞ + ε‖f ‖�∞(X d ) ∀f ∈ C(Td), (4.4)

where EN(f )∞ := infg∈�d
N

‖f − g‖L∞(Td ).
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Estimate (4.3) shows that (4.1) can be the base for a fast and stable needlet algo-
rithm for evaluating f ∈ Πd

N at many scattered points on T
d . To be more specific,

first, the values of f (ξ), ξ ∈ X d , are pre-computed using multidimensional FFT and,
second, (4.1) is applied to evaluate f (x) at every scattered point x. The number of
operations for a scattered point consists of dμ evaluations of the one-dimensional
kernel KN plus μd multiplications and additions, where μ denotes the number of
terms in (3.18).

5 Spherical trigonometric needlets

In the previous section we considered the application of tensor product trigonomet-
ric needlets to evaluation of multi-dimensional trigonometric polynomials. In this
section we come to the main point in this article: The application of tensor product
trigonometric needlets to effective evaluation of spherical polynomials (band limited
functions on the sphere). We focus on Problem 3, stated in Section 2.2.

5.1 The main tenet of our method

Our method relies on the following representation of spherical polynomials f ∈ PN

in spherical coordinates:

f (θ, λ) = 1

(2π)2

∫ 2π

0

∫ 2π

0
KN(θ − θ ′)KN(λ − λ′)f (θ ′, λ′)dλ′dθ ′, (5.1)

where KN is the kernel from (3.1). Here f (θ, λ) is extended, first, by

f (θ, λ) := f (2π − θ, λ + π) for π < θ < 2π, λ ∈ R, (5.2)

and then 2π -periodically in θ . This identity is an immediate consequence of
Proposition 2.1 and Theorem 3.3.

We now introduce the operator

Φ̃2
Nf (θ, λ) := 1

(2π)2

∫ 2π

0

∫ 2π

0
KN(θ − θ ′)KN(λ − λ′)f (θ ′, λ′)dλ′dθ ′, (5.3)

acting on any function f ∈ L1(S2) defined on S
2 in spherical coordinates and

extended as in (5.2). From (5.1) it follows that Φ̃2
Nf = f for f ∈ PN .

Our next step is to discretize the operator Φ̃2
N by using quadrature formula (3.10).

Let X = {(θk, λ�)} be one of the regular grids (2.6) or (2.7). We extend the set X for
π ≤ θ < 2π by simply letting k = K, . . . , 2K − 1 in (2.6) or (2.7). We define

�2
Nf (θ, λ) := 1

4KL

2K−1∑

k=0

2L−1∑

�=0

KN(θ − θk)KN(λ − λ�)f (θk, λ�), (5.4)

where f (θ, λ) is extended as in (5.2). Note that λ� = π+λ�−L (it is necessary for this
equation that we use even number of knots in the λ direction), θ(1)

k = 2π − θ
(1)
2K−k ,
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θ
(2)
k = 2π − θ

(2)
2K−k−1. Hence, in view of (5.2) only the values of f at the original

regular grids X (1) or X (2) are used in (5.4).
We next record some useful properties of the operators Φ2

N , which follow by (5.4)
and Theorem 3.3.

Theorem 5.1 Let KN be just as in Theorem 3.3. Then the operator Φ2
N from (5.4) is

a bounded operator as a map Φ2
N : �∞(X ) → C(S2) and

‖Φ2
N‖�∞(X )→C(S2) ≤ C with C > 0 a constant independent of N . (5.5)

Also, Φ2
Nf for any f ∈ �∞(X ) is a trigonometric polynomial in both θ and λ of

degree < Nτ with Nτ := �N + τN�.
Furthermore, if 2K ≥ N + Nτ and 2L ≥ N + Nτ , then

Φ2
Nf = f ∀f ∈ PN and (5.6)

‖f − Φ2
Nf ‖C(S2) ≤ (‖ΦN‖2 + 1)EN(f )∞ ∀f ∈ C(S2). (5.7)

Here EN(f )∞ := infg∈PN
‖f − g‖C(S2) and ‖ΦN‖ is the norm of the one-

dimensional operator ΦN studed in Section 3.3.

In order to achieve fast evaluation of spherical polynomials we introduce the
following truncated version of the operator Φ2

N :

Φ2
N,δf (θ, λ) := 1

4KL

∑

0≤k<2K
ρ(θ,θk)≤δ

∑

0≤�<2L
ρ(λ,λ�)≤δ

KN(θ − θk)KN(λ − λ�)f (θk, λ�), (5.8)

where δ is a small parameter.
As a consequence of Theorems 3.4 and 3.3 we obtain the following basic

properties of the operators Φ2
N,δ .

Theorem 5.2 Let N, K, L ∈ N, τ > 0, 2K ≥ N + Nτ , 2L ≥ N + Nτ , and
0 < ε ≤ 1. Assume that ϕ satisfies (3.2), KN obeys (3.6) with some σ > 1 and δ is
determined by (3.19) or (3.20) with ε1 = ε/(2‖ΦN‖) in the place of ε (here ‖ΦN‖
denotes the norm of the one-dimensional operator ΦN studed in Section 3.3). Then
Φ2

N,δ : �∞(X ) → L∞(S2) is a bounded linear operator,

‖Φ2
Nf − Φ2

N,δf ‖L∞(S2) ≤ ε‖f ‖�∞(X ) ∀f ∈ �∞(X ); (5.9)

‖f − Φ2
N,δf ‖L∞(S2) ≤ ε‖f ‖�∞(X ) ∀f ∈ PN ; (5.10)

‖f − Φ2
N,δf ‖L∞(S2) ≤ (C + 1)EN(f )∞ + ε‖f ‖�∞(X ) ∀f ∈ C(S2), (5.11)

where C is the constant from (5.5).
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Proof Only (5.9) need to be verified; it follows from

1

4KL

⎛

⎜
⎜
⎝

2K−1∑

k=0

2L−1∑

�=0

−
∑

0≤k<2K
ρ(θ,θk)≤δ

∑

0≤�<2L
ρ(λ,λ�)≤δ

⎞

⎟
⎟
⎠ |KN(θ − θk)||KN(λ − λ�)|

≤ 1

2K

2K−1∑

k=0

|KN(θ − θk)| 1

2L

∑

0≤�<2L
ρ(λ,λ�)>δ

|KN(λ − λ�)|

+ 1

2K

∑

0≤k<2K
ρ(θ,θk)>δ

|KN(θ − θk)| 1

2L

2L−1∑

�=0

|KN(λ − λ�)| ≤ 2‖ΦN‖ε1 = ε

on account of (3.26) or (3.27) applied with M = 2K or M = 2L.

5.2 Spherical trigonometric needlet algorithm

Inequality (5.10) is the base of the spherical trigonometric needlet algorithm. Theo-
rem 5.2 specifies (3.19) or (3.20) with ε1 = ε/(2‖ΦN‖) in the place of ε as sufficient
conditions for (5.10). Here the decrease of ε to ε1 is not big because ‖ΦN‖ is bounded
by an absolute constant in view of (3.14). From Table 2 we observe that ‖ΦN‖ < 2.5
for the values of ε and τ under consideration. Thus, ε1 = ε/5 will ensure (5.10).

Now, we put forward the following algorithm for solving Problem 3.
Input: N , ε, K, L (K > N,L > N), X = X (1) or X = X (2), polynomial values

f (ξ), ξ ∈ X , and scattered points x ∈ Z ⊂ S
2.

Pre-computation:

1. Determine τ = 2(min{K, L}/N − 1).
2. For ε, τ and ϕ given by (3.35–3.36) with ε/5 in the place of ε compute ϕ(n/N).
3. Set δ = δ1 + π/min{K, L}, where δ1 is from (3.37) with ε/5 in the place of ε.
4. For ϕ and δ from Steps 2–3 approximate the one-dimensional kernel KN(x) for

x ∈ [0, δ] (see [9, Section 3.3]).

Computation: For every x ∈ Z compute the approximate value f̃ (x) = Φ2
N,δf (x)

of f (x) using (5.8).
Output: The approximate values f̃ (x), x ∈ Z .
We next determine the complexity of all steps. The values ϕ(n/N) in Step 2 can be

computed in O(N) operations. Step 4 requires O(N ln 1/ε) operations. (We follow
the kernel evaluation approach described in [9, Section 3.3]. Trigonometric polyno-
mial evaluation is done by the Newbery modification of the Clenshaw recurrence
[18].) The total complexity of the preparatory Steps 1–4 is O(N ln 1/ε).

From inequality (3.31) we get that the approximate evaluation of f by (5.8) at
a single point requires O(ln 1/ε) kernel evaluations and O(ln2 1/ε) multiplications
and additions. Thus, the total count of operations is O(N ln 1/ε+|Z| ln2 1/ε), where
|Z| stands for the number of elements in Z .
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Remark 5.1 This algorithm and Theorem 5.2 cover the case when the regular grid
steps in the latitude and longitude directions are approximately equal (K ≈ L). In
the case when the steps are not equal, say K − N > 1.2(L − N), we can take
advantage of the additional information we have about the trigonometric polynomial
and modify operator (5.8). We set τ1 = 2(K −N)/N , τ2 = 2(L−N)/N and choose
different cutoff functions and kernels: ϕ1 and K1,N corresponding to τ1 and ϕ2 and
K2,N corresponding to τ2. Then (5.8) is replaced by

Φ2
N,δ̃1,δ̃2

f (θ, λ) := 1

4KL

∑

0≤k<2K
ρ(θ,θk)≤δ̃1

∑

0≤�<2L
ρ(λ,λ�)≤δ̃2

K1,N (θ − θk)K2,N (λ − λ�)f (θk, λ�),

(5.12)
where δ̃1, δ̃2 are small parameters. The appropriate modification of Theorem 5.2
holds for the operator (5.12) and the spherical trigonometric needlet algorithm can
take advantage of it. According to (3.37) the reduction of the number of terms in
(5.12) compared to (5.8) is approximately τ2/τ1 = (L − N)/(K − N).

Remark 5.2 In our experiments we have extensively used (3.20) with ε1 = ε/2
(instead of ε1 = ε/5) in the place of ε. In all cases the relative error of the computed
polynomial values have not exceeded ε.

5.3 Interpolating needlets

The spherical trigonometric needlet operators preserve the interpolation property of
the one-dimensional trigonometric needlet operators. Indeed, from (5.4), (5.8) and
Lemma 3.1 we immediately get

Theorem 5.3 Let N ∈ N and τ > 0 be such that τN is an even integer. Assume that
ϕ satisfies (3.38). Let K = L = N + τN/2 and X be given by (2.6) or (2.7). Then
the spherical trigonometric needlet operators defined by (5.4) and by (5.8) for some
δ > 0 satisfy Φ2

Nf (η) = f (η) and Φ2
N,δf (η) = f (η) for every η ∈ X .

Note that if ϕ is defined by (3.35) then it satisfies (3.38). Hence, the corresponding
operators Φ2

Nf and Φ2
N,δf and the spherical trigonometric needlet algorithm from

Section 5.2 interpolate f at the regular grid knots in the case K = L = N + τN/2.

5.4 Comparisons

5.4.1 Comparison with spherical needlets

We have designed tensor product trigonometric needlets in an attempt to improve the
speed and to simplify the algorithm of the spherical needlets developed in [9]. The
implemented simplifications are:

– use of equispaced knots instead of Gaussian quadrature knots in the latitude
direction;



Numer Algor (2016) 71:585–611 609

– no need of separating the sphere in three regions;
– no need of rotating the spherical polynomial in the polar regions in the pre-

computation part.

The improvement of the speed comes from:

– (mainly) the reduction of the number of kernel evaluations per scattered point;
– the number of terms in the truncated needlet operator does not depend on the

latitude of the scattered point, as is the case of a spherical cap of fixed radius.

Note that the number of kernel evaluations per scattered point is approximately
4(δM/(2π)) for the tensor product needlets and π(δ̄M/(2π))2 for the spherical
needlets (when the evaluation point is on the equator or at the poles). Here δ̄ is the
spherical needlet truncation parameter and in view of (3.37) and [9, Section 3.2] we
may take δ̄ ≈ 1.15δ. Hence the number of kernel evaluations reduces δM/(2π) ≈ m

times, where the values of m are the entries for algorithm A1 in Table 3.
On the other hand, the number of terms in the local approximation formulas is

approximately the same for both truncated operators (for one and the same values of
ε and τ ), which gives similar number of multiplications and additions.

The above reasoning is confirmed by the entries in Table 4. Here we compare the
speed of the computation part of tensor product trigonometric needlet and of spher-
ical needlet algorithms written in MATLAB 2012b with double-precision variables.
The experiments were conducted on an Intel Core i7, 2.4 GHz PC with 16 GB of
RAM. The spherical polynomial degree is N = 2160, the parameters of the regu-
lar grid (2.6) are K = L = �(1 + τ/2)N�, and the number of scattered points is
1 000 000.

The two algorithms are stable.

5.4.2 Comparison with tensor product piece-wise polynomials (Lagrange
interpolation)

The tensor product Lagrange interpolation operator is given by (cf. (3.39))

L2
M,μf (θ, λ) :=

μ∑

i=1

μ∑

k=1

�i,μ(θ − ξj (θ))�k,μ(λ − ξj (λ))f (ξj (θ)+i,j (λ)+k) (5.13)

Table 4 Number of computed values per second of a spherical polynomial of degree N = 2160 by Tensor
product needlet algorithm and by Spherical needlet algorithm

Tensor product needlet algorithm Spherical needlet algorithm

τ\ε 10−5 10−7 10−9 10−11 10−5 10−7 10−9 10−11

1 95 520 75 735 63 804 50 551 8 958 5 155 3 535 2 553

2 129 820 101 740 84 767 65 436 16 592 11 007 7 565 5 131

3 140 647 119 847 98 309 82 795 19 457 14 621 10 113 6 108

4 145 117 126 231 106 838 90 645 21 454 16 515 11 573 7 752
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with an error estimate

‖f − L2
M,μf ‖C(S2) ≤ 2‖LM,μ‖κ(�μ/2�)

(
πN

M

)μ

‖f ‖C(S2), ∀f ∈ PN.

The difference between tensor product Lagrange interpolation operator (5.13)
and the tensor product trigonometric needlet operator (5.8) is in the basis functions
�i,μ(θ − ξj (θ))�k,μ(λ − ξj (λ)) and KN(θ − θk)KN(λ − λ�) they use. So, they would
achieve approximately the same speed for equal number of terms in (5.13) and (5.8).
But the comparisons from Section 3.5 show that the tensor product Lagrange inter-
polation operator will need more terms than tensor product trigonometric needlet
operator to achieve the same error for small or moderate oversampling.

The tensor product piece-wise polynomial algorithm is stable (if the Lagrange
interpolation is properly realized).

5.4.3 Comparison with nonequispaced fast spherical Fourier transform

We turn our attention to Problem 1, where the spherical polynomial is given by its
coefficients.

The first step in the needlet algorithm is the evaluation of f (ξ) for all knots ξ

from a regular grid, say (2.6) or (2.7). This can be done within the prescribed preci-
sion ε2 with O(N2 lnN) operations by Tygert’s algorithm [21, 22], who asserts [21]
that the algorithm is numerically stable. Then, as second step we apply the spherical
trigonometric needlet algorithm for polynomial evaluation at scattered points. The
error in the polynomial values introduced in the first step will slightly increase, say
two times, due to the small norm of the needlet operator. Therefore, the total error of
this algorithm is bounded by ‖ΦN,δ‖ε2 + ε3, where ε3 stands for the relative error of
the spherical trigonometric needlet algorithm.

The first step in the nonequispaced fast spherical Fourier transform developed
by Kunis and Potts [15, 16] computes an approximation of the polynomial coeffi-
cients ck� in (2.4) if the polynomial is given by amn and bmn in (2.2). This step is
called discrete Legendre function transform and in some parts follows the (transposed
version of) Driscoll and Healy algorithm [2, 6]. The discrete Legendre function trans-
form, however, seems in principle unstable and various modifications were designed
in order to overcome the problem. This instability makes the application of this
approach problematic for high degree spherical polynomials. The second step is the
two-dimensional nonequispaced fast Fourier transform.

Error estimates for multi-dimensional NFFT are given in [4]. These estimates con-
sists of the one-dimensional NFFT error estimates multiplied by the dimension and
by the operator norm (as in the proof of Theorem 5.2 in the needlet case). However,
we could not find in the literature error estimates for nonequispaced fast spherical
Fourier transform algorithm. If we extrapolate the discussion on the one-dimensional
nonequispaced fast Fourier transform from Section 3.5 then in the second step
the nonequispaced fast spherical Fourier transform algorithm will require approxi-
mately 2 times less basis functions evaluations and 4 times less multiplications and
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summations than the tensor product needlet algorithm (cf. Table 3). This advantage
should be partially reduced because the norm multiplier

∑N
k,�=−N |ck�| in the error

estimate for the two-dimensional nonequispaced fast Fourier transform is related to
the norm multiplier ‖f ‖C(S2) for the tensor product trigonometric needlets by

‖f ‖C(S2) ≤
N∑

k,�=−N

|ck�| ≤ (2N + 1)‖f ‖C(S2).
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