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Abstract This paper is concerned with the construction and analysis of multilevel
Schwarz preconditioners for partition of unity methods applied to elliptic problems.
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(MPUM) one even obtains uniformly bounded condition numbers and how to realize
such requirements. The main anlytical tools are certain norm equivalences based on
two-level splits providing frames that are stable under taking subsets.
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1 Introduction

The so called meshless methods are drawing increasing attention in many areas of engi-
neering applications since they avoid notorious difficulties with meshing complicated
domains, in particular, when dealing with three or more spatial variables. Meshless
methods have come under various names such as “moving least squares”, “partition of
unity method (PUM)”, “radial basis functions”, “web splines”, “generalized finite ele-
ments” or “ smoothed particle hydrodynamics”. Recent accounts of the state of the art
can be found in [1,11], see also the references cited there. There are close conceptual
links with more theoretically motivated directions of studies in the group of Triebel
(see e.g., [13]) centering on atomic decompositions related to PUM. While most of the
numerical work refers to issues like error estimates and functionality of the method,
comparatively less seems to be known about fast solution methods for the systems of
equations arising from meshless discretization concepts. There is an impressive body
of work on multigrid solvers for certain variants of PUM documented in [7,8,10,17]
which shows very good performance, see also [18] for work on generalized finite
elements. On the other hand, it seems that rigorous estimates are still lacking nor is it
clear how well these techniques comply with adaptive strategies.

Here we shall focus on the following model problem. Let a(·, ·) : V × V → R be
a symmetric bilinear form on a Hilbert space V with norm ‖ · ‖V = 〈·, ·〉1/2 that is
V -elliptic, i.e. there exist positive constants ca, Ca such that

a(v, v) ≥ ca‖v‖2
V , |a(v,w)| ≤ Ca‖v‖V ‖w‖V , v, w ∈ V . (1.1)

For any given f ∈ V ′ find u ∈ V such that a(u, v) = 〈 f, v〉, v ∈ V . In what follows
V will always be assumed to be one of the spaces H1(�) or H1

0 (�) corresponding to
Neumann or Dirichlet boundary conditions. We shall always assume in what follows
that � is a bounded extension domain. This means that � has a sufficiently regular
boundary to permit any element v of any Sobolev or Besov space X (�) over � to be
extended to ṽ ∈ X (Rd), ṽ|� = v, in such a way that ‖v‖X (Rd ) ≤ CX‖v‖X (�). This
is, for instance, the case when the boundary of � is piecewise smooth and a uniform
cone condition holds for �.

The objective of this paper is to develop a multilevel Schwarz preconditioner in
the PUM setting that provides even uniformly bounded condition numbers for elliptic
boundary value problems. The primary focus of this investigation is a sound theoretical
foundation of this issue. Our emphasis here is on bringing out some basic principles
that seem to be relevant in such a context and most of the results will be asymptotic
in nature. Moreover, it will be seen to comply well with adaptive refinements. Many
quantitative aspects such as treating inhomogeneous boundary conditions, dealing
with jumping diffusion coefficients or the important issue of quadrature will not be
addressed here.

In Sect. 2 we shall describe the general setting of a multilevel covers of � on which
the construction of multilevel systems of atoms and resulting partition of unity hierar-
chies (MPUH) in Sect. 3 will be based upon. The central issues in this section are to
establish certain scalewise stability properties as well as approximation bounds. The
latter estimates as well as certain multilevel representations are based on suitable
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Multilevel preconditioning for partition of unity methods 505

versions of quasi-interpolants. In particular, we shall identify several conditions,
especially concerning certain local linear independence properties, that, combined
with two-level splits in multilevel expansions, will later be crucial for proving norm
equivalences based on these representations in many smoothness spaces. In Sect. 4
we return to problem (1.1) and formulate a multilevel Schwarz preconditioner based
on the multilevel representations from the previous section. Moreover, we indicate
briefly some possible combination with adaptive solution strategies as well as the
relevance of best N -term approximation in this context. The fact that the proposed
preconditioner gives rise to uniformly bounded condition numbers is a consequence
of the norm equivalences established in Sect. 5.

For the sake of convenience we shall sometimes use the notation a <∼ b if a ≤ Cb
with a constant C independent of all parameters on which a, b depend. Similarly,
a ∼ b means that both relations a <∼ b and b <∼ a hold.

2 Discrete multilevel covers of � ⊆ R
d

We wish to discretize (1.1) with the aid of a multilevel partition of unity hierarchy
(MPUH) which will be based on certain multilevel covers of the domain �. To this
end, let Br (x) denote the (open) ball of radius r > 0 and center x ∈ R

d . We call an
open set θ ⊂ R

d a proper cell if it has the following properties:

(p1) θ is star-shaped, i.e. there exists a “center” xθ such that for any x ∈ ∂θ (the
boundary of θ ) the line segment [xθ , x] connecting x and xθ is contained in θ̄ .

(p2) One can find r1 ≤ r2 such that for a given R ≥ 1

Br1(xθ ) ⊆ θ ⊆ Br2(xθ ), where r2/r1 ≤ R.

Clearly, balls as well as hypercubes are proper cells. Note that proper cells can be
dilated. For any positive a let

sa(θ) := {x ∈ R
d : ∃ y ∈ ∂θ s.t. x ∈ [xθ , xθ + a(y − xθ )]}. (2.2)

For a given compact domain � ⊂ R
d (with the properties mentioned in the previous

section) or � = R
d , we assume that � is a discrete multilevel collection of proper

cells in R
d (d ≥ 1) of the form

� =
∞⋃

m=0

�m

with the following properties: For given positive constants a0, a1, a2, . . . and N1 one
has:

(C1) For m ∈ N0 we have � ⊆ ⋃
θ∈�m

θ and a12−a0m ≤ |θ | ≤ a22−a0m for all
θ ∈ �m , where |θ | denotes the volume of θ .

(C2) At most N1 cells from �m may have a nonempty intersection.
(C3) If θ ∩ θ ′ �= ∅, θ, θ ′ ∈ �m , then |θ ∩ �| ≥ a3|θ | and |(θ\θ ′) ∩ �| ≥ a3|θ |.
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(C4) For every x ∈ � and m ∈ N0 there exists θ ∈ �m such that x ∈ sa4(θ) for
some a4 < 1.

(C5) For all θ ∈ �m , η ∈ �m+1 we either have θ ∩ η = ∅ or |θ ∩ η ∩ �| > a5|η|.
On account of (C3) and (C5) we shall from now on adopt the convention that θ is

always understood to mean θ ∩ �.
With any cover of the above type we can associate a parameter vector p = p(�)

containing all the constants appearing in the above requirements (C1)–(C5) and in
properties (p1), (p2) (in fact, we shall extend this list on occasion as we proceed).
Note that by (C2) the number of overlaps is controlled, while (C3) says that every two
cells from �m are essentially different. (C4) means that every point in the domain is
“well covered” by at least one proper cell, while (C5) controls the overlap between
cells from two successive levels. Somewhat more can be said.

Remark 2.1 From the definition of a proper cell and (C1) it follows that for any θ ∈ �m

we have diam θ ∼ 2−ã0m where ã0 := a0/d, with constants of equivalence depending
only on p(�). Moreover, for any θ ∈ �m and θ ′ ∈ �m+1 there exist balls

Br1(xθ ′) ⊆ θ ′, θ ⊆ Br2(xθ ), s.t. r2/r1 ≤ a6,

with a6 depending only on p(�).

Of course, thinking of applications where the centers xθ are given, depending on
their distribution, it might be difficult to construct covers with the above properties.
When thinking of applications to boundary value problems, one is free to choose
centers as well as the shape of cells that accommodate the construction and covers.
Note that one typically does not adapt the covers to domain boundaries. The perhaps
simplest construction can be sketched as follows. For simplicity let � = R

2 and let
the lattice points k = (k1, k2) ∈ Z

2 be the centers at level 0. Let

�m = {2−m[k1 − b, k1 + b] × [k2 − b, k2 + b] := 2−m(k + [−b, b]2) : k ∈ Z
2},
(2.3)

where b ∈ (1/2, 1) is fixed. Thus a0 = 2 = d, |θ | = 2−2m(2b)2 for θ ∈ �m , and
obviously, for θ, θ ′ ∈ �m , θ ∩ θ ′ �= ∅ one has |θ ∩ θ ′| ≥ 2−2m(2b − 1)2. Likewise
when θ ′ ∈ �m+1, θ ∈ �m have nonempty intersection, one can verify that

|θ ∩ θ ′| ≥

⎧
⎪⎨

⎪⎩

2−2m
(

3b
2 − 1

)2
if 2/3 < b < 1;

2−2m
(

3b
2 − 1

2

)2
if 1/2 < b ≤ 2/3.

(2.4)

Hence, one has a1 = a2 = (2b)2 in (C1), N1 = 4 in (C2). Moreover, note that
|θ ∩ θ ′| ≥ (2b − 1/2b)2|θ |, a4 = 1/2b in (C4), and in (C5) a5 = ( 3

2 − 1
b

)2 when
b > 2/3, while a5 = ( 3

2 − 1
2b )2 when 1/2 < b ≤ 2/3. Of course, rescalings may be

necessary near domain boundaries.

123



Multilevel preconditioning for partition of unity methods 507

Note that when b ≤ 2/3 certain intersections of small cells with cells from the
previous level in (C5) become empty which accounts for the two cases in (2.4). It is
also clear how to extend this to general d ≥ 3.

Remark 2.2 The above example has an additional property that will be exploited later,
namely,

∀ θ ∈ �m ∃ �θ ⊂ θ s.t. θ ′ ∩ �θ = ∅ ∀θ ′ ∈ �m\{θ} (2.5)

and

|�θ | ≥ a6|θ |. (2.6)

We shall refer to a cover with this property as a sparse cover and a6 will be added to
the parameter list p(�). In the above example we have a6 = (1 − b)2.

An important point about covers of the above type is that the spatial localization
offered by moving to higher levels is isotropic. The setting presented here may be
viewed as a specialization of a more general framework put forward in [3] which aims
at capturing also anisotropic features.

Finally it will be convenient to confine the subsequent discussion to the slight further
constraint that all proper cells are affine images

θ = Aθ (
◦
θ) (2.7)

of a single proper reference cell
◦
θ with center 0 and volume | ◦

θ | ∼ 1. In the above
example the Aθ are just compositions of shifts and dilations.

From now on we shall always assume that � satisfies properties (C1)–(C5) for
some parameter vector p(�) as well as that (2.7) holds.

3 Construction of multilevel systems of atoms

We shall always assume that φ ∈ Cr (Rd) is a fixed function supported on the reference

cell
◦
θ with | ◦

θ | ∼ 1, having some degree of pointwise smoothness r ∈ N (in principle,

r = ∞ is admissible). Moreover, we require that φ(x) > 0 if x ∈◦
θ .

For any θ ∈ � we recall (2.7) and set

φθ := φ ◦ A−1
θ . (3.1)

As in PUM we form partitions of unity by defining for any m ∈ N0,

ϕθ := φθ |�∑
θ ′∈�m

φθ ′
, θ ∈ �m, (3.2)
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where � is the domain under consideration. By the properties of φ and the cover � it
follows that

0 < c1 ≤
∑

θ∈�m

φθ (x) ≤ c2, x ∈ �, (3.3)

where the constants c1, c2 depend only on p(�) amd on φ. Consequently,∑
θ∈�m

ϕθ (x) = 1.
Suppose further that {Pβ : |β| = β1 +· · ·+βd ≤ k −1} is a basis for 	k the space

of all polynomials in d variables of total degree k − 1, normalized by

‖Pβφ‖
L∞(

◦
θ)

= 1. (3.4)

Then for θ ∈ � we let

Pθ,β := Pβ ◦ A−1
θ .

Remark 3.1 As a consequence of the fact that | ◦
θ | ∼ 1 we have

‖Pβφ‖
L p(

◦
θ)

∼ ‖Pβφ‖
Lq (

◦
θ)

, 0 < p, q ≤ ∞, (3.5)

with constants of equivalence depending only on p, q, k, and φ.

We define


m := {Pθ,βϕθ : θ ∈ �m, |β| ≤ k − 1} (3.6)

and set

Sm := span (
m) on �.

Remark 3.2 It is easy to see that for each m ∈ N0

	k |�⊂ Sm,

i.e. for every P ∈ 	k there exists a g ∈ Sm such that P|� = g.

3.1 Local linear independence

Our goal is to approximate the solution to (1.1) by linear combinations of the atoms
Pθ,βϕθ , θ ∈ �, |β| < k. This raises a number of well-known practical issues such
as the notorious problem of quadrature or the treatment of boundary conditions. In
contrast to pure radial basis function approaches the incorporation of essential homo-
geneous Dirichlet conditions is actually in principle easy and, above all, local. In fact,
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whenever the support of an atom overlaps the boundary one can choose the polyno-
mial factor Pθ,β to belong to an ideal whose zero set approximates the corresponding
boundary segment. This may even offer better accuracy than common triangular ap-
proximations. Since these issues have been addressed elsewhere we concentrate here
only on the stability issues related to preconditioning the linear systems resulting from
corresponding discretizations.

To this end, it will be important that for each m ∈ N0 the collection 
m is linearly
independent and moreover is stable in L p. There are several possible ways to go about
this. In our approach the notion of local linear independence will play a central role.
Roughly speaking, it will be seen that whenever we can find within each θ a subset on
which the (necessarily finitely many) overlapping atoms are linearly independent, we
are able to establish stability. The key property that needs to be satisfied for a given
“atom-cover system” (
,�) can be formulated as follows:

Property (LLIN): For any θ ∈ �m, m ∈ N, there exists some region Nθ containing
the center of θ , such that

∑

θ ′⊃Nθ , θ ′∈�m

∑

|β|<k

cβ,θ ′ Pθ ′,β(x)ϕθ ′(x) = 0, x ∈ Nθ �⇒ cβ,θ ′

= 0, |β| < k, θ ′ ⊃ Nθ . (3.7)

The validity of Property (LLIN) is immediate for sparse covers in the sense of
Remark 2.2 (see (2.5)), no matter what the atom system 
 is chosen to be. In fact,
taking the region �θ as such a subset Nθ , linear independence of the atoms on �θ

follows from the linear independence of the polynomial factors since ϕθ is constant
on �θ .
Sparsely shifted B-splines: A simple concrete example in connection with sparse
covers is to employ tensor product B-splines of coordinate degree K and maximal
smoothness K − 1 shifted on a regular grid in such a way that polynomial regions
match for overlapping supports and that the resulting cover is sparse in the sense of
Remark 2.2, see also the example following Remark 2.1. For instance, for cardinal
B-splines the supports are shifts of [0, K + 1]d and we could shift on the lattice LZ

d

for some L ∈ N, L ≤ K (but close to K to have only a fixed number of overlaps
independent of K ).

However, if the cover is not sparse, the verification of (LLIN) is less clear. The
difficulty encountered in the more general situation is to handle the possible variety
of interactions of overlapping atoms still permitted by conditions (C1)–(C5). We shall
frequently use the obvious fact, that (3.7) is equivalent to the analogous relation for
ϕθ replaced with φθ := φ ◦ A−1

θ . Moreover, as a consequence of (p2), (C1), we can

find a ball B ⊂◦
θ such that Bθ := Aθ (B) satisfies

|Bθ | ≥ a7|θ |, (3.8)

where 0 < a7 < 1 also depends only on p(�).
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We shall discuss now scenarios, where Property (LLIN) can be verified in connec-
tion with non-sparse covers.
Radial local polynomial bumps: To describe a second natural scenario (although less

favorable regarding quadrature), suppose that
◦
θ= B1(0) is the unit ball and φ(x) :=

((1−|x |2)+)K , where x+ := max {0, x} and K ∈ N is sufficiently large to be specified
later. Thus on θ the function φθ is a polynomial of degree 2K .

We shall exploit the fact that the φθ extend to polynomials φ̂θ (x) = (1−|A−1
θ x |2)K

on all of R
d and that local linear independence of polynomials is equivalent to their

(global) linear independence.
Now, given θ , consider a subsetN of θ overlapped by some θ j ∈ �m , j = 1, . . . , N ,

and set φ̂ j := φθ j . Moreover, choose N such that N is not intersected by any of the

zero sets Z j of φ̂ j , but ∂N ∩ Z1 has nonvanishing d − 1 dimensional measure. If the
atoms Pj,βφ j were linearly dependent over N , we must be able to write for some β

P1,β φ̂1 =
N∑

j=2,|β|<k

c j,β Pj,β φ̂ j . (3.9)

Note that the left hand side has a zero of order 2K − 1 on Z1. Thus the left hand side
belongs to the ideal generated the zero set of φ̂1. Since all the remaining φ̂ j s have no
common zero in C

n , the Hilbert Nullstellensatz implies that the ideal generated by
these polynomials is the whole ring of polynomials. Thus, as long as k < K , say, the
right hand side of (3.9) is not expected to be able to produce a zero of order 2K − 1
on Z1 ∩ ∂N . We leave this as an open problem.
Variable order radial polynomial bumps: We describe next a simple way of ensuring
local linear independence by slightly extending the setting. This will allow us later to
conveniently deduce further properties needed in the multilevel context. Note first that
it is not necessary to work with a single bump φ. All arguments carry over to a setting
where we choose a finite fixed collection of generating bumps φν and we restrict the
formal discussion otherwise to a single generator only in order to simplify notation.

Before going into technical details we sketch the idea. As indicated before, instead
of taking affine compositions of a single φ as above, we employ a fixed finite number
of bumps

φν(x) := (
(1 − |x |2)+

)Kν , ν = 1, . . . , 2N1, x+ := max{x, 0},

where the choice of the parameters Kν will be explained in a moment. This additional
flexibility will allow us to dispense with the sparse covering property. What remains
important is that at most a controled number N1 of atoms overlap at a given point.
Then it is possible to color the elements of any two successive levels �m,�m+1 by
at most 2N1 colors in such a way that any two θ of the same color are disjoint (the
interaction of two successive levels will be important later). Given a fixed numbering
of these colors and using a fixed polynomial order k of the polynomial factors Pβ , we
choose now Kν+1 > k + Kν , ν = 1, . . . , 2N1 − 1. Thus whenever the supports of
a set of atoms have a nonempty intersection, these atoms will have strictlly distinct
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polynomial degrees on this intersection. From this it is then easy to see that the atoms
are everywhere locally and therefore also globally linearly independent.

To make this more precise, we begin by splitting the ellipsoid cover � into no more
than 2N1 disjoint subsets (colors) {�ν}2N1

ν=1 so that neither two ellipsoids θ ′, θ ′′ ∈
�m ∪ �m+1 with θ ′ ∩ θ ′′ �= ∅ are of the same color. Indeed, using property (C2) of
� it is easy to color any level �m by using no more than N1 colors. So, we use at
most N1 colors to color the ellipsoids in {�2 j } j∈Z and further at most N1 colors to
color the ellipsoids in {�2 j+1} j∈Z. Thus we may assume that we have the following
disjoint splitting

� =
2N1⋃

ν=1

�ν and �2 j =
N1⋃

ν=1

�ν
2 j , �2 j+1 =

2N1⋃

ν=N1+1

�ν
2 j+1, j ∈ N0, (3.10)

where if θ ′ ∈ �
ν1
m1 , θ ′′ ∈ �

ν2
m2 with |m1 − m2| ≤ 1, and θ ′ ∩ θ ′′ �= ∅, then ν1 �= ν2.

We introduce now 2N1 smooth piecewise polynomial bumps associated with the
colors from above setting for fixed positive integers M and k (M ≥ k)

φν(x) := (
(1 − |x |2)+

)M+νk
, ν = 1, 2, . . . , 2N1. (3.11)

Notice that φν ∈ C M+νk−1 ⊂ C M .
For any θ ∈ � we then define for each color φθ and ϕθ exactly as in (3.1), (3.2),

arriving again at (3.3).
By construction, only atoms from different colors can overlap a common region.

Therefore, when using different generating bumps φν , the fact that requirement (3.7)
in property (LLIN) is indeed true is a consequence of the fact that the term with the
highest ν is of polynomial degree strictly larger than the degrees of all other terms.
Thus, peeling off step by step the highest degree terms, confirms (3.7).

3.2 Levelwise stability

In the following we shall briefly write

‖g‖2 = ‖g‖L2(�),

whenever the domain under consideration is �. The first essential building block is
the following levelwise stability of the partitions of unity.

Theorem 3.3 Suppose that Property (LLIN ) is valid. Then each collection 
m (m ∈
N0) is linearly independent on � and hence forms a basis for Sm := span (
m).

Moreover, any g ∈ Sm has a unique representation

g =
∑

θ∈�m , |β|<k

bθ,β(g)Pθ,βϕθ , (3.12)
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where the dual functionals bθ,β can be defined as follows. For every θ there exists Bθ

with |Bθ | ∼ |θ | such that

bθ,β( f ) = 〈 f, g̃θ,β〉, where supp (g̃θ,β) ⊆ Bθ , ‖g̃θ,β‖∞ <∼ 1/|θ |. (3.13)

As a consequence we have

|bθ,β(g)| <∼ |θ |−1/2‖g‖L2(Bθ ) ∀g ∈ Sm . (3.14)

Moreover, for g ∈ Sm, we have

‖g‖2 ∼
⎛

⎝
∑

θ∈�m , |β|<k

‖bθ,β(g)Pθ,βϕθ‖2
2

⎞

⎠
1/2

. (3.15)

Here all constants depend only on k, p(�), φ but not on m and g.

Proof In order to reduce technicalities we shall carry out the proof only for the case
of a single generating bump φ. It is evident how to extend the argument to the more
general case of multiple colors.

We shall construct suitable dual functionals by biorthogonalizing local restrictions
of interacting atoms. To control the spectrum of the corresponding Gramians we need
some preparatory steps. The first one concerns the mutual overlap of atoms from
one level. A simple shrinking argument combined with (C2) will allow us to identify
always substantial regions of mutual overlap. ��
Lemma 3.4 For any θ ∈ �m there exists an ellipsoid Bθ ⊂ θ with the property that

Bθ ∩ θ ′ �= ∅, θ, θ ′ ∈ �m �⇒ |Bθ ∩ θ ′| ≥ b4|θ |, (3.16)

where the constant b4 depends only on p(�).

Proof Recall from property (p2) there exists a ball Bρ̄ ⊆◦
θ such that

|Bρ̄ | ≥ b1|
◦
θ | (3.17)

for some positive constant b1 < 1, where ρ̄, b1 depend only on the constants r1, R in

(p2) and on the fixed reference cell
◦
θ . Consider the dilated versions B
 := B

(1− 

2N1

)ρ̄

of Bρ̄ from (3.17), i.e. B0 = Bρ̄ and B N1 = Bρ̄/2. Likewise let Bθ,
 := Aθ (B
).
Thus, by (p2), we have

|Bθ,
| ≥ b2|θ |, 
 = 0, . . . , N1, (3.18)

for some uniform constant b2 > 0 depending only on p(�). Furthermore, note that,
again by (p2),

123



Multilevel preconditioning for partition of unity methods 513

θ ′ ∩ Bθ,
 �= ∅, θ ′ ∈ �m �⇒ |θ ′ ∩ Bθ,
−1| ≥ b3|θ |, 
 = 1, . . . , N1, (3.19)

where b3 > 0 is another uniform constant depending only on p(�).
Next observe that there exists an 
∗ ∈ {1, . . . , N1} such that

Bθ,
∗ ∩ θ ′ = ∅, ∀θ ′ ∈ �m\{θ},
or (3.20)

if θ ′ ∈ �m, θ ′ ∩ Bθ,
∗−1 �= ∅ �⇒ θ ′ ∩ Bθ,
∗ �= ∅.

In fact, let �
 := {θ ′ ∈ �m : θ ′ �= θ, θ ′ ∩ Bθ,
 �= ∅}. Clearly #�0 ≤ N1 (see (C2).
If �1 is empty, we set 
∗ = 1. If #�1 = #�0 we again set 
∗ = 1 and are done. So, it
remains to consider the case #�0 > #�1 > 0. Thus, in general, either (3.20) holds for

 or #�
+1 < #�l , so that (3.20) holds after at most N1 steps. We take now 
∗ as the
smallest integer for which (3.20) is valid and set B := B
∗−1 when the second case in
(3.20) holds or B := B
∗ when the first case is true. Thus, in summary Bθ := Aθ (B)

for this B satisfies (3.16). ��
Now set �θ := {θ ′ : θ ′ ∈ �m, θ ′ ∩ Bθ �= ∅} and let

Cθ := {gθ ′,β ′ := Pθ ′,β ′ϕθ ′χBθ : θ ′ ∈ �θ , |β ′| < k},

be the collection of all mth level atoms that overlap Bθ (including those corresponding
to θ itself). Note that the gθ ′,β ′ are defined on all of � but vanish outside Bθ . By property
(C2), the cardinality of Cθ is uniformly bounded by a constant multiple of N1kd .

Now consider the local Gramian

Gθ := (〈gθ ′,β ′ , gθ ′′,β ′′ 〉Bθ

)
θ ′,θ ′′∈�θ , |β ′|,|β ′′|<k,

where 〈v,w〉Bθ := ∫
Bθ

vwdx . We shall next show that Gθ is nonsingular and can
be used to construct a suitable collection of dual functionals. To this end, note that
straightforward substitution yields

〈gθ ′,β ′ , gθ ′′,β ′′ 〉Bθ = |Aθ |
∫

B

Pβ ′(A−1
θ ′ Aθ y)φ(A−1

θ ′ Aθ y)Pβ ′′(A−1
θ ′′ Aθ y)φ(A−1

θ ′′ Aθ y)
(∑

ζ∈�θ
φ(A−1

ζ Aθ y)
)2 dy

= |Aθ |
∫

B

Pβ(Aθ ′,θ y)φ(Aθ ′,θ y)Pβ ′′(Aθ ′′,θ y)φ(Aθ ′′,θ y)
(∑

ζ∈�θ
φ(Aζ,θ y)

)2 dy, (3.21)

where Aθ ′,θ := A−1
θ ′ Aθ , Aθ ′′,θ := A−1

θ ′′ Aθ are affine mappings that will be seen next
to belong to some compact set independent of θ ∈ �.

In fact, setting Aθ y = Mθ y + xθ , where xθ is the center of θ and Mθ is the
corresponding (d × d)-matrix, one obviously has

A−1
θ ′ Aθ y = (M−1

θ ′ Mθ )y + M−1
θ ′ (xθ − xθ ′).
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From property (p2) one infers that

|M−1
θ ′ (xθ − xθ ′)| ≤ C, θ ′ ∈ �θ , (3.22)

where the constant depends only on p(�).
Furthermore, considering the singular value decomposition M−1

θ ′ Mθ = U�V ,
U, V orthogonal matrices, the singular values on the diagonal of � are contained,
on account of property (p2), in a fixed interval [a10, a11] depending only on p(�)

and k, where a10 > 0, a11 < ∞. The orthogonal matrices U, V can also be viewed
as elements of a compact finite dimensional manifold. Defining the collection of all
affine maps

A(ρ1, ρ2) := {A : Ax = Mx + b, Bρ1(0) ⊂ M(B1(0)) ⊂ Bρ2(0)},

we see that the mappings Aθ ′′,θ all belong to some A(ρ1, ρ2), where ρ1, ρ2 depend only
on p(�) but not on θ . Moreover the Aθ ′,θ are instances of elements in A(ρ1, ρ2) that
can be parametrized over some fixed bounded set K of finitely many parameters. On
account of (3.19) and (3.16) K is also closed and hence compact. Hence the Gramian
can be viewed as a function of the parameters in K which depends only on p(�). By
(3.3) this dependence is continuous. Therefore, each

G̃θ := |Aθ |−1Gθ (3.23)

can be viewed as the value of a continuous matrix valued function at some point in
the compact set K. Thus, by (3.8), the L∞-norms of the restrictions gθ ′,β ∈ Cθ are
uniformly bounded from above and away from zero,

‖gθ ′,β‖∞ ∼ 1, (3.24)

with constants depending on the parameters in p(�) and φ.
The determinant of G̃θ is also the evaluation of a continuous function on K. Note

also that the size of G̃θ may vary between dim Pk and N1dim Pk . By (3.16) the size
remains unchanged under varying the parameters in K. Now, by Property (LLIN) the
elements of Cθ are linearly independent over some region Nθ containing the center
of θ . Hence this region intersects Bθ . A simple peeling off argument combined with
gradually expanding Nθ ∩ Bθ shows that the elements of Cθ are still locally linearly
independent over Bθ . So, the Gramians are always nonsingular and hence their deter-
minants do not vanish in K. Since K is compact they attain their minimum in K that is
bounded away from zero from below by some positive constant b4 depending, in view
of (3.16), only on p(�), k and φ. Therefore the inverse G̃−1

θ exists and is the value of
a continuous function on K as well. Hence, by the previous remarks and (3.24), we
also have
∣∣∣(G̃−1

θ )(θ ′,β ′),(θ ′′,β ′′)
∣∣∣<∼ 1, (θ ′, β ′), (θ ′′, β ′′) ∈ �k

θ := �θ × {β ∈ Z
d+ : |β| < k},

(3.25)
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with a constant depending only on p(�), k and φ. Let us denote the entries of the
inverse G−1

θ = |Aθ |−1G̃−1
θ by R(θ ′,β ′),(θ ′′,β ′′), (θ ′, β ′), (θ ′′, β ′′) ∈ �k

θ := �θ × {β ∈
Z

d+ : |β| < k}. Then the functions

g̃θ,β :=
∑

(θ ′,β ′)∈�k
θ

R(θ,β),(θ ′,β ′)gθ ′,β ′ (3.26)

which, by construction, are supported on Bθ , form a dual system to 
m . In fact,

〈g̃θ,β, gβ∗,θ∗〉Bθ =
∑

(θ ′,β ′)∈�k
θ

R(θ,β),(θ ′,β ′)〈gθ ′,β ′ , gθ∗,β∗〉Bθ

= (Gθ G−1
θ )(θ,β),(θ∗,β∗) = δ(θ,β),(θ∗,β∗),

(θ, β), (θ∗, β∗) ∈ �θ . (3.27)

It remains to prove that the functionals bθ,β(g) := 〈g̃θ,β, g〉Bθ satisfy (3.13) with
constant C depending only on the parameters in p(�), k and φ. Since |Aθ | ∼ |θ | it
immediately follows from (3.23) and (3.25) that

|R(θ,β),(θ ′,β ′)| <∼ 1/|θ |, (3.28)

where again the constant depends only on p(�) and the order k of the polynomials. In
view of (3.26), the uniform bound (3.13) follows indeed from (3.28), (3.26) and the
fact that #�θ ≤ N1, θ ∈ �m , m ∈ N0.

This finishes the proof for the case of a single generating bump φ. It is now evident
how to extend the compactness argument to the case of several colored generating
bumps. ��

3.3 Quasi-interpolants

The second crucial ingredient are Quasi-interpolants mapping L2(�) onto the spaces
Sm . Specifically, the mappings

Qm f :=
∑

θ∈�m ,|β|<k

bθ,β( f )Pθ,βϕθ , f ∈ L2(�), (3.29)

are, in view of Theorem 3.3, especially (3.14), uniformly bounded projectors from
L2(�) onto Sm .

Lemma 3.5 We have

‖Qm f ‖L2(θ) ≤ c‖ f ‖L2(θ∗) ∀ f ∈ L2(�), (3.30)

where for θ ∈ �m

θ∗ :=
⋃

{θ ′ ∈ �m : θ ∩ θ ′ �= ∅}.
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Further immediate consequences of Theorem 3.3 concern the approximation
properties of the spaces Sm . To this end, consider the usual forward difference of
f in direction h defined by �h f (x) := �1

h f (x) := f (x + h) − f (x) when the line
segment [x, x + h] is contained in � and by �h f (x) = 0 otherwise. Likewise define
for k > 1 the kth order forward difference by �k

h f (x) := �h(�k−1
h f (x)), again

provided that [x, x + kh] ⊂ �, while �k
h f (x) := 0 otherwise. Recall that the two

versions of the kth L2-modulus of smoothness are then as usual defined as

ωk( f, θ)2 := sup
t>0

sup
|h|≤t

‖�k
h f ‖L2(θ), ωk( f, t)2 := sup

|h|≤t
‖�k

h f ‖L2(�).

Lemma 3.6 For f ∈ L2(�) and θ ∈ �m one has

‖ f − Qm f ‖L2(θ) ≤ c
∑

θ ′∈�m : θ ′∩θ �=∅
ωk( f, θ ′)2. (3.31)

Moreover,

‖ f − Qm f ‖L2(�) ≤ c

⎛

⎝
∑

θ∈�m

ωk( f, θ)2
2

⎞

⎠
1/2

≤ cωk( f, 2−a0m/d)2. (3.32)

Hence, one has

‖ f − Qm f ‖L2(�) → 0 as m → ∞. (3.33)

In addition, denoting by | f |2
Hk (�)

:= ∑
|β|=k ‖∂β f ‖2

L2(�), the classical kth order
Sobolev semi-norm in L2, an immediate consequence of (3.31) is

‖ f − Qm f ‖L2(�) ≤ chr
m | f |Hr (�), r ≤ k, (3.34)

where hm = max {diam θ : θ ∈ �m}. The constants in (3.31)–(3.34) depend only on
φ, k, p(�) but not on f, m, θ .

Proof Estimate (3.31) is an immediate consequence of the locality of the dual function-
als, the polynomial reproduction property from Remark 3.2, and a classical Whitney
estimate for local polynomial approximation. As for (3.33), it is easy to see (cf. [3,12])
that

ωk( f, 2−a0m/d)2 ∼
⎛

⎝
∑

θ∈�m

ωk( f, θ)2
2

⎞

⎠
1/2

, (3.35)

so that (3.33) follows from (3.31) and (3.35). Estimate (3.34) follows from standard
estimates for the modulus of smoothness given enough smoothness. ��
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3.4 Two-level splits

For Schwarz type preconditioners to produce uniformly bounded condition numbers
one needs to have stable splittings of the corresponding energy space which, in turn,
could be viewed as constructing suitable frames for this space, see e.g., [9,16]. For such
multilevel frames to exist one needs to capture in some sense difference information
between successive levels of resolution. In the present framework of MPUHs we cannot
expect any nestedness of the spaces Sm . Nevertheless, we shall see in this section that
appropriate two-level splits can serve to some extent as substitutes.

To describe such two-level splits let

�m :={λ=(η, θ, β) : η ∈ �m+1, θ ∈ �m, |θ ∩ η| �= 0, |β| < k}, m ≥ 0, (3.36)

and define

Fλ := Pη,βϕηϕθ , λ = (η, θ, β) ∈ �m . (3.37)

Note that

∑

η∈�m+1

∑

θ∈�m :θ∩η �=∅
ϕηϕθ = 1 on �. (3.38)

In order to obtain multilevel decompositions of function spaces based on � and the
above atoms we shall employ the following two-scale relations of polynomial bases

Pθ,α =
∑

|β|<k

mθ,η
β,α Pη,β .

Combining this with the partition of unity property of the ϕη ∈ �m+1, we obtain for
θ ∈ �m

Pθ,α =
∑

η∈�m+1:θ∩η �=∅

∑

|β|<k

mθ,η
β,α Pη,βϕη. (3.39)

Finally it will be convenient to introduce in addition �−1 := �0 to set � :=⋃∞
m=−1 �m , and use the same notation for the coarse single-level atoms Fλ := Pθ,βϕθ ,

λ = (θ, β) ∈ �−1.

Theorem 3.7 For any f ∈ L2(�) we have (with Q−1 ≡ 0)

f =
∞∑

m=−1

(Qm+1 f − Qm f ) =
∞∑

m=−1

∑

λ∈�m

dλ( f )Fλ =
∑

λ∈�

dλ( f )Fλ, (3.40)
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where for mθ,η
β,α from (3.39) and the dual functionals bη,β(·) constructed in Theorem

3.3 one has

dλ( f ) = bη,β( f ) −
∑

|α|<k

mθ,η
β,αbθ,α( f ). (3.41)

Proof The representation (3.40), i.e. the strong convergence of the underlying expan-
sion follows from (3.33). Furthermore, we have

Qm+1 f − Qm f =
∑

η∈�m+1

∑

|β|<k

bη,β( f )Pη,βϕη −
∑

θ∈�m

∑

|α|<k

bθ,α( f )Pθ,αϕθ

=
∑

θ∈�m

ϕθ

∑

η∈�m+1

⎛

⎝
∑

|β|<k

bη,β( f )Pη,β

⎞

⎠ϕη

−
∑

θ∈�m

⎛

⎝
∑

|α|<k

bθ,α( f )
∑

η∈�m+1:θ∩η �=∅

∑

|β|<k

mθ,η
β,α Pη,βϕθϕη

⎞

⎠

=
∑

η∈�m+1

∑

θ∈�m : θ∩η �=∅

∑

|β|<k

⎧
⎨

⎩bη,β( f ) −
∑

|α|<k

mθ,η
β,αbθ,α( f )

⎫
⎬

⎭

×Pη,βϕηϕθ ,

as claimed. ��
For λ = (η, θ, β) ∈ �m we shall often write ηλ = η, θλ = θ and βλ = β.
An important point for later developments is the fact that the representations of

the differences (Qm+1 − Qm) f are under certain conditions unique and stable. For
this purpose the product atoms Fλ should also be locally linearly independent. We
formalize this requirement as follows:

Property (LLIN′): For each η ∈ �m+1, m ∈ N0, there exists a region Ñη ⊂ η such
that the atoms Fλ′ , λ′ = (η′, θ ′, β) overlapping Ñη are linearly independent over Ñη,
i.e.

∑

λ′∈�m :η′∩N ′
η �=∅

cλ′ Fλ′(x) = 0, x ∈ Ñη, �⇒ cλ′ = 0, λ′ ∈ �m : η′ ∩ Ñη �= ∅.

(3.42)

Let us verify the validity of (LLIN′) for two scenarios already discussed in Sect. 3.1.
Sparsely shifted B-splines: We adhere to the setting described earlier in Sect. 3.1 and
consider tensor product B-splines of coordinate degree K and maximal smoothness
K − 1 shifted on a regular grid in such a way that polynomial regions match for
overlapping supports and that the resulting cover is sparse in the sense of Remark
2.2, see also the example following Remark 2.1. As explained before, for instance,
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for cardinal B-splines the supports are shifts of [0, K + 1]d and we could shift on the
lattice LZ

d for some L ∈ N, L ≤ K , e.g., L = K (but close to K to have only a fixed
number of overlaps independent of K ). To see that Property (LLIN′) holds, it suffices
to consider the coarsest level. Then the support �θ of each φθ is a cube of side length
L − 1 = K − 1. Therefore, when creating higher levels by dyadic subdivisions of the
ground lattice, each ϕη for η ∈ �m+1 at the next higher level has the property that �η

has a nonzero intersection with an �θ for only one θ ∈ �m . Since on Ñη := �η ∩�θ

the bumps ϕθ and ϕη are constant the validity of Property (LLIN′) is immediate.
This can be extended somewhat to more general sparse covers, where the validity

of Property (LLIN′) can be reduced to a property of the basic atoms.

Proposition 3.8 Property (LLIN′) holds for a sparse cover if the following is true:
For each η ∈ �m+1 there exists a neighborhood Ñη ⊆ �η such that

∑

θ ∈ �m , θ ∩ Nη �= ∅
|β| < k

cβ,θ Pη,βφθ (x) = 0, x ∈ Ñη �⇒ cβ,θ = 0, θ ∈ �m,

θ ∩ Nη �= ∅, |β| < k, (3.43)

where φθ := φ ◦ A−1
θ .

Proof Suppose that, in view of (2.5), (2.6), Bη is again a ball in η ∈ �m+1 which is
not intersected by any other η′ ∈ �m+1. Then, since Bη is overlapped only by η itself
and since ϕη ≡ 1 on Bη we have

∑

λ′∈�
m,m+1
η

cλ′ Fλ′(x) = 0 on Bη ⇐⇒
∑

|β ′|<k

∑

θ ′∩Bη �=∅
cη,β ′,θ ′ Pη,β ′(x)ϕθ ′(x)=0 on Bη.

Since the ϕθ and φθ differ only by one common factor we see that the Fλ′ that overlap
Bη are linearly independent on Bη. Thus, Property (LLIN′) is valid. ��

The second scenario concerns the
Variable order radial polynomial bumps: Again we have to extend formally the setting
described in Property (LLIN′) to admit bumps φν where pairwise different colors
appear in the linear combination of product atoms in Property (LLIN′). The required
local linear independence is then again an immediate consequence of the sufficiently
large degree differences between different colors that has been chosen to account for
the possible product combinations appearing in the Fλ.

Theorem 3.9 Suppose that in addition to the assumptions in Theorem 3.3 Property
(LLIN′) is valid. Then each collection

{Fλ : λ ∈ �m}, m = 0, 1, . . . ,

is linearly independent on � and hence forms a basis for

Wm := span {Fλ : λ ∈ �m).
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Moreover, any g ∈ Wm has a unique representation

g =
∑

λ∈�m

cλ(g)Fλ, (3.44)

where as in (3.13) the dual functionals cλ, λ = (η, θ, β), have a representation
cλ(g) = 〈g, cλ〉Bη , for some Bη ⊂ η which is comparable in size to η. Hence the
functionals cλ(·) are bounded linear functionals on L2(�) and satisfy

|cλ(g)| <∼ |η|−1/2‖g‖L2(η), λ = (η, θ, β) ∀g ∈ Wm, (3.45)

where the constant depends only on k, p(�) and φ.

Proof Under the given assumptions the construction of the dual functionals is analo-
gous to the one given in the proof of Theorem 3.3. By an analogous dilation argument
as in Lemma 3.4 one can establish again the fact that for some constant b5 > 0 and a
suitable Bη ⊂ η one has

Bη ∩ η′ ∩ θ �= ∅ �⇒ |Bη ∩ η′ ∩ θ | ≥ b5|η|. (3.46)

Since the remaining assertions are analogous consequences the proof is complete. ��
An immediate consequence of Theorem 3.9 can be stated as follows (see also (3.15)).

Corollary 3.10 For any g ∈ Wm we have

‖g‖2 ∼
⎛

⎝
∑

λ∈�m

‖cλ(g)Fλ‖2
2

⎞

⎠
1/2

. (3.47)

In the following we shall frequently use the following relation

‖Fλ‖2 ∼ |ηλ| 1
2 ‖Fλ‖∞ (3.48)

which holds with constants depending on the polynomial degrees of the atoms.

4 Application to preconditioning for elliptic boundary value problems

We now turn to discretizations by means of the above type of partition of unity hierar-
chies. Thus, for any given f ∈ V ′, V a Hilbert space and a(·, ·) a symmetric V -elliptic
bilinear form (see (1.1)) we consider the problem: Find u ∈ V such that

a(u, v) = 〈 f, v〉 ∀v ∈ V . (4.1)

For simplicity we confine the discussion to the model case V = H1
0 (�). Higher order

problems could be treated in an analogous way. The homogeneous boundary conditions
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are always supposed to be realized in the trial spaces by suitable polynomial factors
in the atoms.

Since we shall not deal with discretizations for a fixed level m of resolution but
wish to incorporate from the beginning the realization of adaptivity admissible trial
functions should in principle, be atoms from all levels. More precisely, we shall make
use of the atoms Fλ, defined in (3.37) for λ ∈ � = ⋃∞

m=−1 �m , see (3.36).
We shall place this in the context of stable splittings in the theory of multilevel

Schwarz preconditioners developed by many researchers, see e.g., [14,16] and the
literature cited there. Here we adhere mainly to the findings in [9,16]. To this end, let
Vλ := span (Fλ) (see (3.37)) so that H1

0 (�) := V = ∑
λ Vλ. The following is the

main result of this section whose proof will be postponed.

Theorem 4.1 The {Vλ}λ∈� form a stable splitting for V in the sense that there exist
positive finite constants cV , CV , depending only on p(�), k and φ, such that

cV ‖v‖V ≤ inf
v=∑λ vλ

(
∑

λ∈�

|ηλ|−2/d‖vλ‖2
2

)1/2

≤ CV ‖v‖V . (4.2)

Moreover, defining �m := ⋃m
j=−1 � j , the {Vλ}λ∈�m form a uniformly stable splitting

for the spaces Sm in the sense of (4.2) with the same constants cV , CV .

This allows us to invoke the theory of Schwarz methods along the following lines.
For V0 := S0 = span 
0 define PV0 : V → V0 and rV0 ∈ S0 by

a(PV0v, Fλ) = a(v, Fλ), (rV0 , Fλ)L2 = 〈 f, Fλ〉, λ ∈ �0 = �0.

Moreover, introducing the auxiliary bilinear forms:

bλ(v,w) := |ηλ|−2/d(v,w)L2 , v, w ∈ Vλ, λ ∈ �\�0, (4.3)

we endow the spaces Vλ with the norms ‖v‖Vλ := (bλ(v, v))1/2 and define the linear
operator PVλ : V → Vλ and fλ ∈ Vλ by

|ηλ|−2/d(PVλv, Fλ)L2 = a(v, Fλ),

|ηλ|−2/d( fλ, Fλ)L2 = 〈 f, Fλ〉. (4.4)

Thus, as usual,

PVλv = aλ(v)Fλ, fλ = rλ( f )Fλ, (4.5)

with

aλ(v) = |ηλ|2/da(v, Fλ)

〈Fλ, Fλ〉 , rλ( f ) = |ηλ|2/d〈 f, Fλ〉
〈Fλ, Fλ〉 . (4.6)

The following statements are now an immediate consequence of the results in [9,16].
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Theorem 4.2 Problem (4.1) is equivalent to the operator equation

PV u = f̄ , (4.7)

where

PV := PV0 +
∑

λ∈�\�0

PVλ , f̄ := rV0 +
∑

λ∈�\�0

fλ. (4.8)

Moreover, the spectral condition number κ(PV ) of the additive Schwarz operator PV

satisfies

κ(PV ) ≤ CaCV

cacV
, (4.9)

where ca, Ca, cV , CV are the constants from (1.1) and (4.2).

This latter fact implies that simple iterative schemes, such as Richardson iterations,

un+1 = un + α( f̄ − PV un), n = 0, 1, 2, . . . , (4.10)

converge with a fixed error reduction rate per step. More specifically, suppose that
un = ∑

λ∈� un
λFλ with coefficient array un = (un

λ)λ∈�, (4.10) can be rephrased, in
view of (4.5), (4.6) as

un+1 = un + α(f̄ − Aun), Aλ,λ′ = |ηλ|2/d‖Fλ‖−2
2 a(Fλ, Fλ′), λ, λ′ ∈ �.

(4.11)

A few comments are in order. First of all, the above operator equation (4.7) is
formulated in the full infinite dimensional space. Alternatively, restricting the sum-
mation to any a priori chosen finite subset �̄ of � (e.g., �̄ = �m), we obtain a finite
dimensional discrete problem whose condition fulfills, in view of the second part of
Theorem 4.1, the same bound, uniformly in the size and choice of �̄. In this sense we
have an asymptotically optimal preconditioner.

On the other hand, it is conceptually useful to consider the full infinite dimensional
problem (4.7). In this case (4.10) is to be understood as an idealized scheme whose nu-
merical implementation requires appropriate approximate applications of the (infinite
dimensional) operator PV quite in the spirit of [2]. This can be done by computing in
addition to solving the coarse scale problem on S0 = V0 only finitely many but prop-
erly selected components PVλ each requiring only the solution of a one-dimensional
problem. This hints at the adaptive potential of such an approach similar to the devel-
opments in [2]. Roughly speaking, one could try to monitor the size of the components
of the weighted residual α( f̄ − PV un) so as to replace it within a suitable tolerance
by a vector of possibly small support. Thereby one would try to keep the supports of
the approximations un as small as possible again within a desired gain of accuracy.
This, in turn, raises the question which accuracy can be achieved at best when using
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linear combinations of at most N of the atoms, i.e. we are interested in the error of
best N-term approximation

σN ,X (v) := inf

⎧
⎨

⎩

∥∥∥∥∥∥
v −

∑

λ∈�̃

aλFλ

∥∥∥∥∥∥
X

: aλ ∈ R, #�̃ ≤ N

⎫
⎬

⎭ . (4.12)

To see whether any adaptive strategy could offer a gain over simple uniform refine-
ments it is interesting to understand the corresponding approximation spaces

As
X :=

{
v ∈ V : |v|As

X
:= sup

N∈N

N sσN ,X (v) < ∞
}

. (4.13)

It is shown in [3] that, for instance, the Besov spaces B1+ds
q (L p(�)) are embedded in

As
H1 , i.e. one has

σN ,H1(v)<∼ N−α/d |v|B1+α
q (L p(�))

,

provided that

1

p
<

α

d
+ 1

2
,

(see below for the definition of these spaces). Thus, the smaller p the more singu-
lar behavior of a solution can be compensated by nonlinear approximation so as to
maintain the approximation order N−α/d . To achieve the same order through uniform
discretizations the solution would have to belong to B1+α∞ (L2(�)) which is a much
smaller space (very close to H1+α(�)).

A more thorough discussion of related adaptive solution schemes will be given
elsewhere. The remainder of this note is devoted to the proof of the above stable
splittings.

5 Besov spaces and stable splittings

For variational problems of the type considered in the previous section the energy
space V is typically a Sobolev space. A common strategy for establishing the stability
(4.2) of the splitting {Fλ}λ∈� required in Theorem 4.2 in this context is to exploit that
the Sobolev spaces Ht (�) (or corresponding subspaces with vanishing traces) agree
with the Besov spaces Bt

2(L2(�)) with equivalent norms and that the Besov norms are
more suitable for analyzing multilevel splittings. Moreover, Besov spaces on L p(�)

for p �= 2 are relevant for the analysis of nonlinear approximation such as best N -term
approximation. Let us briefly recall that the Besov space Bα

q (L p(�)), with α > 0 and
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0 < p, q ≤ ∞, is usually defined as the set of all functions f ∈ L p(�) such that

| f |Bα
q (L p(�)) :=

⎛

⎝
∞∫

0

(t−αωk( f, t)p)
q dt

t

⎞

⎠
1/q

< ∞ (5.1)

with the usual modification when q = ∞. As before ωk( f, t)p is the kth modulus of
smoothness of f in L p over �. The norm in Bα

q (L p(�)) is defined by

‖ f ‖Bα
q (L p(�)) := |�|−α/d‖ f ‖L p + | f |Bα

q (L p(�)).

It is not hard to see that

| f |Bα
q (L p(�)) ∼

⎛

⎝
∞∑

j=0

(
2α jωk( f, 2− j )p

)q/p

⎞

⎠
1/q

(5.2)

Moreover, following [3,12], the moduli of smoothness can be localized which allows
us to related the Besov norms to the cover � from Sect. 2 by verifying that

| f |Bα
q (L p(�)) ∼

⎛

⎜⎝
∞∑

m=0

⎛

⎝
∑

θ∈�m

|θ |−αp/dωk( f, θ)
p
p

⎞

⎠
q/p
⎞

⎟⎠

1/q

. (5.3)

To see how this, in turn, can be related to norms of the type appearing in (4.2),
it will be convenient to introduce next a scale of “smoothness spaces” (B-spaces)
induced by multilevel covers � as described in Sect. 2. The construction of these
spaces is inspired by previous work referring to a different setting, see [4,12,15]. As
before we assume that � is a bounded extension domain in R

d as explained in Sect. 1.
Since in the context of Theorem 4.1 we are interested here in characterizing only the
Sobolev spaces Ht = Bt

2(L2), we shall confine the subsequent discussion to the case
p = q = 2 and refer to [3] for the general case.

The following first version defines the B-space Bs(�) via atomic decompositions
which will provide our link to the stable splittings in Theorem 4.1. More precisely,
the B-space Bs(�), s > 0, is defined as the set of all functions f ∈ L2(�) such that

‖ f ‖Bs (�) := inf
f =∑λ∈� aλ Fλ

(
∑

λ∈�

|θλ|−2s‖aλFλ‖2
2

)1/2

< ∞, (5.4)

where the infimum is taken over all representations f = ∑
λ∈� aλFλ in L2(�). Here

� := ∪∞
m=−1�m , �−1 := �0.
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A second approach to the B-spaces Bs(�), that will help us to interrelate the above
norms, is through quasi-interpolants. For f ∈ L2(�) we have by Theorem 3.7

f = Q0 f +
∞∑

m=0

(Qm+1 f − Qm f ) =
∞∑

m=−1

∑

λ∈�m

dλ( f )Fλ. (5.5)

We define

‖ f ‖Q
Bs (�)

:=
(
∑

λ∈�

|θλ|−2s‖dλ( f )Fλ‖2
2

)1/2

, (5.6)

where {dλ( f )}λ∈� comes from (5.5).
These B-spaces are conveniently linked to Besov spaces by introducing the third

version through the semi-norm

| f |ωBs (�) :=
(
∑

θ∈�

|θ |−2sωk( f, θ)2
2

)1/2

< ∞, (5.7)

where ωk( f, θ)2 is again the kth modulus of smoothness of f on θ in L2. We set

‖ f ‖ω
Bs (�) := |�|−s‖ f ‖2 + | f |ωBs (�). (5.8)

Evidently, ‖ · ‖ω
Bs (�)

is a norm. This norm now depends on one more parameter k ≥ 1
which we shall not indicate explicitly in the notation before we clearly exhibit its role.
We shall assume at this point, however, that k ≤ r , where r > 0 is the smoothness of
our building blocks φ (see the beginning of Sect. 3).

A glance at (5.3) reveals that the latter norm is just the Besov norm with p = q = 2
where the smoothness index is rescaled, i.e. s plays the role of α/d.

Remark 5.1 For 0 < s < k/d, we have Bs(�) = Bds
2 (L2(�)) and for f in this space

one has

‖ f ‖Bs (�) ∼ ‖ f ‖Bds
2 (L2(�)) ∼ ‖ f ‖Hds (�).

Without further mentioning we assume in the following that Property (LLIN′) or
the hypotheses of Proposition 3.8 are valid.

The main result of this section concerns the following interrelation of the above
norms.

Theorem 5.2 Let s > 0, and k ≥ 1.
(a) If f ∈ Bs(�), then

‖ f ‖Bs (�) ≤ ‖ f ‖Q
Bs (�)

<∼ ‖ f ‖ω
Bs (�). (5.9)
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(b) The norms ‖ · ‖Bs (�), ‖ · ‖Q
Bs (�)

, and ‖ · ‖ω
Bs (�)

, defined in (5.4),(5.6) and (5.8),
are equivalent for 0 < s < k/d. Here the constants depend only on s, k, on the
parameters in p(�) of �, and on φ.

Proof As for (a), in view of the special decomposition f = ∑
m(Qm − Qm−1) f , the

first inequality is trivial. To confirm the second inequality, we recall that, by (3.47)

∑

λ∈�m

‖dλ( f )Fλ‖2
2 ∼ ‖(Qm+1 − Qm) f ‖2

2 ≤
∑

θ∈�m

‖(Qm+1 − Qm) f ‖2
L2(θ)

<∼
∑

θ∈�m

ωk( f, θ)2
2,

where we have used in the last step (3.31), (C2), (C3), (C5) as well as standard
properties of the modulus of smoothness. The right-hand-side inequality in (5.9) is
now an immediate consequence of definition (5.7).

To confirm (b) it remains to show that

‖ f ‖ω
Bs (�)

<∼ ‖ f ‖Bs (�). (5.10)

To this end, we need to estimate ωk( f, θ)2
2 which requires the following simple

technical observations. Recalling that by the properties (C1)–(C5) our normalization
ensures that ‖Fλ‖∞ ∼ 1, one derives that

∥∥∥∂α Fλ

∥∥∥∞
<∼ |ηλ|−|α|/d , |α| ≤ k.

Hence for some h ∈ R
d , |h| ≤ diam θ ∼ |θ |1/d , denoting by ∂ f/∂h = limt→0( f (· +

th/|h|) − f (·))/t the directional derivative (see p1, p2, (C1))

ωk(Fλ, θ)2
2

<∼ |h|2k

∥∥∥∥∥

(
∂

∂h

)k

Fλ

∥∥∥∥∥

2

∞
|θ | ≤ |θ |2k/d |ηλ|−2k/d |θ |

=
( |θ |

|ηλ|
)2k/d

|θ | <∼
( |θ |

|ηλ|
) 2k

d +1

‖Fλ‖2
2, (5.11)

where we used that ‖Fλ‖2 ∼ |ηλ|1/2 (see (3.48)) due to the normalization ‖Fλ‖∞ ∼ 1.
To prove now (5.10) consider any decomposition f = ∑

λ∈� aλFλ in L2. Employ-
ing (5.11), we have for θ ∈ �
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ωk( f, θ)2 <∼ ωk

⎛

⎝
∑

|ηλ|>|θ |
aλFλ, θ

⎞

⎠

2

+
∥∥∥∥∥∥

∑

|ηλ|≤|θ |
aλFλ

∥∥∥∥∥∥
L2(θ∗)

<∼
∑

|ηλ|>|θ |, ηλ∩θ �=∅
|aλ|ωk(Fλ, θ)2 +

∥∥∥
∑

|ηλ|≤|θ |, ηλ∩θ �=∅
aλFλ

∥∥∥
2

(5.12)

<∼
∑

|ηλ|>|θ |, ηλ∩θ �=∅

( |θ |
|ηλ|

) k
d + 1

2 ‖aλFλ‖2 +
∥∥∥

∑

|ηλ|≤|θ |, ηλ∩θ �=∅
aλFλ

∥∥∥
2
.

Now by (5.7) and (5.12), we infer

(| f |ωBs (�)

)2 =
∑

θ∈�

|θ |−2sωk( f, θ)2
2

<∼
∑

θ∈�

|θ |−2s

⎡

⎣
∑

|ηλ|>|θ |, ηλ∩θ �=∅

( |θ |
|ηλ|

) k
d + 1

2 ‖aλFλ‖2

⎤

⎦
2

+
∑

θ∈�

|θ |−2s

∥∥∥∥∥∥

∑

|ηλ|≤|θ |, ηλ∩θ �=∅
aλFλ

∥∥∥∥∥∥

2

2

=: �1 + �2. (5.13)

For the first sum, we have

�1 =
∑

θ∈�

⎡

⎣
∑

|ηλ|>|θ |, ηλ∩θ �=∅

( |θ |
|ηλ|

) k
d −s+ 1

2 |ηλ|−s‖aλFλ‖2

⎤

⎦
2

=
∑

θ∈�

⎡

⎣
∑

|ηλ|>|θ |, ηλ∩θ �=∅

( |θ |
|ηλ|

)2δ+ 1
2

Aλ

⎤

⎦
2

, (5.14)

where 2δ := k/d − s > 0 and Aλ := |ηλ|−s‖aλFλ‖2. Applying Cauchy–Schwarz’s
inequality, we get

�1 ≤
∑

θ∈�

⎡

⎣
∑

|ηλ|>|θ |, ηλ∩θ �=∅

( |θ |
|ηλ|

)2δ
⎤

⎦
∑

|ηλ|>|θ |, ηλ∩θ �=∅

( |θ |
|ηλ|

)2δ+1

A2
λ. (5.15)

Similarly as above for θ ∈ �m and ηλ ∈ �m−ν one has |θ |/|ηλ| <∼ 2−νa0 . Conse-
quently,

∑

|ηλ|>|θ |, ηλ∩θ �=∅

( |θ |
|ηλ|

)2δ

<∼
∞∑

ν=0

2−νa02δ <∼ 1. (5.16)
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We use this in (5.15) and switch the order of summation to obtain

�1 <∼
∑

λ∈�

A2
λ

∑

|θ |<|ηλ|, θ∩ηλ �=∅

( |θ |
|ηλ|

)2δ+1

. (5.17)

Fix λ ∈ � and assume that ηλ ∈ � j . From properties (C1) and (C5) we infer that the
number of cells θ ∈ � j+l whose support intersect ηλ is bounded by c2la0 to obtain

∑

|θ |<|ηλ|, θ∩ηλ �=∅

( |θ |
|ηλ|

)2δ+1
<∼

∞∑

l=0

∑

θ∈� j+l , θ∩ηλ �=∅
2−la0(1+2δ) <∼

∞∑

l=0

2−la02δ <∼ 1.

Inserting this in (5.17) we get

�
1/2
1

<∼ ‖ f ‖Bs (�). (5.18)

We now estimate �2. Note first that by (C2) it follows that

∥∥∥
∑

ηλ∈�m+ν , ηλ∩θ �=∅
aλFλ

∥∥∥
2

2
<∼

∑

ηλ∈�m+ν , ηλ∩θ �=∅
‖aλFλ‖2

2, if θ ∈ �m, ν ≥ 0.

Hence

�2 <∼
∞∑

m=0

∑

θ∈�m

|θ |−2s

⎡

⎢⎣
∞∑

ν=0

⎛

⎝
∑

ηλ∈�m+ν , ηλ∩θ �=∅
‖aλFλ‖2

2

⎞

⎠
1/2
⎤

⎥⎦

2

=
∞∑

m=0

∑

θ∈�m

⎡

⎢⎣
∞∑

ν=0

⎛

⎝
∑

ηλ∈�m+ν , ηλ∩θ �=∅

( |ηλ|
|θ |
)2s

|ηλ|−2s‖aλFλ‖2
2

⎞

⎠
1/2
⎤

⎥⎦

2

.

As above we denote Aλ := |ηλ|−s‖aλFλ‖2 and use that |ηλ|/|θ | <∼ 2−νa0 if θ ∈ �m ,
ηλ ∈ �m+ν to obtain

�2 <∼
∞∑

m=0

∑

θ∈�m

⎡

⎢⎣
∞∑

ν=0

2−νa0s/2

⎛

⎝
∑

ηλ∈�m+ν , ηλ∩θ �=∅

( |ηλ|
|θ |
)s

A2
λ

⎞

⎠
1/2
⎤

⎥⎦

2

=:
∞∑

m=0

∑

θ∈�m

σθ . (5.19)
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Now applying Cauchy–Schwarz’s inequality, we have

σθ ≤
( ∞∑

ν=0

2−νa0s

) ∞∑

ν=0

∑

ηλ∈�m+ν , ηλ∩θ �=∅

( |ηλ|
|θ |
)s

A2
λ

<∼
∞∑

ν=0

∑

ηλ∈�m+ν , ηλ∩θ �=∅

( |ηλ|
|θ |
)s

A2
λ.

Substituting this in (5.19) and switching the order of summation, we obtain

�2 <∼
∑

λ∈�

A2
λ

∑

|θ |≥|ηλ|, θ∩ηλ �=∅

( |ηλ|
|θ |
)s

.

Exactly as in (5.16) the second sum above can be bounded from above by a constant,
which implies �

1/2
2

<∼‖ f ‖Bs (�). This coupled with (5.18) yields | f |ωBs (�)
<∼‖ f ‖Bs (�).

The estimate |�|−s‖ f ‖2 <∼ ‖ f ‖Bs (�) is similar to the estimate of �2 above but is
easier and its proof will be omitted. The proof of (5.10) is complete. ��

An immediate further consequence of (5.3) is the following fact.

Corollary 5.3 Under the above assumptions the norms ‖ · ‖Bsd
2 (L2(�)), ‖ · ‖ω

Bs (�)
,

‖ · ‖Bs (�), and ‖ · ‖Q
Bs (�)

, defined in (5.1), (5.8), (5.4) and (5.6), are equivalent for
0 < s < k/d.

Since the norms a(·, ·)1/2 and ‖ · ‖H1(�) are equivalent, employing the well known
fact that

‖ · ‖H1(�)¸ ∼ ‖ · ‖B1
2 (L2(�)),

mentioned earlier, the first part of the assertion of Theorem 4.1 is immediate. The
remaining part, stating that finite subsets of the splitting for all of V still form uniformly
stable frames follows from the fact that the telescoping expansions underlying the
version ‖ · ‖Q

Bs (�)
, terminate without affecting this norm. Thus the proof of Theorem

4.1 is complete.
We wish to conclude the discussion with some comments relating back to the notion

of best N -term approximation addressed at the end of the previous section and may
be viewed as another byproduct of the above norm equivalences. Of course, in the
present context we are interested in σN ,X for X = H1

0 (�), the energy space of second
order elliptic problems. To this end, consider in analogy to (5.6)

‖ f ‖Q
Bs

p(�)
:=
(
∑

λ∈�

|θλ|−sp‖dλ( f )Fλ‖p
p

)1/p

, (5.20)

for any 0 < p ≤ ∞. For p < 1 the coefficients dλ( f ) need to be defined with the aid
of somewhat different quasiinterpolants and the spaces Bs

p(�) can again be shown to
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coincide within a certain range with the Besov spaces Bs/d
p (L p(�)), we refer to [3]

for the details.

Theorem 5.4 Suppose that for some α > 0 (under the assumptions in Section 4)
v ∈ Bα+1/d

p (�) with

1

p
= α + 1

2
. (5.21)

Then

σN ,H1
0 (�)(v)<∼ ‖v‖Bα+1/d

p (�)
N−α, (5.22)

with a constant depending only on d, p(�), k and φ. Thus, whenever α + 1/d < k/d,
the Besov regularity v ∈ B1+αd

p (L p(�)) ensures a best N-term error decay rate of
N−α .

Proof Rearrange the terms {‖|ηλ|−1/ddλ(v)Fλ

∥∥
2} in decreasing order according to

their size

∥∥|ηλ1 |−1/ddλ1(v)Fλ1

∥∥
2 ≥ ∥∥|ηλ2 |−1/ddλ2(v)Fλ2

∥∥
2 ≥ · · ·

and set SN := ∑N
j=1 dλ j (v)Fλ j . Then by Theorem 5.2 and Corollary 5.3 we obtain,

on account of the well-known characterization Aα

2

by the weak space 
w
p , 1

p = α + 1
2

(see below for the definition of the norm),

‖v − SN ‖H1 ∼
∥∥∥

∞∑

j=N+1

dλ j (v)Fλ j

∥∥∥
H1

<∼

⎛

⎝
∞∑

j=N+1

|ηλ j |−2/d‖dλ j (v)Fλ j ‖2
2

⎞

⎠
1/2

<∼ N−α
∥∥∥{|ηλ|−1/d‖dλ(v)Fλ‖2}

∥∥∥

w

p

,

where for the decreasing rearrangement (a∗
j ) j∈N of the sequence a = (aλ)λ∈�

‖a‖
w
p

:= sup
n∈N

n1/p|a∗
n |.

123



Multilevel preconditioning for partition of unity methods 531

Since ‖a‖
w
p
<∼ ‖a‖
p we conclude that

‖v − SN ‖H1 <∼ N−α

(
∑

λ∈�

|ηλ|−p/d‖dλ(v)Fλ‖p
2

)1/p

∼ N−α

(
∑

λ∈�

|ηλ|− p
d |ηλ| p

2 −1‖dλ(v)Fλ‖p
p

)1/p

∼ N−α

(
∑

λ∈�

|ηλ|− p
d −αp‖dλ(v)Fλ‖p

p

)1/p

= N−α‖v‖Bα+1/d
p (�)

,

where we have used (3.48) and (5.21). In view of Corollary 5.1, this completes the
proof. ��
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