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NONLINEAR APPROXIMATION AND THE SPACE BV (R 2)

By ALBERT COHEN, RONALD DEVORE, PENCHO PETRUSHEV and HONG XU

Abstract. Given a function f 2 L2(Q), Q := [0, 1)2 and a real number t > 0, let U( f , t) :=
infg2BV (Q) kf � gk2

L2(I)
+ t VQ (g), where the infimum is taken over all functions g 2 BV of

bounded variation on I. This and related extremal problems arise in several areas of mathematics
such as interpolation of operators and statistical estimation, as well as in digital image processing.
Techniques for finding minimizers g for U( f , t) based on variational calculus and nonlinear partial
differential equations have been put forward by several authors [DMS], [RO], [MS], [CL]. The
main disadvantage of these approaches is that they are numerically intensive. On the other hand,
it is well known that more elementary methods based on wavelet shrinkage solve related extremal
problems, for example, the above problem with BV replaced by the Besov space B1

1(L1(I)) (see
e.g. [CDLL]). However, since BV has no simple description in terms of wavelet coefficients, it is
not clear that minimizers for U( f , t) can be realized in this way. We shall show in this paper that
simple methods based on Haar thresholding provide near minimizers for U( f , t). Our analysis of
this extremal problem brings forward many interesting relations between Haar decompositions and
the space BV.

1. Introduction. Nonlinear approximation has recently played an impor-
tant role in several problems of image processing including compression, noise
removal, and feature extraction. We have in mind techniques such as wavelet
compression [DJL], wavelet shrinkage or thresholding [DJKP1], wavelet packets
[CW], and greedy algorithms [MZ], [DT]. There has also been an impressive
contribution of techniques based on variational calculus and nonlinear partial dif-
ferential equations (see e.g. [DMS], [RO], [MS], [CL]) especially to the problems
of noise removal and image segmentation. The common point between these two
approaches is their ability to adapt to the composite nature of images: edge, tex-
tures and smooth regions should be treated adaptively, a requirement which is
certainly not fulfilled by the classical linear filtering techniques.

One problem which plays an important role in the latter approach is the
following extremal problem introduced by Lions, Osher, and Rudin (see [RO]):

Given a function (image) f defined on the unit square, Q := [0, 1)2, and a
parameter t > 0, find a function g 2 BV (Q) which attains the infimum

U( f , t) := inf
g2BV (Q)

kf � gk2
L2(Q) + t VQ (g).(1.1)
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Here BV (Q) is the space of functions of bounded variation on Q (see x2 for
the definition of this space) and VQ ( f ) = j f jBV is the associated semi-norm, i.e.
the total variation of f . In the practice of noise removal, f represents the noisy
image and t is usually chosen to be proportional to the noise level. The minimizer
g then appears as a denoised image. The functional in (1.1) can also be viewed
as a variant of the Mumford and Shah functional introduced in their celebrated
paper [MS] on image processing.

A minimization problem close to (1.1) is also familiar in the context of
interpolation of linear operators: the expression

K( f , t) := K( f , t, L2(Q), BV (Q)) := inf
g2BV (Q)

kf � gkL2(Q) + t VQ (g),(1.2)

called the K-functional of f for the pair (L2(Q), BV (Q)), is the basic tool for
generating interpolation spaces between these two spaces by the so-called real
method.

Numerical techniques for solving (1.1) based on partial differential equations
have been developed and successfully applied to image processing. The advantage
of these techniques is high performance. Their disadvantage is that they are
numerically intensive, and require in practice the approximation of the BV term
in U( f , t) by a quadratic term (e.g.

R
(� + jrf j2)1=2) in order to find a solution in

reasonable computational time (see [VO] for a discussion on numerical methods
for solving (1.1)).

In comparison, wavelet thresholding methods simply amount to the appli-
cation of multiscale decomposition and reconstruction algorithms on the image,
and of a thresholding procedure, which can all be performed in O(N) operations,
where N is the number of pixels in the image. These methods can be made
translation invariant by a cyclic averaging technique introduced in [CD], which
seems to bring significant visual improvement, while only raising the complexity
to O(N log N). From a more theoretical point of view, thresholding procedures
have been proved to be optimal, in the minimax sense of asymptotical statistics,
in various nonparametric contexts where the images are typically modeled by
their regularity in Sobolev and Besov classes (see [DJKP2]).

A striking remark (see [CDLL]) is that wavelet thresholding also provides
the exact solution to an extremal problem which is very close to (1.1), namely

Ũ( f , t) := inf
g2B1

1(L1(Q))
kf � gk2

L2(Q) + tjgjB1
1(L1(Q)),(1.3)

where the Besov space B1
1(L1(Q)) is taken in place of the (larger) space BV (Q).

Both BV (Q) and B1
1(L1(Q)) are smoothness spaces of order one in L1(Q), e.g. the

space BV (Q) is the same as Lip (1, L1(Q)) (see [M] or [DP1] for the definition
of the Besov spaces). In contrast to BV, the B1

1(L1) norm has a simple equivalent
expression as the `1 norm of the coefficients in a wavelet basis decomposition
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f =
P

�2Λ f� � (where Λ denotes the set of indices for the wavelet basis). One
can thus use this decomposition to obtain an equivalent discrete problem

Ũ(( f�), t) := inf
(g�)2`1

X
�2Λ

[j f� � g�j2 + tjg�j],(1.4)

whose solution (obtained by minimizing separately on each index �) is exactly
given by a “soft thresholding” procedure at level t=2:

g� = sgn ( f�) maxf0, j f�j � t=2g.(1.5)

The minimization problem (1.3) can thus be solved (up to a constant related to the
equivalence between continuous and discrete norms), by a simple wavelet-based
procedure.

One could argue that the distinction between the two problems (1.1) and (1.2)
is slight. However, BV seems more adapted to model real images, since it allows
sharp edges (i.e. discontinuities on a line), which cannot occur in a bivariate
function that belongs to the smaller space B1

1(L1). This fact is confirmed in the
practice of image processing: the performance of (1.1) for noise removal, for
example, seems slightly better than that of (1.3), at least in aesthetic terms.

We call a family of functions gt a near minimizer for (1.1) if

kf � gtk2
L2(Q) + t VQ (gt) � C

�
inf

g2BV (Q)
kf � gk2

L2(Q) + t VQ (g)
�

(1.6)

with C an absolute constant (not depending on t or f ). A similar definition ap-
plies to (1.2). The question arises whether one could find a near minimizer to
(1.1) and (1.2), using simple nonlinear approximation techniques such as wavelet
thresholding. Note that in contrast to B1

1(L1), we are then allowed to use approx-
imations that have line discontinuities, such as the multidimensional Haar basis
or, more generally, piecewise constant functions. The main point of this paper is
to develop such techniques and to prove that they indeed yield near minimizers
for the problems (1.1) and (1.2).

Our main result in this paper is to show that either of the extremal problems
(1.1–2) has a near minimizer taken from certain “non-linear” spaces ΣN , N � 1,
whose elements are piecewise constants that can be described by N parameters.
In the case of wavelet thresholding, the space ΣN is simply the set of all linear
combinations

P
f�H� with at most N terms and H� the bivariate Haar functions.

In order to prove that a given family ΣN provides the solution to (1.1) or
(1.2), we shall make use of several ingredients, among which are two types of
inequalities that are frequently used in numerical analysis and approximation
theory:
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(i) A direct or Jackson type estimate

inf
g2ΣN

kf � gkL2(Q) � CN�1=2j f jBV (Q),(1.7)

that describes the approximation power of ΣN for functions in BV.
(ii) An inverse or Bernstein type estimate

j f jBV (Q) � CN1=2kfkL2(Q) if f 2 ΣN ,(1.8)

that describes the smoothness properties of the approximation spaces ΣN .
When BV is replaced by B1

1(L1) and ΣN is the set of N-term linear combi-
nation in a sufficiently smooth wavelet basis, these inequalities reduce to simple
considerations on sequences. Since the BV norm has no simple equivalent ex-
pression in terms of the wavelet coefficients (it is actually known that BV is
nonseparable), (1.7) and (1.8) (in particular the direct estimate) are by far less
obvious, and will require more involved arguments.

We shall now give a more precise formulation of our results. We shall denote
by Σw

N the nonlinear spaces associated with N-term approximation in the Haar
system, i.e.

Σw
N :=

8<
:
X
�2E

c�H� ; E � Λ, jEj � N

9=
; ,(1.9)

where jEj denotes the cardinality of the discrete set E (in the case of a continuous
set Ω of R d , jΩj will stand for its volume), and where (H�)�2Λ is the bivariate
Haar system derived from the univariate system of L2[0, 1] by the usual tensor-
product construction: from H0 = �[0,1) and H1 := �[0,1=2) � �[1=2,1), one defines
the multivariate functions

He(x) := He1 (x1)He2(x2), e = (e1, e2) 2 V ,(1.10)

where V is the set consisting of the nonzero vertices of Q. The bivariate Haar
system for L2(Q) consists of the constant function 1 and of all functions

He
j,k(x) = 2jHe(2jx� k), e 2 V , j � 0, k 2 Z2 \ 2jQ.(1.11)

We refer to [D] for a general introduction to wavelet bases.
We shall prove that the wavelet thresholding, which is equivalent to approx-

imation by the elements Σw
N , gives a near minimizer to the extremal problems

(1.1) and (1.2) (x9). However, our proofs are neither direct nor simple. Rather,
we prove these results by considering various types of nonlinear approximation
by piecewise constants. Note that the functions in Σw

N are piecewise constant
taking at most 2N values.
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To describe the other spaces of piecewise constant functions which we shall
use in this paper we introduce the following notation which will be used through-
out the paper. If Ω is a set of R 2 , we denote by 'Ω its characteristic function,
and by

aΩ( f ) = jΩj�1
Z

Ω
f ,(1.12)

the average of an L1-function f on Ω. By definition, a dyadic cube I is the tensor
product of two dyadic intervals, i.e. I = I( j, k, l) = [2�jk, 2�j(k+1))�[2�jl, 2�j(l+
1)). We shall denote by D := D(Q) the set of all dyadic cubes contained in Q,
and by Dk(Q) the set of all dyadic cubes in D(Q) with sidelength 2�k (measure
2�2k). We denote by Sk := Sk(Q) the space of piecewise constants on the partition
Dk(Q). This is a linear space spanned by the functions 'I , I 2 Dk(Q).

We define the family of nonlinear spaces of piecewise constant functions:

Σc
N :=

(X
I2E

cI'I ; E � D, jEj � N

)
,(1.13)

i.e., all linear combinations of at most N characteristic functions of dyadic cubes.
A natural procedure to approximate in Σw

N is the simple thresholding of
wavelet coefficients. In order to obtain approximations in Σc

N , one can think of
different procedures. The simplest one is based on a quadtree splitting algorithm:
given a tolerance � > 0 and a function f 2 L2(Q), one builds an adaptive partition
of Q into dyadic cubes by splitting into four subcubes each cube I such that the
residual

R(I) := kf � aI( f )kL2(I).

is larger than �. The procedure is initiated from the unit cube Q, and stops when
all residuals are smaller than �, and f is then approximated by f� :=

P
I2P� aI'I ,

where P� is the final partition of Q.
The approximation properties of such adaptive algorithms have been studied

in [DY]. However, this algorithm does not exploit the full approximation prop-
erties of Σc

N since it imposes that the cubes involved in the definition of f� are
disjoint. One can actually show by simple counterexamples that this procedure
does not yield the direct estimate we desire in proving (1.1) or (1.2), i.e. too many
cubes could be generated to achieve a certain accuracy in the approximation of
certain BV functions.

A more efficient procedure should thus not only involve splitting, but also
merging of cubes, which will amount in using nondisjoint cubes in the definition
of a suitable approximation. In this paper, we shall introduce a “split and merge”
algorithm that produces an approximation of f based on disjoint partitions of
Q into dyadic rings. By definition a dyadic ring is the difference between two



592 ALBERT COHEN, RONALD DEVORE, PENCHO PETRUSHEV, AND HONG XU

embedded dyadic cubes, i.e. any set of the type

K := I n J, J � I, I, J 2 D.(1.14)

We also consider a dyadic cube to be a degenerate case of a dyadic ring for which
J is empty. Throughout this paper, a “cube” will always stand for a dyadic cube,
and a “ring” for a dyadic ring. Our third family of approximation space Σr

N is the
set of all functions of the form

f =
X
Ω2P

cΩ'Ω,(1.15)

where P is a set of at most N dyadic rings, that form a partition of Q, i.e. the
rings are disjoint and union to Q. Note that (1.11) means that 'Ω = 'I � 'J so
that Σr

N � Σc
2N . We can thus use Σr

N to prove results on approximation by Σc
N .

An important point that should be mentioned here is that the nonlinearity of
the three families Σw

N , Σc
N and Σr

N , is “controlled” in the sense that they all satisfy

ΣN + ΣM � Σa(M+N),(1.16)

with a an absolute constant. This is obvious in the case of Σw
N and Σc

N , with a = 1.
It can also be proved for Σr

N (with a larger value of a).

The outline of our paper is the following:
In x2, we define the spaces BV (Ω) for domains Ω � R 2 and recall certain

basic properties of these spaces. In x3, we prove inverse estimates of the type
(1.8) for the spaces Σw

N , Σr
N and Σc

N .
In order to study the process of approximation for Σr

N , we prove in x4 the
projection error estimate

kf � aΩkL2(Ω) � C1j f jBV (Ω),(1.17)

where C1 is independent of the ring Ω. We then prove in x5 the stability estimate

������
X
Ω2P

aΩ( f )'Ω

������
BV (Q)

� C2j f jBV (Q),(1.18)

where C2 does not depend on the partition P of Q into disjoint rings. The unifor-
mity of C1 and C2 is ensured by the the controlled shape of a dyadic ring which
cannot be very anisotropic.

In x6, we introduce our algorithm for approximation by the elements of Σr
N

and use it to prove the Jackson inequality. This algorithm relies on a general result
concerning the existence of partitions of Q into rings which are well balanced with
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respect to a super-additive cost function. We prove in x7 that this algorithm is also
a near best solution to the extremal problem (1.2). We anticipate therefore that
this algorithm will be useful in image processing but this will not be addressed
in the present paper which mostly concentrates on the theoretical issues.

In x8, we prove the direct estimate for (Haar) wavelet shrinkage, i.e. approxi-
mation by Σw

N , and we show in x9 that this procedure is stable in BV and provide
solutions for the two extremal problems (1.1) and (1.2). It should be pointed out
that the results of these two sections make important use of the results that we
establish for Σr

N , and that so far we do not know how to prove them in a more
direct way.

Finally, we use our results in x10 to identify the interpolation spaces between
L2(Q) and BV(Q). We also use them to establish an improved Sobolev inequality
which was suggested to us by Yves Meyer and Frederic Oru.

Throughout the paper, we give explicit constants for all important inequalities.
Most of them (in particular (C0, C1, : : : , C6), which appear at the end of the paper),
can probably be improved using more refined arguments.

Acknowledgments. The authors wish to thank Yves Meyer for his constructive
comments and suggestions.

2. The space BV (Ω). In this section, we shall define for certain domains
Ω � R 2 , the spaces BV (Ω) of functions of bounded variation on Ω and recall
some basic properties of this space. While BV (Ω) can be defined for general
domains, in this paper, we shall primarily be interested in rings Ω = I n J, where
I and J � I are in D(Q).

For a vector � 2 R 2 , we define the difference operator ∆� in the direction �
by

∆�( f , x) := f (x + �)� f (x).(2.1)

Let Ω be any domain in R 2. For functions f defined on Ω, ∆�( f , x) is defined
whenever x 2 Ω(�), where Ω(�) := fx: [x, x + �] � Ωg and [x, x + �] is the line
segment connecting x and x +�. Note that if Ω is bounded and � is large enough
then Ω(�) is empty. Let ej, j = 1, 2, be the two coordinate vectors in R 2. We say
that a function f 2 L1(Ω) is in BV (Ω) if and only if

VΩ ( f ) := sup
0<h

h�1
2X

j=1

k∆hej( f , �)kL1(Ω(hej)) = lim
h!0

2X
j=1

k∆hej( f , �)kL1(Ω(hej))(2.2)

is finite. Here, the last equality in (2.2) follows from the fact that
k∆hej( f , �)kL1(Ω(hej)) is subadditive (see e.g. Theorem 7.11.1 in [HP]). By defi-
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nition, the quantity VΩ ( f ) is the variation of f over Ω. It provides a semi-norm
and norm for BV (Ω):

j f jBV (Ω) := VΩ ( f ); kfkBV (Ω) := j f jBV (Ω) + kfkL1(Ω).(2.3)

Let Ω = Ω1[Ω2, where Ω1 and Ω2 are disjoint sets. Then for any h > 0 and
j = 1, 2, one has the inclusion Ω1(hej) [Ω2(hej) � Ω(hej). Hence, for j = 1, 2,

k∆hej( f , �)kL1(Ω1(hej)) + k∆hej( f , �)kL1(Ω2(hej)) � k∆hej( f , �)kL1(Ω(hej)).(2.4)

Summing over j and taking the limit as h tends to 0, we obtain

VΩ1( f ) + VΩ2 ( f ) � VΩ ( f ).(2.5)

By induction, the analogue of (2.5) holds for any finite union of disjoint sets.
We recall the L1-modulus of continuity !( f , t)Ω which is defined by

!( f , t)Ω := sup
j�j�t

k∆�( f , �)kL1(Ω(�)).(2.6)

Here and later jxj :=
q

x2
1 + x2

2 is the Euclidean metric. For any ring, we have
that BV (Ω) is identical with Lip (1, L1(Ω)), where the latter set consists of all
functions such that

j f j0BV (Ω) := sup
t>0

t�1!( f , t)Ω(2.7)

is finite. We also have

j f j0BV (Ω) � j f jBV (Ω) � 2j f j0BV (Ω).(2.8)

Indeed, the right inequality in (2.8) is obvious from the definition of the two
semi-norms. The left inequality follows from the fact for any point x 2 Ω(�),
� = (�1,�2), either [x, x + �1e1] and [x + �1e1, x + �] are both contained in Ω or
[x, x + �2e2] and [x + �2e2, x + �] are both contained in Ω.

For a ring Ω = I n J, we define D(Ω) to be the set of all I 2 D which are
contained in Ω and similarly, we define Dk(Ω) to be the subset of D(Ω) that
consists of the cubes of sidelength 2�k. If 2�2k � jJj, when J is nonempty or if
2�2k � jIj when Ω = I is a cube, we can define Sk(Ω) to be the restriction of Sk

to Ω. For any f 2 L1(Ω), we define the Pk( f ) to be the orthogonal projection of
f onto Sk(Ω). Then,

Pk( f ) =
X

I2Dk(Ω)

aI( f )'I .(2.9)
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It is easy to prove that whenever f 2 BV (Ω)

kf � Pk( f )kL1(Ω) � 2�kVΩ( f )(2.10)

and

VΩ (Pk( f )) � VΩ ( f ).(2.11)

For a proof of these results see [L, Chapter 3, Lemma 3.2] for the case when Ω
is a cube (the same proof also works for rings).

It is also easy to calculate the BV norm of functions S 2 Sk(Ω). For any
set A � R 2 , let Lk(A) denote the edges L of the cubes I 2 Dk(Q̄) which are
contained in A. We also denote by Ωo the interior of Ω, and by JL, L 2 Lk(Ωo),
the jump in f across L. Then, (see again [L, Chapter 3, Lemma 3.1])

VΩ ( f ) = 2�k
X

L2Lk(Ωo)

jJLj.(2.12)

3. Inverse estimates. In the introduction, we have introduced three families
of nonlinear spaces (Σw

N , Σc
N and Σr

N). We begin our study of these spaces in this
section by proving (1.8) for any ring Ω. We shall obtain specific constants in
(1.8) although this is not important for the theoretical results that follow.

We first treat the space Σw
N which appears in wavelet thresholding.

THEOREM 3.1. For each f 2 Σw
N, we have

VQ ( f ) � 8 N1=2kfkL2(Q).(3.1)

Proof. We first observe that any Haar basis function  � (see (1.11)) satisfies

VQ( �) � 8 = 8k �kL2 .(3.2)

Indeed, if the support of  � is a square I of side length h = 2�k, then it takes
the values �h�1 on I. We can calculate VQ ( �) by (2.12). The jumps across the
outer boundary of I give h�14h = 4 and those across the inner boundary give at
most 2h�12h = 4. Thus, (3.2) is proved.

If f =
P

�2E f� � is in Σw
N , then

VQ( f ) � 8
X
�2E

j f�j � 8jEj1=2[
X
�2E

j f�j2]1=2 � 8N1=2kfkL2 ,(3.3)

by the Cauchy-Schwarz inequality.

Remark 3.1. Using that VQ( f ) � 8
P

�2E j f�j, we also obtain the following
variant of the inverse inequality (3.1): Let t > 0 and f =

P
�2E f� � be a linear
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combination of Haar wavelets such that j f�j � t for all � 2 E, then

j f jBV � 8
t
kfk2

L2
.(3.4)

We now prove the Bernstein inequality for Σr
N by a very similar argument.

THEOREM 3.2. For each f 2 Σr
N, we have

VQ ( f ) � 4
p

5p
3

N1=2kfkL2(Q).(3.5)

Proof. We first prove that if Ω = I n J is any ring contained in Q, then

j'ΩjBV � 4
p

5p
3
k'ΩkL2 .(3.6)

To prove this, let ` be the side length of I and h` be the side length of J.
Then, k'Ωk2

L2(Q) = `2(1 � h2). We consider two cases. In the first case, we
assume that J is in the interior of I. Then necessarily, h � 1=4. In this case
VQ ('Ω) � 4`+ 4`h = 4`(1 + h), where the first term comes from the jump across
the outer boundary and the second the jump across the inner boundary. Since
(1+h)2

1�h2 � 5
3 , we have verified (3.6) in this case. In the second case, we assume

that J shares an edge with I. Then VQ ('Ω) � (4`� `h) + 3`h = 4`(1 + h=2). Since
(1+h=2)2

1�h2 � 25=12 for 0 � h � 1=2, (3.6) follows in this case as well.
If f 2 Σr

N , then f =
P

Ω2P fΩ'Ω with P a partition of Q into rings, then

VQ( f ) � 4
p

5p
3

X
Ω2P

j fΩjk'ΩkL2 �
4
p

5p
3

N1=2kfkL2 ,(3.7)

by the Cauchy-Schwarz inequality.

We close this section by using ideas from [DP] to prove the Bernstein in-
equality for Σc

N . If E is a finite collection of dyadic cubes, then for each I 2 E we
define BI(E) to be the set of all cubes J that are maximal in I, i.e., J � I, J 2 E,
and J is not contained in another cube with these properties. It was shown in
Lemma 6.1 of [DP] that any set E can be embedded in a set E0 with jE0j � 4jEj
and

jBI(E
0)j � 4, for all I 2 E0.(3.8)

THEOREM 3.3. For each f 2 Σc
N, we have

VQ ( f ) � 28p
3

N1=2kfkL2(Q).(3.9)
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Proof. If f 2 Σc
N , we can write f =

P
I2E fI'I , where E � D(Q) and jEj � N.

Let E0 be a set which contains E, satisfies (3.8), and such that jE0j � 4N. Then,
we can also represent f as

f =
X
I2E0

dI'I .(3.10)

If I 2 E0, we define I0 := I n [fJ: J 2 BI(E0)g. The functions 'I0 , I 2 E0, have
disjoint supports and

f =
X
I2E0

cI'I0 ,(3.11)

with cI :=
P

J�I, J2E0 dJ . We can assume that all 'I0 appearing in (3.11) are
nonzero.

For each of these functions, we have a basic inverse estimate

VQ ('I0) � 14p
3
k'I0kL2 .(3.12)

The proof of (3.12) is similar to that of (3.2) and (3.6) except that we have to
check more cases. The quotient

VQ ('I0)
k'I0kL2

takes its largest value for the configuration in Figure 1 which gives the constant
14p

3
. We leave this verification to the reader.
Using the Cauchy-Schwarz inequality, we find

VQ ( f ) �
X
I2E0

jcIjVQ ('I0)

� 14p
3

X
I2E0

jcIjk'I0kL2

� 28p
3

N1=2

0
@X

I2E0
jcIj2k'I0k2

L2

1
A

1=2

=
28p

3
N1=2kfkL2(Q).

4. Approximation by a constant on a ring-shaped domain. In this sec-
tion, we shall give bounds for the L2-error of approximation of a BV function by
a constant on a ring-shaped domain. At first, we shall make certain preliminary
constructions which will be used in the proofs of these results as well as those
of the next section.

Let Ω be a ring contained in Q: Ω := I1 n I0, I0, I1 2 D(Q), I0 � I1. We
shall consider piecewise constant functions in Sk(Ω). We assume that k is large
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Figure 1.

enough that 2�2k � jI1j and 2�2k � jI0j if I0 is not empty. We can therefore write
jI1j = m2

12�2k and jI0j = m2
02�2k with m0, m1 positive integers and m0 < m1.

Let Bk(Ω) denote the external layer of boundary cubes for Ω, i.e., the set of
cubes I 2 Dk(R 2) such that I is not in Dk(Ω) but Ī \ Ω̄ contains a line segment.
Let (a, b) be the lower left vertex of I1. We index each cube I 2 Dk(I1) by the pair
of integers (i, j), 1 � i, j � m1, such that (a, b) + 2�k( j� 1=2, i� 1=2) is in I (we
have purposefully reversed i and j in the indexing so that i will now correspond to
a row and j to a column). Boundary cubes can be indexed in the same way with
i, j now allowed to take the values 0 and m1 + 1. Note that, in general, there are
two types of boundary cubes: the interior boundary cubes (which are contained
in I0) and the exterior boundary cubes which are outside of I1. If I is indexed by
(i, j), we say that I is in row i and column j. We say a row i (respectively column
j) is unobstructed if all cubes I 2 Dk(I1) from row i (respectively column j) are
in Dk(Ω).

By an admissible path � for Ω, we shall mean a piecewise linear path with
the following properties. Each segment of � is parallel to a coordinate axis and
connects a center of a cube I 2 Dk(Ω) [ Bk(Ω) to the center of another cube
J 2 Dk(Ω) [ Bk(Ω). Each edge L 2 Lk(Ω [ @Ω) is transversed at most once by
� and each edge not in this set is never transversed by �.

For each i = 1, : : : , m1, there are either two or four boundary cubes in Bk(Ω)
which are in row i. For each distinct pair of these cubes (I, J), we shall construct
an admissible path �i(I, J) which connects I to J as follows.
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If there are exactly two such boundary cubes for row i, we take the strictly
horizontal path which connects the center of I to the center of J.

Consider next the case where there are four boundary cubes in row i. The
indices of these cubes are (i, j), j = j0, j1, j2, j3, where j0 = 0 < j1 < j2 < j3 =
m1 +1. Moreover, j1 > m0 and j3� j2 > m0. Let I and J be two of these boundary
cubes with indices (i, j) and (i, j0) and j < j0. If j = j0 and j0 = j1, we take the path
�i(I, J) to again be the strictly horizontal path connecting the center of I to the
center of J. We proceed similarly if j = j2 and j0 = j3.

We now consider the remaining cases. Let j(i) 2 [1, m0] be congruent to i
mod m0. Then, the column with index j(i) is unobstructed. Similarly, the column
with index j0(i) := m1 � j(i) + 1 is unobstructed. Also, for one of the two choices
i1 := i� m0, the row with index i1 is unobstructed.

If I, J are a pair for which we have not yet constructed �i(I, J), then we
construct this path as the concatenation of the the five segments which connect
the centers of the cubes with the following indices in the specified order: (i, j),
(i, j(i)), (i1, j(i)), (i1, j0(i)), (i, j0(i)), (i, j0). It follows that �i(I, J) is an admissible
path.

We shall need one last type of row path that occurs only in the case that row
i is obstructed but there are only two boundary cubes. This case occurs when I0

touches the boundary of I1. Let I be the boundary cube in row i which touches
the boundary of I1. We assume that I has index (i, 0) (the case when I has index
(i, m1 + 1) is handled in a symmetric manner). We let j(i) and i1 be as above.
We let �(I) be the admissible path which consists of the three segments which
connect the centers of the cubes with indices (i, 0), (i, j(i)), (i1, j(i)) and (i1, m1 +1)
in that order.

We make the analogous construction of paths which connect the boundary
cubes in column j and denote these paths by j(I, J).

We shall now use these paths to prove the error estimate (1.17) for rings.
Before proceeding to the proof of (1.17), we remark that this inequality holds
for general Lipschitz domains Ω. Indeed, using the known embedding of BV (Ω)
into L2(Ω): we have

kf � akL2(Ω) � Ckf � akBV (Ω),(4.1)

for any function f and constant a. Therefore, taking the infimum over a, we
obtain

kf � aΩ( f )kL2(Ω) � C inf
a2R

kf � akBV (Ω) � C1j f jBV (Ω) = C1 VΩ ( f ).(4.2)

The last inequality in (4.2) follows for example from elementary results in ap-
proximation (see e.g. Theorem 3.5 in [DS]). It is easy to see that the constant C1

is invariant by isotropic scaling of Ω, but grows by anisotropic (e.g. one direc-
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tional) scaling. This reveals that C1 strongly depends on the shape of Ω. Our goal
is to prove (1.17) directly with a constant C1 that is uniform for rings Ω = I1 n I0.

Let S 2 Sk(Ω) be a piecewise constant function on Ω with k such that 2�2k

is less than jI1j and 2�2k is less than jI0j in the case where I0 is not empty. Given
a path �, let

J(�) :=
X

L

jJLj,(4.3)

where the sum is taken over all edges L 2 Lk(Ωo) which are crossed by �. Here
and later, we use the notation Ko to denote the interior of a set K � R 2 .

For each i, we define

ri :=
X
�i

J(�i),(4.4)

where the sum is taken over all the paths �i associated to the row index i (recall
there are one or six such paths) and

R :=
m1X
i=1

ri.(4.5)

Similarly, we define

cj :=
X
j

J(j),(4.6)

where the sum is taken over all the paths j associated to the column index j and

C :=
m1X
j=1

cj.(4.7)

LEMMA 4.1. For any ring Ω and any S 2 Sk(Ω), we have

2�k(R + C) � 9 VΩ ( f ).(4.8)

Proof. We shall first estimate how often jJLj, with L a fixed vertical edge,
L 2 Lk(Ωo), appears in the sum R + C. Suppose first that L is in an unobstructed
row i. Then L appears exactly once for paths �i. The row i is used at most four
times for paths �i0 , with i 6= i0. The row i is also used at most four times for
paths j. Hence JL appears at most 9 times in the sum R + C. Consider next the
case when i is obstructed. Then, JL appears exactly once for paths �i and it never
appears for any other paths �i0 or j. The same estimate holds for JL when L is
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a horizontal edge. Thus,

2�k(R + C) � 9
X

L2Lk(Ωo)

2�kjJLj = 9VΩ( f ),(4.9)

where the last equality is given by (2.12).

Remark 4.1. In the case Ω is a cube, the constant 9 in (4.8) can be replaced
by 1.

THEOREM 4.1. For any ring Ω = I1 n I0 and any function f 2 BV (Ω), we have

kf � aΩ( f )kL2(Ω) � 6
p

3VΩ( f ).(4.10)

Proof. Let us first observe that it is sufficient to prove this estimate for the
special case of functions S 2 Sk(Ω). Indeed, if this has been shown, then we have

kf � aΩ( f )kL2(Ω) � kf � Pk( f )kL2(Ω) + kPk( f )� aΩ( f )kL2(Ω),(4.11)

where Pk is the projector onto Sk(Ω). The first term tends to zero with k and the
second would provide our estimate since aΩ(Pk( f )) = aΩ( f ) and since by (2.11)
VΩ (Pk( f )) � VΩ ( f ) if k is sufficiently large.

Henceforth, we consider f 2 Sk, with k such that 2�2k is less than jI1j and
2�2k is less than jI0j in the case where I0 is not empty. Let pI = pi,j denote the
value of f on the cube I with I in row i and column j (with similar notation
for I0), and let Λ denote the set of (i, j) such that the cube with index (i, j) is
contained in Ω and let N := jΛj. Then, A := aΩ( f ) = 1

N

P
(i0, j0)2Λ pi0, j0 . Therefore,

jpi, j � Aj � N�1
X

(i0, j0)2Λ
jpi, j � pi0, j0 j.(4.12)

We can construct an admissible path � which connects the center of I to the
center of I0 using portions of the paths �i and j0 . Indeed, it is easy to see from
our constructions that there is a path �i associated to row i which passes through I
and a path j associated to column j which passes through j such that �i intersects
j. We take � as the shortest path contained in �i [ j which connects the center
of I to the center of J. It follows that jpi, j � pi0, j0 j does not exceed the sum of
the JL crossed by this path. Hence,

jpi, j � pi0, j0 j � ri + cj0 .(4.13)

By a symmetric argument, we obtain that

jpi, j � pi0, j0 j � ri0 + cj.(4.14)
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By (4.13) we obtain

jpi, j � Aj � N�1
X

(i0, j0)2Λ
(ri + cj0) � ri +

m1C
N

,(4.15)

and by (4.14)

jpi,j � Aj � cj +
m1R

N
.(4.16)

Hence

jpi,j � Aj2 �
�

ri +
m1C

N

��
cj +

m1R
N

�
= ricj +

m1

N
riR +

m1

N
cjC +

m2
1

N2 RC.

We note that N2�2k = jΩj � 3
4 jI1j = 3

4m2
12�2k. In other words, m2

1 � 4
3 N.

Therefore, summing over i, j we obtain

kS � Ak2
L2(Ω) = 2�2k

X
(i, j)2Λ

jpi, j � Aj2 � 2�2k

 
RC +

m2
1

N
R2 +

m2
1

N
C2 +

m2
1

N
RC

!

� 4
3

2�2k(R + C)2 � 4
3

92 VΩ ( f )2,

where we have used Lemma 4.1. This proves (4.10).

Remark 4.2. In the case Ω is a cube, the constant 6
p

3 in (4.10) can be
replaced by 1.

5. Projections onto piecewise constant functions. In this section, we shall
prove the BV stability of projections onto a space of piecewise constant functions
related to a partition of Q into rings.

We denote by P a partition of Q into a finite number of rings. This means
that the elements of P are rings K which are pairwise disjoint and union to Q.
For each such partition P , we define

PP ( f ) :=
X
K2P

aK( f )'K ,(5.1)

where we recall that aK( f ) is the average of f over K and 'K is the characteristic
function of K.

THEOREM 5.1. For any finite partition P of Q into rings and any f 2 BV (Q),
we have

VQ (PP( f )) � 10 VQ ( f ).(5.2)
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Proof. Let k be large enough so that for any K 2 P , K = I1 n I0, we have
jI1j � 2�2k and jI0j � 2�2k if I0 is not empty. Then PP ( f ) = PP (Pk( f )). Thus, in
view of (2.11), it is enough to show that (5.2) holds for any f 2 Sk. We consider
only such f in the remainder of this proof.

If L 2 LK(Q), we denote by JL := JL( f ) the jump in f across L and by
JL(PP( f )) the jump in PP ( f ) across L. For any set R � Q, we define

Σ( f , R) :=
X

L2Lk(R)

jJLj.(5.3)

Fix one set K from P and let f0 be obtained from f by redefining f to be
aK( f ) on K. Note that the jumps in f0 are the same as those of f except for those
inside K (which will be 0 in f0) and those on @K, the boundary of K. We shall
prove that

Σ( f0, Q) � Σ( f , Q) + 9Σ( f , K n @K).(5.4)

Assume for the moment that we have proven (5.4). Then, repeating succes-
sively for each K 2 P the process that constructs f0 from f , we arrive at

Σ(PP( f ), Q) � Σ( f , Q) + 9
X
K2P

Σ( f , K n @K) � (1 + 9)Σ( f , Q).(5.5)

Since VQ( f ) = 2�kΣ( f , Q), (5.5) implies (5.2).
We finish the proof by proving (5.4). We shall use the paths that were con-

structed in x4. We fix a ring K 2 P and we index the cubes I 2 Dk(K) [ Bk(K)
as in x4. Let pI = pi, j denote the value of f on I when I has index (i, j). Let
J0L := JL( f0) be the jump in f0 across L 2 Lk(Qo). We need to estimate J0L for those
L contained in the boundary of K. To each such L, there is an I = I(L) 2 Bk(K)
which contains L as one of its sides.

We let (i, j) denote the index of I. Then, we have

jJ0Lj �
1
N

X
(i0, j0)2Λ

jpi, j � pi0, j0 j,(5.6)

where as before Λ denotes the set of (i, j) such that the cube with index (i, j) is
contained in K, and N = jΛj. Let I0 have index (i0, j0). As in the proof of Theorem
4.1, using a subpath of one of the �i and a subpath of one of the j0 (in the case
1 � i � m1) or from �i0 and j (in the case 1 � j � m1), we can construct an
admissible path �(i, j, i0, j0) for K which connects the center of I to the center of
I0. Let Γ(i, j, i0, j0) denote the collection of all of the M 2 Lk(Q) which intersect
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this path. Then,

jJ0Lj �
1
N

X
(i0, j0)2Λ

X
M2Γ(i, j, i0, j0)

jJMj.(5.7)

Thus,

X
L2@K

jJ0Lj �
1
N

X
M2Lk(Qo)

nMjJMj,(5.8)

where nM is the total number of times M appears in all of the sets Γ(i, j, i0, j0),
with (i, j) the index of a cube in Bk(K) and (i0, j0) the index of a cube in Dk(K).
We shall complete the proof by showing that

(i) nM = 0, if M is not contained in Lk(K) [ Lk(@K),

(ii) nM = N, if M 2 Lk(@K),

(iii) nM � 9N, if M 2 Lk(Ko).

Clearly, these three estimates used in (5.8) prove (5.4).
Now, statement (i) is obvious because all the paths �(i, j, i0, j0) are admissible

for K. Statement (ii) is also obvious because JM , M 2 Lk(@K) is crossed only
by the paths that emanate from I(M) and there are exactly N of these (one for
each cube I0 in Dk(K)). To prove (iii), consider for example a vertical segment
M 2 Lk(K n@K). If M is in an obstructed row, then for each (i0, j0), M will appear
in exactly one Γ(i, j, i0, j0); namely, for one pair (i, j) with i the index of the row
which contains M. So for these M, we have nM = N. On the other hand, if M is
in an unobstructed row i�, then for each (i0, j0), M will appear in only one of the
Γ(i�, j, i0, j0) for the two values of j corresponding to boundary cubes. At the same
time, M can appear at most four times in the sets Γ(i, j, i0, j0), 1 � i � m1, i 6= i�;
namely, for the one possible obstructed row with index i which is congruent to
i� mod m0. Similarly, for each (i0, j0), M can appear at most four times in the sets
Γ(i, j, i0, j0), 1 � j � m1. Thus nM � 9N in this case. We have proved (i–iii) and
completed the proof of the theorem.

6. A partition algorithm and a direct estimate for Σr
N . In this section, we

shall prove the direct estimate (1.7) for Σr
N . Our proof is based on two ingredients:

(i) The projection error inequality (1.17) for ring-shaped domains that was
established in x4.

(ii) A general result on the partitioning of Q into rings with respect to a
super-additive function.

The proof of this second result will actually provide a concrete algorithmic
procedure that builds adaptive partitions of Q into rings for the approximation of
a given function f .
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If f 2 L2(Q), we define

�r
N( f ) := inf

g2Σr
N

kf � gkL2(Q)(6.1)

which is the error of approximation by the elements of Σr
n.

In the following, we let Φ denote a positive set function defined on the
algebra A(Q) generated by the rings K � Q. That is, A(Q) consists of all subsets
of Q which can be formed by finite unions and intersections of rings K � Q and
their complements. We make the following assumptions on Φ:

(i) Φ is super-additive: if K1 and K2 are disjoint sets in A(Q), we have

Φ(K1) + Φ(K2) � Φ(K1 [ K2).(6.2a)

(ii) Φ applied to cubes of decreasing size goes uniformly to zero, i.e.

lim
k!1

sup
K2Dk(Q)

Φ(K) = 0.(6.2b)

Note that an immediate consequence of (6.2a) is that Φ(K1) � Φ(K2) when
K1 � K2.

We shall prove a general partitioning result with respect to such functions.
In practice, we shall be interested in applying this result in the case where

Φ(K) = Φf (K) = kf � aK( f )k2
L2(K),(6.3)

for f 2 L2(Q), and also in the case where

Φ(K) = VK ( f ) = j f jBV (K),(6.4)

for f 2 BV (Q). It is easy to see that properties (i) and (ii) are satisfied in both
of these cases (see [Z] for a proof of (ii) for the second example using a slight
modification of the BV norm).

We next make some preliminary remarks which will be useful for stating and
proving our main result (Theorem 6.1) of this section. Recall that each dyadic
cube I has four children J; these are the dyadic cubes J � I with jJj = jIj=4 and
one parent. Given a function Φ as above and a parameter � > 0, we define T� to
be the set of cubes I 2 D(Q) such that Φ(I) > �. The collection of cubes in T�
form a tree which means that whenever I 2 T� and I 6= Q, then its parent also
belongs to T�. We also remark that T� has finite cardinality, due to (6.2b).
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In what follows, we shall assume that Φ(Q) 6= 0 and that � is small enough
so that T� is not empty. In the tree T�, we shall make the distinction between
several types of cubes:

(i) The set of final cubes F� consists of the elements I 2 T� with no child
in T�.

(ii) The set N� of branching cubes consists of the elements I 2 T� with more
than one child in T�.

(iii) The set C� of chaining cubes consists of the elements I 2 T� with exactly
one child in T�.

From the fact that a branching cube always contains at least two final cubes,
one easily derives

jN�j � jF�j � 1.(6.5)

The set C� can be partitioned into maximal chains Cq. That is, C� = [n
q=1Cq,

where each Cq is a sequence of m = m(q) embedded cubes:

Cq = (I0, : : : , Im�1),(6.6)

where Ik+1 is a child of Ik, and where I0 (resp. Im�1) is not a child (resp. parent)
of a chaining cube.

The last cube Im�1 of a chain Cq, always contains exactly one cube Im from
T� and this cube is either a final cube or branching cube. The cube Im is uniquely
associated to this chain. This shows that the number of chains n = n(�) satisfies

n � jN�j + jF�j � 1 � 2jF�j � 1.(6.7)

Our next theorem gives our main result of this section. It algorithmically
constructs a partition P� of Q into rings K with Φ(K) � �. It also describes
a second partition P̃� whose sole purpose is to help count the number of rings
in P�.

THEOREM 6.1. Let � > 0 be such that T� 6= ;. Then, there exist a partition P�
of Q into disjoint rings such that

Φ(K) � � if K 2 P�,(6.8)

and a set P̃� = P̃1
� [ P̃2

� of pairwise disjoint sets K which are cubes (in the case
K 2 P̃1

� ) or rings (in the case K 2 P̃2
� ) such that

Φ(K) > �, if K 2 P̃�,(6.9)

and

jP�j � 8jP̃1
� j + 3jP̃2

� j � 8jP̃�j.(6.10)
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Proof. We define P� = P1
� [ P2

� [ P3
� , with

(i) P1
� : all children J of the final cubes I 2 F�.

(ii) P2
� : the children J of the branching cubes I 2 N�, such that J =2 T�.

(iii) P3
� : rings and cubes obtained from the chains of T� by an algorithm that

we now describe.

If Cq = (I0, : : : , Im�1) is a maximal chain (1 � q � n), and Im is as above,
then we associate a chain ring Kq = I0 n Im to each chain Cq. Note that

P1
� [ P2

� [ fKq: q = 1, : : : , ng(6.11)

is a partition of the cube Q. We next partition each chain ring Kq, q = 1, : : : , n,
according to

Kq = (Ij0 n Ij1) [ (Ij1 n Ij2) [ � � � [ (Ijp�1 n Ijp),(6.12)

where 0 = j0 < j1 < � � � < jp = m (p = p(q)) are uniquely defined by the following
recursion algorithm: assuming that jk is defined, and that jk < m, we choose jk+1

as follows:

(i) if Φ(Ijk n Im) � �, then jk+1 := m, i.e. p := k + 1 and the algorithm
terminates.

(ii) if Φ(Ijk n Ijk+1) > �, then jk+1 := jk + 1.

(iii) if neither (i) or (ii) apply, then jk+1 is chosen such that Φ(Ijk n Ijk+1
) � �

and Φ(Ijk n Ijk+1+1) > �. In other words, jk+1 is the largest j > jk such that
Φ(Ijk n Ij) � �.

We can now define the set P3
� . For each chain ring Kq, q = 1, : : : , n, we

include in P3
� :

(i) all rings Ijk n Ijk+1
such that Φ(Ijk n Ijk+1

) � �, (ii) the children of Ijk
(J1

jk
, J2

jk
, J3

jk
) that differ from Ijk+1

, for all k such that Φ(Ijk n Ijk+1
) > � (in this case

jk+1 = jk + 1, i.e. Ijk+1
is a child of Ijk ). Note that the cubes (J1

jk
, J2

jk
, J3

jk
) are not

in T�.
Because of (6.11), P� is a partition which clearly satisfies (6.8).
Next, we define P̃� := P̃1

� [ P̃2
� , where

(i) P̃1
� is the set of all of the final cubes of T�.

(ii) P̃2
� is a set of rings constructed by an algorithm that we now describe.

For each chain ring Kq, q = 1, : : : , n, we recall its decomposition according
to Kq = (Ij0 n Ij1) [ � � � [ (Ijp�1 n Ijp), and we construct a new decomposition

Kq = (Is0 n Is1) [ (Is1 n Is2) [ � � � [ (Isr�1 n Isr ),(6.13)

where 0 = s0 < s1 < � � � < sr = m (r = r(q)) constitute a subset of ( j0, : : : , jp)
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uniquely defined by the following recursion algorithm: assuming sk = jl < m is
defined,

(i) if jl+1 = m, we take sk+1 := m and r := k + 1 and terminate the algorithm.

(ii) if jl+1 < m, and if Φ(Ijl n Ijl+1
) � �, we take sk+1 = jl+2. In the case that

jl+2 = m, we terminate the algorithm.

(iii) if jl+1 < m, and if Φ(Ijl n Ijl+1
) > �, we take sk+1 = jl+1.

For each chain ring Kq, q = 1, : : : , n, we then include in P̃2
� the rings Isk nIsk+1

,

k = 0, : : : , r� 2, for which we have Φ(Isk n Isk+1
) > � (by the construction of P3

� )
and we also include the last ring Isr�1 n Isr only if it satisfies Φ(Isr�1 n Isr ) > �.
This means that we do not include any ring from the chain ring Kq if Φ(Kq) � �.

We now claim that

jP3
� j � 3jP̃2

� j + n � 3jP̃2
� j + 2jF�j � 1 = 3jP̃2

� j + 2jP̃1
� j � 1.(6.14)

Indeed, each ring Isk n Isk+1
of P̃2

� contains (as subsets) at most three rings of P�
and in each chain Cq, q = 1, : : : , n, at most one ring of P3

� is not contained in
some element of P̃2

� .
Finally, we prove the estimate (6.10). First, we clearly have

jP1
� j � 4jP̃1

� j(6.15)

and

jP2
� j � 2jN�j � 2(jF�j � 1) = 2(jP̃1

� j � 1).(6.16)

Using these last two estimates with (6.14), we obtain

jP�j � 3jP̃2
� j + 8jP̃1

� j � 3 � 8jP̃1
� j + 3jP̃2

� j � 8jP̃�j.(6.17)

This proves (6.10) and completes the proof of the theorem.

We shall now use Theorem 4.1 to prove a direct estimate for approximation
by the elements of Σr

n. To do so, we fix f 2 L2(Q) which is not constant and we
take for Φ the L2-error function defined by (6.3). For each � > 0, the algorithm
described in the proof of Theorem 6.1 gives a partition P� = P�( f ) adapted to f .
We then consider the piecewise constant approximation

A� f := PP� f ,(6.18)

where PP� is defined by (5.1).
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THEOREM 6.2. If f 2 BV (Q) is not constant and if � > 0, then the algorithm
of Theorem 6.1, with Φ given by (6.3), produces a partition P� that satisfies

jP�j � Mp
�

VQ ( f ), M := 18
p

3,(6.19)

and an approximation A� f that satisfies

kf � A� fk2
L2(Q) � M

p
�VQ ( f ).(6.20)

Consequently, one has the Jackson estimate

�r
N( f ) � MN�1=2VQ( f ).(6.21)

Proof. We consider the set P̃� with the properties indicated in the statement
of Theorem 6.1. Using the error estimate (4.10) with constant 6

p
3 for rings and

1 for cubes (see Remark 4.2) together with (6.10) we obtain

p
�jP�j �

p
�[8jP̃1

� j + 3jP̃2
� j]

� 8
X

K2P̃1
�

[Φ(K)]1=2 + 3
X

K2P̃2
�

[Φ(K)]1=2

� 8
X

K2P̃1
�

VK( f ) + 18
p

3
X

K2P̃2
�

VK( f )

� 18
p

3
X

K2P̃�
VK ( f ) � 18

p
3VQ( f ).

Dividing by
p
�, we obtain (6.19).

The approximation error (6.20), is then obtained from

kf � A� fk2
L2(Q) =

X
K2P�

Φ(K) � jP�j�,

and (6.19). If we take
p
� :=

MVQ( f )
N , then (6.19) and (6.20) imply (6.21).

We can also obtain (6.21) by using the function Φ(K) = VK ( f ). We now
denote by P�( f ) the resulting partition and A�� f := PP�( f ) f the resulting partition
when the tolerance is chosen as �.

THEOREM 6.3. If f 2 BV (Q), VQ ( f ) 6= 0, N > 0 and � := 8N�1 VQ ( f ), then
the algorithm of Theorem 6.1, with Φ given by (6.4), produces a partition P� that
satisfies

jP�j � N(6.22)
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and an approximation A�� f that satisfies

kf � A�� fkL2(Q) � 48
p

3N�1=2 VQ ( f ).(6.23)

Proof. The proof is similar to the previous theorem. We consider the sets P�
and P̃� of Theorem 6.1. Using (6.9) and (6.10), we have

�jP�j � 8�jP̃�j � 8
X

K2P̃�
Φ(K) = 8

X
K2P̃�

VK ( f ) � 8 VQ ( f ),

which gives (6.22).
We use the error estimate (4.10) and (6.22) to obtain

kf � A�� fk2
L2(Q) =

X
K2P�

kf � aK( f )k2
L2(K) � (6

p
3)2

X
K2P�

VK ( f )2

� (6
p

3)2jP�j�2 � (48
p

3)2N�1 VQ ( f )2,

which proves (6.23)

We close this section with the following simple remark about existence of
best approximants from Σr

n.

LEMMA 6.1. For each f 2 L2(Q) and N > 0 there exists g 2 Σr
N such that

kf � gkL2(Q) = �r
N( f ).

Proof. By the definition of �r
N( f ) (see (6.1)), there exist g1, g2, : : : such that

gj 2 Σr
N and

kf � gjkL2(Q) � �r
N( f ) + j�1.

Let Pj (jPjj = N) be the partition for gj and furthermore let Kj
m = I j

m n J j
m 2 Pj,

m = 1, 2, : : : , N, be the rings of Pj with the indices selected such that jKj
1j �

jKj
2j � � � � � jKj

N j.
By selecting a subsequence from (gj), we can find an � > 0 and an N0 � N

such that jKj
mj � �, 1 � m � N0, j = 1, 2, : : :, and jKj

mj ! 0, j !1, N0 < m �
N. It follows that for each m, either the jI j

mj � � for all j or jI j
mj ! 0, j !1. A

similar statement applies to the J j
m. Since there are only a finite number of dyadic

cubes with measure � �, by again extracting a subsequence, we can assume that
for each m, either I j

m does not change with j or jI j
mj ! 0. A similar statement

applies to the J j
m.

It follows that there exist disjoint rings K�
m, m = 1, : : : , N, such that jKj

i n
K�

i j + jK�
i nKj

i j ! 0, j !1 and K�
m = ;, N0 < m � N. It is now easy to see that
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kg� gjkL2(Q) ! 0, j !1, for

g :=
N0X

m=1

aK�m�K�m .

Therefore, g satisfies the conclusions of the theorem.

7. Minimization of the K-functional by piecewise constant approxima-
tion. In this section, we shall use the Jackson and Bernstein estimates that we
have proved for Σr

N to show that a near minimizer for the problem (1.2), i.e. the
K-functional, can be taken from some space Σr

N . We shall also show how the
algorithm of the previous section can be used to find a near minimizer.

We begin with the following simple result.

THEOREM 7.1. For each f 2 L2(Q) and N > 0, and for each � > 0, there exists
a function h 2 Σr

N such that

kf � hkL2(Q) + N�1=2VQ(h) � (1 + �)18
p

3K( f , N�1=2).(7.1)

Proof. If K( f , N�1=2) = 0 then f is constant and (7.1) follows by taking h = f .
If K( f , N�1=2) 6= 0 and � > 0, let g 2 BV (Q) satisfy

kf � gkL2(Q) + N�1=2VQ(g) � (1 + �)K( f , N�1=2).(7.2)

Then, according to (6.21) of Theorem 6.2, for each N, there exists a function
gN 2 Σr

N such that

kg� gNkL2 � 18
p

3N�1=2 VQ (g).(7.3)

We take h := gN so that

kf � hkL2(Q) � kf � gkL2(Q) + kg� hkL2(Q)(7.4)

� kf � gkL2(Q) + 18
p

3N�1=2 VQ (g)

� 18
p

3(1 + �)K( f , N�1=2).

We can estimate the variation of h by Theorem 5.1. Since h = PPg with P
the partition for h, this gives

VQ(h) � 10VQ(g) � 10(1 + �)N1=2K( f , N�1=2).(7.5)

Then, (7.4) together with (7.5) proves the theorem.
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We say that an element g 2 Σr
M is a near best approximation to f 2 L2(Q)

(with parameters a � 1, and N � M) if

kf � gkL2(Q) � a�r
N( f ).(7.6)

We next show that any such near best approximation is a near minimizer for
(1.2).

COROLLARY 7.1. If f 2 L2(Q) and g 2 Σr
N is a near best approximation with

parameter a, then g satisfies

kf � gkL2(Q) + N�1=2VQ(g) � C0aK( f , N�1=2),(7.7)

with C0 � 2016 + 18
p

3.

Proof. Let h 2 Σr
N be the function of Theorem 7.1. Then,

kf � gkL2(Q) � a�r
N( f ) � akf � hkL2(Q).(7.8)

Also, since g� h 2 Σc
4N , from the Bernstein estimate (3.9), we conclude that

N�1=2VQ(g) � N�1=2VQ(h) + N�1=2VQ(g� h) � N�1=2VQ(h)

+
56p

3
kg� hkL2(Q)

� N�1=2VQ(h) +
56p

3
(kf � gkL2(Q) + kf � hkL2(Q))

� N�1=2VQ(h) +
56p

3
(1 + a)kf � hkL2(Q).

Combining this with (7.8) gives that the left side of (7.7) does not exceed

�
a +

56p
3

(1 + a)
�
kf � hkL2(Q) + N�1=2VQ(h)

�
�

a +
56p

3
(1 + a)

�
(kf � hkL2(Q) + N�1=2VQ(h)).

We now use (7.2) to arrive at (7.7).

While Theorem 7.1 and Corollary 7.1 both provide near minimizers of (1.2)
they are not of practical interest since they are not constructive. Yet, they show
that a near minimizer for (1.2) can be taken from Σr

N when N is chosen so that
N�1=2 has the same order of magnitude as t.

We shall use the remainder of this section to prove that a near minimizer
can also be obtained by applying the algorithm of the previous section to the
function f . Recall that this algorithm is controlled by the parameter � > 0: by
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decreasing �, we increase the number of rings in the partition P� and we decrease
the approximation error kf �A� fkL2(Q). We thus have A� f 2 Σr

N with N = N(�)
increasing as � goes to zero. In practice, we would like to control directly the
number of rings. This leads to the following question: given N > 0, can we find
�(N) such that jP�j = N, or equivalently does the function N(�) reach all possible
values of N 2 M ? Strictly speaking, the answer to this question is negative.
However, we can circumvent this difficulty as we shall now describe.

For a given f , and a given N 2 N , we define

�(N) := minf� � 0 ; jP�j � Ng,(7.9)

P�N := P�(N),(7.10)

and

ÃNf := A�(N)f = PP�N f .(7.11)

If �(N) > 0, the minimum is attained in (7.9). Indeed, the construction of T�,
P� and A� f described in the previous section ensures that, for any given � > 0,
there exists �̃ > 0 small enough so that T�+s = T�, P�+s = P� and A�+s f = A� f ,
for all 0 � s < �̃.

If �(N) = 0, then from Lemma 6.1, f 2 Σr
N . We can therefore apply the

algorithm with � = 0 since the tree T0 will be finite. With this choice, the algorithm
gives A0f = f and therefore ÃNf = f as well.

In order to prove that ÃNf is a near minimizer for the K-functional, we first
need two lemmas that will be used to compare the partition PN produced by the
algorithm and the partition that is associated to the element g 2 ΣN which is a
known minimizer.

LEMMA 7.1. If P is a finite set of pairwise disjoint rings and P 0 a partition of
Q into a finite number of rings, then for each K0 2 P 0, there are at most two sets
K 2 P such that K \ K0 6= ; but K is not contained in K0.

Proof. Let K0 = I0nJ0 where J0 ( I0 and J0 may possibly be empty. If K = InJ
is in P and K \ K0 6= ;, then I \ I0 6= ;. Hence either I � I0 or I0 � I. We shall
show that there is at most one K of each of these types that intersects K0 but is
not contained in K0.

(i) Case 1: I0 � I. Suppose that there were two sets K1 = I1nJ1 and K2 = I2nJ2

from P with I0 � I1, I2. Then, obviously I1 \ I2 6= ; and hence without loss of
generality I0 � I1 � I2. For K1 and K2 to be disjoint (as they must be since both
are in P) we must have I1 � J2. But this means K2 does not intersect K0, which
is a contradiction. Thus, we have shown that there is only one set K of this type.

(ii) Case 2: I � I0. Suppose again that there were two sets K1 = I1 n J1 and
K2 = I2nJ2 from P with I0 � I1, I2. Then, Ii\J0, i = 1, 2, since otherwise Ki � K0.
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Hence, J0 � I1, I2. Obviously, I1 \ I2 6= ; and hence without loss of generality
I1 � I2 � I0. Since K1 \ K2 = ;, we have

J1 � I1 � J2 � I2 � I0

Since J0 � I1 � J2, this is a contradiction since it implies that K2 � K0.

LEMMA 7.2. If P is a finite set of pairwise disjoint rings and P 0 a partition of
Q into a finite number of rings, and if jP 0j � N and jPj � 2N, then the subset P1

of all K 2 P contained in some K0 2 P 0 satisfies jP1j � N.

Proof. Let us denote by P2 the set of all K 2 P that are not contained in
any K0 2 P0, and by P3 the set of K0 2 P 0 such that there exist K 2 P2 having
a nonempty intersection with K0.

By the previous lemma, each K0 2 P3 is associated with at most two K 2 P2

such that K and K0 are not disjoint. On the other hand, each K 2 P2 is associated
to at least two K0 2 P3 such that K and K0 are not disjoint. We thus have
necessarily

jP2j � jP3j � jP 0j � N,

so that jP1j = jPj � jP2j � 2N � N = N.

We are now ready to prove the main result of this section.

THEOREM 7.2. Let f 2 L2(Q) and N � 1 be an integer and M := 16N. The
function ÃMf = A�(M)f is a near best approximation to f in the sense of (7.6) and
satisfies

kf � ÃMfkL2(Q) + N�1=2 VQ (ÃMf ) � C00K( f , N�1=2),(7.12)

with C00 = 8C0 and C0 the constant of Corollary 7.1.

Proof. We consider first the case that � := �(M) > 0. Let g be a best ap-
proximation to f from Σr

N and P be the partition associated to g. Fix an arbitrary
0 < � < � and let P̃ = P̃� be the partition of Theorem 6.1. Then, using the
fact that � < � together with Theorem 6.1, we find M � jP�( f )j � 8jP̃j. Hence
jP̃j � 2N and we can apply Lemma 7.2 to find a set P1 � P̃ with jP1j � N and
each element K 2 P1 is contained in some ring of P . It follows that

N� �
X

K2P1

kf � aK( f )k2
L2(K) � kf � gk2

L2(Q) = �r
N( f )2.

Since � < � is arbitrary, we have

N� � �r
N( f )2.
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Therefore,

kf � ÃMfk2
L2(Q) =

X
K2P�

Φ(K) � M� � 16�r
N( f )2.

Thus ÃMf is a near best approximation to f with parameter a = 4 and (7.12)
follows from Corollary 7.1.

In the second case, where �(M) = 0, we have ÃMf = A0 f = f and f 2 Σr
M.

The left side of (7.12) does not exceed N�1=2 VQ ( f ). Let h be the function of
Theorem 7.1. Since f�h 2 Σc

2(N+M) = Σc
34N , we have from the Bernstein inequality

(3.9)

kf � hkL2(Q) + N�1=2VQ(h) �
p

3

28
p

34
N�1=2VQ( f � h) + N�1=2VQ(h)

�
p

3

28
p

34
N�1=2VQ( f ).

Hence, the left side of (7.12) does not exceed

28
p

34p
3

(kf � hkL2(Q) + N�1=2VQ(h))

and the proof is completed by invoking inequality (7.1).

8. Direct estimates for Haar thresholding In this section, we fix a func-
tion f in BV and show that its Haar coefficients are in weak `1. That is, we shall
show that when the Haar coefficients are put in decreasing order according to
the absolute value of their size, then the nth rearranged coefficient is in absolute
value less than Cj f jBV=n, with C an absolute constant. We shall see that this also
yields the Jackson estimate (1.7) for Σw

N .
In the next section, we shall then use this result to show that the extremal

problems (1.1) and (1.2) have near minimizers which can be obtained by wavelet
thresholding of the coefficients with respect to the Haar basis.

Associated to each dyadic cube I = [2�jk1, 2�j(k1 + 1))� [2�jk2, 2�j(k2 + 1)),
there are three Haar coefficients ce

j,k = h f , He
j,ki, e 2 V , k = (k1, k2) with V the

nonzero vertices of the square Q = [0, 1]2 (see (1.10–11). In this section as well
as in x9, we shall denote any of these by cI = cI( f ) and the corresponding Haar
function by HI: when we state a property about cI , we mean any of these three
coefficients and similarly for HI .

We shall assume without loss of generality that f has mean value zero so
that the coefficient of 'Q is zero. We shall denote by n( f ) the nth largest of the
absolute values of the Haar coefficients ce

I of He
I , I 2 D(Q), e 2 V .

We begin with the following well-known lemma.
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LEMMA 8.1. If f 2 BV(Q) and � > 0, then there exists a continuous function f�
which is piecewise continuously differentiable on Q such that

kf � f�kL2(Q) < �(8.1)

and

VQ( f�) � VQ( f ).(8.2)

Proof. This can be proved in many ways by mollification; for example using
Steklov averages. We shall prove this by using piecewise bilinear interpolants.
We recall (see (2.11)) that

VQ (Pkf ) � VQ ( f ),(8.3)

where Pk is the projector onto Sk. Since kf � PkfkL2(Q) goes to zero as k tends
to infinity, it is sufficient to prove the result assuming that f is in Sk.

For such an f , and 0 < � < 2�k�1, we define a tensor product grid

Γ� := Γ1
� 
 Γ1

� ,(8.4)

where the univariate grid Γ1
� is defined by

Γ1
� := f0, 1g [ f2�kn + �; n = 0, : : : , 2k � 1g [ f2�kn� �; n = 1, : : : , 2kg.(8.5)

The f is well defined at each point in Γ�. Let f� be the the function which is
piecewise bilinear relative to Γ� and interpolates f at each grid point in Γ�. That
is f� is the unique continuous function, which is piecewise bilinear (i.e. of the
form a + bx + cy + dxy) on each rectangular patch defined by Γ� and equal to f
on Γ�.

One easily checks that by construction,

VQ ( f�) � VQ ( f ).(8.6)

On the other hand, it is clear that f� tends to f in L2(Q) as � goes to zero.

In view of Lemma 8.1, in going further, we can assume without loss of
generality that f is continuous and piecewise continuously differentiable on Q.
Then,

VK( f ) =
Z

K
[j fx1 j + j fx2 j],(8.7)

for any ring K. Therefore, V (K) := VK ( f ) is set additive on rings, i.e. V (K1 [
K2) = V (K1) + V (K2) for any two disjoint rings K1 and K2.
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THEOREM 8.1. For each f 2 BV (Q) and each n � 1, we have

n( f ) � C1
VQ ( f )

n
(8.8)

with C1 = 36C01 and C01 := 480
p

5 + 168
p

3.

Proof. We can assume that f is continuous and piecewise continuously dif-
ferentiable on Q. We can also assume that VQ ( f ) = 1 since the general case then
follows by scaling. We shall show that there is a set Λn � D such that

(i) jΛnj � 6 � 2n, n = 1, 2, : : :,

(ii) jcIj � C012�n, I =2 Λn,

where in (ii), cI is any of the three Haar coefficients associated to I. It is easy to
see that this implies (8.8).

We shall use constructions of trees similar to that in x6. We shall also use
the abbreviated notation V (S) := VS ( f ) for any set S in the algebra of rings.
For each m = 1, 2, : : :, let Tm denote the collection of all cubes I 2 D for which
V (I) � 2�m. The cubes in Tm form a tree. Note also that the tree Tm is contained
in the tree Tm+1 and we can obtain Tm+1 from Tm by growing Tm.

We shall give each cube I 2 D an index m(I) as follows. We consider the
four children Ji � I, i = 1, 2, 3, 4, of I. We can write V (Ji) = 2�mi+�i , where mi is
a nonnegative integer (or mi = 1) and 0 � �i < 1. We define m(I) as the second
smallest of the four numbers mi. Another way to describe m(I) (when it is finite)
is that it is the smallest integer m such that I has at least two of its children in
Tm. Note also that if I has index m then I 2 Tm�1 and I has at least two children
in Tm. We have remarked in x6 that for any tree the number of branching cubes
(i.e. cubes with at least two children in the tree) does not exceed the number of
final cubes. Since the final leaves of Tm are disjoint and on each final cube I,
V (I) � 2�m, it follows that there are at most 2m cubes I in D with index m.

We shall also define a distance between two dyadic cubes J � I. This distance
is the difference of the dyadic levels of J and I, i.e.

d(I, J) =
1
2

( log2 jIj � log2 jJj).

We fix n > 0 and define for all 0 � m � n the set Am consisting of
the cubes I in Tn which contain a cube J with index m = m(J) which satisfies
d(I, J) � 2(n� m). We thus have

jAmj � [2(n� m) + 1]2m, m = 0, 1, : : : , n.(8.9)
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Defining Λn := [n
m=0Am, it follows that

jΛnj �
nX

m=0

[2(n� m) + 1]2m � 6 � 2n � 1,(8.10)

so that (i) is satisfied.
To prove (ii), let I 2 D be a cube not in Λn. We consider two cases. The first

case is when I =2 Tn. In this case V (I) < 2�n. Let (as before) aI := aI( f ) be the
average of f on I. By Remark 4.2, we have for any of the three coefficients cI ,

jcIj � j
Z

I
( f (x)� aI)HI(x) dxj � kf � aIkL2(I) � V(I) < 2�n.(8.11)

Hence, we have verified (ii) in this case.
Consider now the remaining case when I 2 Tn. We define a chain of cubes

I = I0 � I1 � � � � � Ir as follows: given that Ij has been defined, we define Ij+1

as the child of Ij in Tn on which f has largest variation. The chain terminates
when Ir is a final leave in Tn. Let Kj := Ij n Ij+1, j = 0, : : : , r�1, and Kr := Ir. The
three children J different from Ij+1 all satisfy V (J) � 2�m(Ij)+1. It follows from
the additivity of V that

V (Kj) � 6 � 2�m(Ij), j = 0, : : : , r � 1,(8.12)

and

V (Kr) � 4 � 2�n,(8.12a)

since each child of Kr is not in Tn.
We can now estimate any of the three Haar coefficients cI as follows. We

define

g :=
rX

j=0

aKj'Kj ,(8.13)

where

aKj :=
1
jKjj

Z
Kj

f (x) dx.(8.14)

We let HI denote the Haar functions associated to I and cI . Then,

jcIj =
����
Z

I0

f (x)HI(x) dx
����

� jI0j�1=2
Z

I0

j f (x)� g(x)j dx +
����
Z

I0

g(x)HI(x) dx
����

=: �1 + �2.
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We can estimate �1 by using Theorem 4.1 and the Cauchy-Schwarz inequality.
This gives

�1 � jI0j�1=2
rX

j=0

kf � gkL1(Kj) � jI0j�1=2
rX

j=0

kf � gkL2(Kj)jKjj1=2

� 6
p

3jI0j�1=2
rX

j=0

V (Kj)jKjj1=2 � 6
p

3
rX

j=0

2�j V (Kj).

We now show a similar estimate for �2. Since g is a constant on each ring Kj we
get

�2 � jI0j�1=2
Z

I1

jg(x)� aK0 j dx = jI0j�1=2
rX

j=1

Z
Kj

jg(x)� aK0 j dx

= jI0j�1=2
rX

j=1

jaKj � aK0 jjKjj � jI0j�1=2
rX

j=1

jKjj
jX

�=1

jaK� � aK��1 j.

We now change the order of summation to find

�2 � jI0j�1=2
rX

�=1

jaK� � aK��1 j
rX

j=�

jKjj � jI0j�1=2
rX

�=1

jaK� � aK��1 jjI�j.

For each �, the set K := K� [K��1 is a ring and if a is the average of f over K,
then

jaK� � aK��1 j � jaK� � aj + jaK��1 � aj
� 1

jK�j
Z

K�
j f (x)� aj dx +

1
jK��1j

Z
K��1

j f (x)� aj dx

� 1
jK�j

Z
K
j f (x)� aj dx

� jKj1=2jK�j�1kf � akL2(K) � 6
p

3
p

5jK�j�1=2 V (K).

Since jI0j�1=2jK�j�1=2jI�j � 2p
3
2��, we obtain

�2 � 12
p

5
rX

�=1

�
V(K�) + V(K��1)

�
2��.(8.15)
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This together with the estimate of �1 and (8.12a) shows that

jcIj � (18
p

5 + 6
p

3)
r�1X
j=0

2�jV(Kj) + (12
p

5 + 6
p

3)V(Kr)(8.16)

=
1X
k=0

Sk + (48
p

5 + 24
p

3)2�n,

where Sk consists of that portion of the sum on the left side of (8.16) correspond-
ing to the terms for which m(Ij) = k, 0 � j � r � 1. Then, as we have shown
earlier in (8.12), V(Kj) � 6 � 2�k for each such j. Also, in the case of 0 � k � n,
Ij is at a distance > 2(n � k) from I because of the definition of Ak and Λn.
Hence,

Sk � (108
p

5 + 36
p

3)
1X

�=2(n�k)+1

2���k(8.17)

= (108
p

5 + 36
p

3)2�2n+k, k = 0, : : : , n.

On the other hand, we have, for k = n + 1, n + 2, : : :,

Sk � (108
p

5 + 36
p

3)
1X
�=0

2���k = (108
p

5 + 36
p

3)2�k+1.(8.18)

We now return to (8.16) to find, using (8.17) and (8.18),

jcIj � (108
p

5 + 36
p

3)

 
nX

k=0

2�2n+k +
1X

k=n+1

2�k+1

!
+ (48

p
5 + 24

p
3)2�n

� (480
p

5 + 168
p

3)2�n.

Thus, we have provided the desired estimate for these I as well.

Remark 8.1. One can easily generalize Theorem 8.1 to higher dimension by
simply mimicking the proof: one obtains that if f 2 BV ([0, 1]d) then its nor-
malized coefficients jIj1=2�1=dcI are in `w

1 . This results only fails to be true in
dimension d = 1 (the characteristic function of [0, 1=3] constitutes a simple coun-
terexample). In this case the proof fails due to the possible lack of connectivity
of a ring, which does not allow us to estimate the wavelet coefficients as in the
above proof.

Theorem 8.1 immediately yields a direct estimate for Haar thresholding. For
this, we define two nonlinear operators associated to the Haar decomposition. Let
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f have mean value zero on Q and f =
P

ce
I He

I . We define for � > 0

H� f =
X
jce

I j>�
ce

I He
I ,(8.19)

the thresholding of f at level �, and for each positive integer N

GNf =
X

(I,e)2EN ( f )

ce
I He

I(8.20)

the best approximation of f from Σw
N : the set EN( f ) contains the indices of the N

largest Haar coefficients ce
I of f . In the case of ties in the size of the coefficients we

make an arbitrary assignment to the set EN( f ) in order to remove the ambiguity.

THEOREM 8.2. If f 2 BV has mean value zero on Q, we have

kf �H� fkL2(Q) � C2[�VQ ( f )]1=2,(8.21)

and

inf
g2Σw

N

kf � gkL2(Q) = kf � GNfkL2(Q) � C3N�1=2 VQ ( f ),(8.22)

with C2 = 2
p

C1 and C3 = C1, with C1 the constant of Theorem 8.1.

Proof. If � � VQ( f ), then (8.21) and (8.22) follow trivially from the embed-
ding theorem (Theorem 4.1 and Remark 4.2). We can therefore assume VQ( f ) > �
in going further. For each n, let n := n( f ) denote the nth largest Haar coefficient
of f in absolute value and for each k = 0, 1, : : :, let Λk := fn: n � 2�k�g. We
then have

kf �H� fk2
L2(Q) =

X
n2Λ0

2
n =

X
k�0

X
n2ΛknΛk+1

2
n(8.23)

� �2
X
k�0

2�2kjΛk n Λk+1j.

For each n 2 Λk n Λk+1, we have n > 2�k�1� and hence from Theorem 8.1,
jΛk n Λk+1j � C1 VQ ( f )2k+1=�. Using this in (8.23) we arrive at (8.21).

For (8.22), we have from Theorem 8.1,

kf � GNfk2
L2(Q) =

X
n�N+1

2
n � C2

1 VQ ( f )2
X

n�N+1

n�2 � C2
1 VQ ( f )2N�1.

9. Minimization of the K and U-functionals by Haar thresholding. We
shall now show that Haar thresholding provides near minimizers for (1.1) and



622 ALBERT COHEN, RONALD DEVORE, PENCHO PETRUSHEV, AND HONG XU

(1.2). For this, we shall thus prove a stability result concerning the nonlinear
operators that we have introduced in the previous section.

THEOREM 9.1. The operators GN and H� satisfy for all � > 0, N > 0 and
f 2 BV (Q),

VQ (GNf ) � C4 VQ ( f ),(9.1)

and

VQ (H� f ) � C4 VQ ( f ),(9.2)

with C4 = 10 + 28
p

2(18
p

3 + C3) and C3 the constant of Theorem 8.2.

Proof. Clearly, it suffices to prove (9.1) since H� f = GNf for some N = N(�).
Let g be a best approximation to f from Σr

N . We can write g = PP f with P the
partition associated to g. Recall that each element of Σr

N is in Σc
2N and also GNf

is in Σc
4N . Therefore, we have

VQ (GNf ) � VQ (g) + VQ (GNf � g)

� 10 VQ ( f ) +
28p

3
(6N)1=2kGNf � gkL2(Q)

� 10 VQ ( f ) + 28
p

2N1=2[kf � gkL2(Q) + kf � GNfkL2(Q)]
� [10 + 28

p
2(18

p
3 + C3)] VQ ( f ),

where we have used Theorem 5.1 to estimate VQ (g) and the inverse estimate
(3.9) for Σc

N as well as the direct estimates (6.21) and (8.22) in the estimate of
VQ(GNf � g).

Remark 9.1. The stability of the Haar thresholding is quite a surprising result
since the operation of discarding coefficients is in general not uniformly stable in
BV (i.e. stable independently of the set of coefficients which is discarded). Also
in the proof of this result, we have made use of our approximation results for
Σr

N : a more direct proof of this stability is still to be found. Note that we also
have used decompositions into rings to prove that the Haar coefficients of a BV
function are in weak `1, leaving open the possibility of a more direct proof.

THEOREM 9.2. For each N � 1, and each f 2 L2(Q), we have

kf � GNfkL2(Q) + N�1=2 VQ (GNf ) � C5K( f , N�1=2),(9.3)

with C5 = (112
p

2p
3

+ 1)C3 + C4 with C3 the constant of Theorem 8.2 and C4 the
constant of Theorem 9.1.
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Proof. Let g be any function in BV (Q). Since GNf is the best N term ap-
proximation to f , we have

kf � GNfkL2(Q) � kf � GNgkL2(Q)

� kf � gkL2(Q) + kg� GNgkL2(Q)

� kf � gkL2(Q) + C3N�1=2 VQ (g),

where the last inequality uses Theorem 8.2. The function GNf � GNg is in Σc
8N .

We can therefore use the Bernstein inequality (3.9) and Theorem 9.1 to obtain

N�1=2 VQ (GNf ) � N�1=2[ VQ (GNf � GNg) + VQ (GNg)]

� 56
p

2p
3
kGNf � GNgkL2(Q) + C4N�1=2 VQ (g)

� 112
p

2p
3

kf � GNgkL2(Q) + C4N�1=2 VQ (g)

� 112
p

2p
3

kf � gkL2(Q) + (
112

p
2p

3
C3 + C4)N�1=2 VQ (g).

Combining these two estimates, we obtain

kf � GNfkL2(Q) + N�1=2 VQ (GNf ) � C5[kf � gkL2(Q) + N�1=2 VQ (g)].(9.4)

Taking an infimum over all g 2 BV (Q) gives (9.3).

Our next result concerns the minimization of the U-functional, i.e. problem
(1.1). As in the case of the Besov space B1

1(L1), a thresholding procedure, now
in the Haar system, yields the approximate minimizer.

THEOREM 9.3. For each � > 0, and each f 2 L2(Q), we have

kf �H� fk2
L2(Q) + �VQ (H�( f )) � C6U( f , �),(9.5)

with C6 = C4 +112C2
2 +4C1 +2 and C1 the constant of Theorem 8.2, C2 the constant

of Theorem 8.2 and C4 the constant of Theorem 9.1.

Proof. Let g be any function in BV (Q). We first remark that we have

kf �H� fk2
L2(Q) � kf �H2�gk2

L2(Q).(9.6)

Indeed, if the coefficient cI( f�H� f ) = h f�H� f , HIi is nonzero, then necessarily
jcI( f )j � � and cI( f �H� f ) = cI( f ). For this coefficient, we either have jcI(g)j �
2�, in which case

cI( f �H� f ) = cI( f ) = cI( f �H2�g),(9.7)
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or jcI(g)j > 2�, in which case

jcI( f �H2�g)j = jcI( f )� cI(g)j > � � jcI( f �H� f ))j.(9.8)

In all cases the coefficients of f �H2�g dominate those of f �H� f , so that (9.6)
holds. We thus have

kf �H� fk2
L2(Q) � 2kf � gk2

L2(Q) + 2kg�H2�gk2
L2(Q)(9.9)

� 2kf � gk2
L2(Q) + 4C2

2�VQ (g).

where we have used (8.21) of Theorem 8.2.
We now estimate the variation of H� f as follows: using Theorem 9.1, we

obtain

VQ (H� f ) � VQ (H� f �H�g) + VQ (H�g)(9.10)

� VQ (H� f �H�g) + C4 VQ (g).

We are left with estimating the variation of H� f �H�g. For this, we write

H� f �H�g = H�[H� f �H�g] + H̃�[H� f �H�g],(9.11)

where for a function h, H̃�h := h � H�h is the part of the Haar expansion of
h corresponding to the coefficients which satisfy jcI(h)j � �. Using the inverse
estimate (3.4) of Remark 3.1 and then (9.9), we have

VQ (H�[H� f �H�g]) � 8 ��1kH� f �H�gk2
L2(Q)

� 16 ��1[kH� f � fk2
L2(Q) + kf �H�gk2

L2(Q)]

� 16 ��1[2kf � gk2
L2(Q) + 4C2

2�VQ(g) + 2kf � gk2
L2(Q)

+ 2kg�H�gk2
L2(Q)]

� 16 ��1[4kf � gk2
L2(Q) + 6[C2]2�VQ (g)],

where the last inequality again uses (8.21) of Theorem 8.2.
It remains to estimate the variation of H̃�[H� f �H�g]. For this, we remark

that if 0 < jcI(H� f �H�g)j � �, then necessarily jcI(g)j > �. In other words, if
we denote by Ng(�) the number of coefficients of g above the threshold �, we see
that H̃�[H� f �H�g] has at most Ng(�) nonzero coefficients. We can then use the
inverse estimate (3.1) of Theorem 3.1 to obtain

VQ (H̃�[H� f �H�g]) � 8[Ng(�)]1=2kH� f �H�gkL2(Q).(9.12)
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From Theorem 8.2, we have the estimate

Ng(�) � C1�
�1 VQ (g).(9.13)

Combined with (9.12), this gives

�VQ (H̃�[H� f �H�g]) � 8�[C1�
�1 VQ (g)]1=2kH� f �H�gkL2(Q)

� 4�[C1 VQ (g) + ��1kH� f �H�gk2
L2(Q)]

� 4C1�VQ (g) + 8kf �H� fk2
L2(Q) + 8kf � H�gk2

L2(Q)

� 4C1�VQ (g) + 16kf � gk2
L2(Q) + 32C2

2�VQ (g)

+ 16kf � gk2
L2(Q) + 16kg� H�gk2

L2(Q)

� 4C1�VQ (g) + 32kf � gk2
L2(Q) + 32C2

2�VQ (g)

+ 16C2
2�VQ (g)

� 32kf � gk2
L2(Q) + (4C1 + 48C2

2)�VQ (g),

where we have used (9.9) and (8.21) of Theorem 8.2.
Combining all our estimates we obtain

kf �H� fk2
L2(Q) + �VQ (H�( f ))(9.14)

� 98kf � gk2
L2(Q) + (C4 + 148C2

2 + 4C1)�VQ (g),

which gives (9.5) by taking the infimum over all g 2 BV.

10. Interpolation spaces between L2 and BV. As a by-product of our
results, we shall obtain several results concerning interpolation spaces between
L2(Q) and BV (Q). For each 0 < � < 1 and 0 < q � 1, let A�

q (L2(Q)) denote
the set of functions f 2 L2(Q) such that

j f jA�
q (L2(Q)) := k(N��N( f ))k`�q(Z+) <1,(10.1)

where �N( f ) = infg2ΣN kf � gkL2(Q), ΣN is any of the three families Σw
N , Σr

N or
Σc

N , and with `�q the `q norm with respect to Haar measure:

k(an)k`�q :=

(
(
P1

n=1 janjq 1
n )1=q, 0 � q <1,

supn�1 janj, q = 1.

Then, it follows from the Jackson and Bernstein estimates, which were proved
throughout the paper for these different families of approximation spaces, that

A�
q (L2(Q)) = (L2(Q), BV (Q))�,q, 0 < � < 1, 0 < q � 1,(10.2)
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with equivalent norms, where (L2(Q), BV (Q))�,q are the real interpolation spaces
for the pair (L2(Q), BV (Q)) (see [DL, Chapter 5] for the definition of interpolation
spaces and for the general mechanism relating these with approximation spaces,
through Jackson and Bernstein estimates).

Moreover, it was shown in [DP] that

A�
q (L2(Q)) = (L2(Q), B1

1(L1(Q)))�,q,(10.3)

in the case of the particular family Σc
N .

We thus obtain the following corollary to our results, where the second state-
ment exploits the known interpolation results for Besov spaces (see [T] or [DP1]).

COROLLARY 10.1. We have

(L2(Q), BV (Q))�,q = (L2(Q), B1
1(L1(Q)))�,q, 0 < � < 1, 0 < q � 1,(10.4)

and in particular

(L2(Q), BV (Q))�,q = Bq
�(Lq(Q)), 0 < � < 1, 1=q = 1=2 + �=2.(10.5)

We end by mentioning an application of Theorem 8.1 which is detailed in
[CMO]. It exploits the fact that the `w

1 property of the Haar coefficients of a BV
function can actually be generalized to the coefficients of the expansion in any
compactly supported wavelet basis (the proof of this fact is due to Yves Meyer
and can also be found in [CMO]). From this we can derive the interpolation result

L2(Q) = ( BV (Q), B�1
1,1(Q))1=2,2.(10.6)

Indeed B�11,1 is characterized by the `1 norm of the wavelet coefficients. On
the other hand, we have proved that BV � B1,w

1,1 , where B1,w
1,1 is by definition

characterized by the `w
1 quasi-norm of the wavelet coefficient. Since we also have

B1
1,1 � BV, the identity (10.6) simply follows by remarking that [`1, `1]1=2,2 and

[`1, `w
1 ]1=2,2 are both identical to `2.

In the slightly different setting of homogeneous function spaces defined on
the whole R 2 , this results gives the inequality

kfkL2 � C[krfkL1kfkB�1
1,1

]1=2,(10.7)

which is an improvement on the classical Sobolev inequality kfkL2 � CkrfkL1 .
Here we need to assume that f is in L1 in order to exclude counter-examples such
as a constant function. The space B�11,1 is defined in its homogeneous version,
i.e. the set generated by the second derivatives of the functions in the Zygmund
class B11,1.
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In particular the inequality (10.7) is more “robust” than the classical inequal-
ity under the action of oscillations: if f = f0(x)eih!,xi with f0 a fixed compactly
supported smooth function, we see that the growth in j!j of krfkL1 is compen-
sated by the decay in j!j�1 of krfkB�1

1,1
.
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[M] Y. Meyer, Ondelettes et Opérateurs, Hemann, Paris, 1990.
[MS] D. Mumford and J. Shah, Boundary detection by minimizing functionals, Proc. IEEE Conf. Com-

puter Vision and Pattern Recognition, IEEE, Los Alamitos, CA, 1985, pp. 22–26.
[RO] L. I. Rudin and S. J. Osher, Total variation based restoration with free local constraints, Proc.

ICIP, IEEE International Conference on Image Processing, Austin, TX, 1994, pp. 31–35.
[T] H. Triebel, Theory of Function Spaces, Birkhauser, Basel, 1983.
[V0] C. R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput.

17 (1996), 227–238.
[Z] W. P. Ziemer, Weakly Differentiable Functions, Springer-Verlag, New York, 1989.


