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NONLINEAR APPROXIMATION AND THE SPACE BV (R?)

By ALBERT CoHEN, RONALD DEVORE, PENCHO PETRUSHEV and Hong Xu

Abstract. Given a function f € L»(Q), Q := [0,1)2 and a real number t > 0, let U(f,t) :=
infgeav @ If — gHEz(l) + 1tV (9), where the infimum is taken over al functions g € BV of
bounded variation on |. This and related extremal problems arise in severa areas of mathematics
such as interpolation of operators and statistical estimation, as well as in digital image processing.
Techniques for finding minimizers g for U( f,t) based on variational calculus and nonlinear partial
differential equations have been put forward by several authors [DMS], [RO], [MS], [CL]. The
main disadvantage of these approaches is that they are numerically intensive. On the other hand,
it is well known that more elementary methods based on wavelet shrinkage solve related extremal
problems, for example, the above problem with BV replaced by the Besov space Bi(Ll(I)) (see
eg. [CDLL]). However, since BV has no simple description in terms of wavelet coefficients, it is
not clear that minimizers for U(f,t) can be realized in this way. We shall show in this paper that
simple methods based on Haar thresholding provide near minimizers for U(f,t). Our anaysis of
this extremal problem brings forward many interesting relations between Haar decompositions and
the space BV.

1. Introduction. Nonlinear approximation has recently played an impor-
tant role in several problems of image processing including compression, noise
removal, and feature extraction. We have in mind techniques such as wavelet
compression [DJL], wavelet shrinkage or thresholding [DIJKP1], wavelet packets
[CW], and greedy algorithms [MZ], [DT]. There has aso been an impressive
contribution of techniques based on variational calculus and nonlinear partial dif-
ferential equations (see e.g. [DMS], [RO], [MS], [CL]) especially to the problems
of noise removal and image segmentation. The common point between these two
approaches is their ability to adapt to the composite nature of images. edge, tex-
tures and smooth regions should be treated adaptively, a requirement which is
certainly not fulfilled by the classical linear filtering techniques.

One prablem which plays an important role in the latter approach is the
following extremal problem introduced by Lions, Osher, and Rudin (see [RO]):

Given a function (image) f defined on the unit square, Q := [0,1)?, and a
parameter t > 0, find a function g € BV (Q) which attains the infimum

- 2
(1.1 U(f,t) = geg\‘/f(Q) If = 9llit @ ttVa (9.
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Here BV (Q) is the space of functions of bounded variation on Q (see §2 for
the definition of this space) and Vg (f) = | f|gv is the associated semi-norm, i.e.
the total variation of f. In the practice of noise removal, f represents the noisy
image and t is usually chosen to be proportional to the noise level. The minimizer
g then appears as a denoised image. The functional in (1.1) can also be viewed
as a variant of the Mumford and Shah functional introduced in their celebrated
paper [MS] on image processing.

A minimization problem close to (1.1) is aso familiar in the context of
interpolation of linear operators: the expression

(1.2) K(f,1) =K(f,1,L2(Q),BV(Q) := geé(}f(Q) If = 9ll@ +tVe(9),

called the K-functional of f for the pair (L2(Q),BV (Q)), is the basic tool for
generating interpolation spaces between these two spaces by the so-called real
method.

Numerical techniques for solving (1.1) based on partial differential equations
have been developed and successfully applied to image processing. The advantage
of these techniques is high performance. Their disadvantage is that they are
numerically intensive, and require in practice the approximation of the BV term
in U(f,t) by aquadratic term (e.g. [ (e +|Vf|?)/?) in order to find a solution in
reasonable computational time (see [VO] for a discussion on numerical methods
for solving (1.1)).

In comparison, wavelet thresholding methods simply amount to the appli-
cation of multiscale decomposition and reconstruction algorithms on the image,
and of athresholding procedure, which can al be performed in O(N) operations,
where N is the number of pixels in the image. These methods can be made
trandation invariant by a cyclic averaging technique introduced in [CD], which
seems to bring significant visual improvement, while only raising the complexity
to O(NlogN). From a more theoretical point of view, thresholding procedures
have been proved to be optimal, in the minimax sense of asymptotical statistics,
in various nonparametric contexts where the images are typically modeled by
their regularity in Sobolev and Besov classes (see [DIKPZ2]).

A striking remark (see [CDLL]) is that wavelet thresholding aso provides
the exact solution to an extremal problem which is very close to (1.1), namely

~ o 2
(1.3) U(f,t):= geBi(rl‘i(Q» If — 9l * 9Ly ()

where the Besov space B}(L1(Q)) is taken in place of the (larger) space BV (Q).
Both BV (Q) and B}(L1(Q)) are smoothness spaces of order one in L1(Q), e.g. the
space BV (Q) is the same as Lip(1,L1(Q)) (see [M] or [DP1] for the definition
of the Besov spaces). In contrast to BV, the Bi(L;) norm has a simple equivalent
expression as the ¢1 norm of the coefficients in a wavelet basis decomposition
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f =3 senfrtn (Where A denotes the set of indices for the wavelet basis). One
can thus use this decomposition to obtain an equivalent discrete problem

(14) O((fa), 1) := Bl Yol —a P +tall,

(gx)€ls Sen

whose solution (obtained by minimizing separately on each index 1)) is exactly
given by a “soft thresholding” procedure at level t/2:

(15) gy = sgn(f) max{0, | f| —t/2}.

The minimization problem (1.3) can thus be solved (up to a constant related to the
equivalence between continuous and discrete norms), by a simple wavel et-based
procedure.

One could argue that the distinction between the two problems (1.1) and (1.2)
is dight. However, BV seems more adapted to model real images, since it allows
sharp edges (i.e. discontinuities on a line), which cannot occur in a bivariate
function that belongs to the smaller space Bi(L1). This fact is confirmed in the
practice of image processing: the performance of (1.1) for noise removal, for
example, seems slightly better than that of (1.3), at least in aesthetic terms.

We call a family of functions g; a near minimizer for (1.1) if

2 : 2
(1.6) [If — gl *tVa(a) <C <g€|'37\1/f(Q) If — 9l +tVQ(9)>

with C an absolute constant (not depending on't or f). A similar definition ap-
plies to (1.2). The question arises whether one could find a near minimizer to
(1.1) and (1.2), using simple nonlinear approximation techniques such as wavel et
thresholding. Note that in contrast to B}(L;), we are then allowed to use approx-
imations that have line discontinuities, such as the multidimensional Haar basis
or, more generally, piecewise constant functions. The main point of this paper is
to develop such techniques and to prove that they indeed yield near minimizers
for the problems (1.1) and (1.2).

Our main result in this paper is to show that either of the extremal problems
(1.1-2) has a near minimizer taken from certain “non-linear” spaces 2y, N > 1,
whose elements are piecewise constants that can be described by N parameters.
In the case of wavelet thresholding, the space Xy is smply the set of all linear
combinations > fyH, with at most N terms and H), the bivariate Haar functions.

In order to prove that a given family Zy provides the solution to (1.1) or
(1.2), we shall make use of several ingredients, among which are two types of
inequalities that are frequently used in numerical analysis and approximation
theory:
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(i) A direct or Jackson type estimate
(L7 inf |If — gl < ON [ flev @,
geZN

that describes the approximation power of Zy for functionsin BV.
(if) An inverse or Bernstein type estimate

(1.8) | flav(@ < CNY?([f |l if f € 2y,

that describes the smoothness properties of the approximation spaces 2.

When BV is replaced by Bi(L;) and Zy is the set of N-term linear combi-
nation in a sufficiently smooth wavelet basis, these inequalities reduce to simple
considerations on sequences. Since the BV norm has no simple equivalent ex-
pression in terms of the wavelet coefficients (it is actually known that BV is
nonseparable), (1.7) and (1.8) (in particular the direct estimate) are by far less
obvious, and will require more involved arguments.

We shall now give a more precise formulation of our results. We shall denote
by Z{j the nonlinear spaces associated with N-term approximation in the Haar
system, i.e.

(1.9) PRl ::{ZCAH,\; ECA, |E|§N},

AE€E
where |E| denotes the cardinality of the discrete set E (in the case of a continuous
set Q of RY, |Q| will stand for its volume), and where (Hy)xcn is the bivariate
Haar system derived from the univariate system of L,[0, 1] by the usua tensor-
product construction: from H® = X[o0,1) and Hl:= X[0,1/2) — X[1/2,1), One defines
the multivariate functions

(1.10) H(X) := HE(x)H®(x2), e= (e &) €V,

where V is the set consisting of the nonzero vertices of Q. The bivariate Haar
system for L»(Q) consists of the constant function 1 and of all functions

(1.12) He(X) = 2H%(2x — k), eeV, >0, ke 7Z2n2Q.

We refer to [D] for a general introduction to wavelet bases.

We shall prove that the wavelet thresholding, which is equivalent to approx-
imation by the elements XY, gives a near minimizer to the extremal problems
(1.1) and (1.2) (§9). However, our proofs are neither direct nor simple. Rather,
we prove these results by considering various types of nonlinear approximation
by piecewise constants. Note that the functions in Z{ are piecewise constant
taking at most 2N values.
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To describe the other spaces of piecewise constant functions which we shall
use in this paper we introduce the following notation which will be used through-
out the paper. If Q is a set of R?, we denote by g its characteristic function,
and by

(112) aa(f=10] * [ 1

the average of an Li-function f on Q. By definition, a dyadic cube | is the tensor
product of two dyadic intervals,i.e. | = 1(j,k,1) = [27Tk, 27 (k+1)) x [2791, 271 (1 +
1)). We shall denote by D := D(Q) the set of all dyadic cubes contained in Q,
and by D (Q) the set of al dyadic cubes in D(Q) with sidelength 2 (measure
2-2%), We denote by S := Sk(Q) the space of piecewise constants on the partition
Di(Q). Thisis alinear space spanned by the functions ¢, | € Dy(Q).

We define the family of nonlinear spaces of piecewise constant functions:

(1.13) 3N = {ZCISOI , ECD, [E|< N},
IeE

i.e., al linear combinations of at most N characteristic functions of dyadic cubes.

A natural procedure to approximate in X is the simple thresholding of
wavelet coefficients. In order to obtain approximations in Z%,, one can think of
different procedures. The simplest one is based on a quadtree splitting algorithm:
given atolerance e > 0 and afunctionf € L,(Q), one builds an adaptive partition
of Q into dyadic cubes by splitting into four subcubes each cube | such that the
residual

R(I) = |If — a(f)|lL,0)-

is larger than e. The procedure is initiated from the unit cube Q, and stops when
al residuals are smaller than ¢, and f is then approximated by f. := >, .p a1,
where P, is the fina partition of Q.

The approximation properties of such adaptive algorithms have been studied
in [DY]. However, this algorithm does not exploit the full approximation prop-
erties of X§, since it imposes that the cubes involved in the definition of f. are
digoint. One can actually show by simple counterexamples that this procedure
does not yield the direct estimate we desire in proving (1.1) or (1.2), i.e. too many
cubes could be generated to achieve a certain accuracy in the approximation of
certain BV functions.

A more efficient procedure should thus not only involve splitting, but also
merging of cubes, which will amount in using nondisjoint cubes in the definition
of a suitable approximation. In this paper, we shall introduce a “split and merge”
algorithm that produces an approximation of f based on digoint partitions of
Q into dyadic rings. By definition a dyadic ring is the difference between two
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embedded dyadic cubes, i.e. any set of the type
(1.14) K:=1\J, JclI, 1,LJeD.

We also consider a dyadic cube to be a degenerate case of a dyadic ring for which
J is empty. Throughout this paper, a“cube’ will always stand for a dyadic cube,
and a“ring” for adyadic ring. Our third family of approximation space X is the
set of all functions of the form

(1.15) f=" capa,
QePpP

where P is a set of at most N dyadic rings, that form a partition of Q, i.e. the
rings are digoint and union to Q. Note that (1.11) means that pq = ¢ — 3 SO
that X, C Z5y. We can thus use X} to prove results on approximation by ;.
An important point that should be mentioned here is that the nonlinearity of
the three families Zj, Z§, and X}, is “controlled” in the sense that they all satisfy

(1.16) 2N+ 2Zm C ZaM+N),

with a an absolute constant. Thisis obviousin the case of X and Z§;, witha = 1.
It can also be proved for Z, (with a larger value of a).

The outline of our paper is the following:

In §2, we define the spaces BV (Q) for domains Q ¢ R? and recall certain
basic properties of these spaces. In §3, we prove inverse estimates of the type
(1.8) for the spaces |, Z}, and X,.

In order to study the process of approximation for Z§;, we prove in §4 the
projection error estimate

(1.17) If — aallLy@) < Caf flav (@),

where C; isindependent of the ring Q. We then prove in §5 the stability estimate

(1.18) > ag(f)eq

QeP

< Colflev (@,
BV (Q

where C, does not depend on the partition P of Q into digoint rings. The unifor-
mity of C; and C; is ensured by the the controlled shape of a dyadic ring which
cannot be very anisotropic.

In §6, we introduce our algorithm for approximation by the elements of X}
and use it to prove the Jackson inequality. This algorithm relies on ageneral result
concerning the existence of partitions of Q into ringswhich are well balanced with
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respect to a super-additive cost function. We prove in §7 that this algorithm is also
a near best solution to the extremal problem (1.2). We anticipate therefore that
this algorithm will be useful in image processing but this will not be addressed
in the present paper which mostly concentrates on the theoretical issues.

In §8, we prove the direct estimate for (Haar) wavelet shrinkage, i.e. approxi-
mation by Y/, and we show in §9 that this procedure is stable in BV and provide
solutions for the two extremal problems (1.1) and (1.2). It should be pointed out
that the results of these two sections make important use of the results that we
establish for Z{;, and that so far we do not know how to prove them in a more
direct way.

Finally, we use our resultsin §10 to identify the interpolation spaces between
L»(Q) and BV(Q). We also use them to establish an improved Sobolev inequality
which was suggested to us by Yves Meyer and Frederic Oru.

Throughout the paper, we give explicit constantsfor all important inequalities.
Most of them (in particular (Co, C4, .. ., Cg), which appear at the end of the paper),
can probably be improved using more refined arguments.

Acknowledgments. The authors wish to thank Yves Meyer for his constructive
comments and suggestions.

2. The space BV (Q). In this section, we shall define for certain domains
Q c R?, the spaces BV (Q) of functions of bounded variation on Q and recall
some basic properties of this space. While BV (Q) can be defined for general
domains, in this paper, we shall primarily be interested in rings Q =1 \ J, where
Il and J C | arein D(Q).

For a vector i € R?, we define the difference operator A, in the direction p

by

(2.0 AL(F,X) = T(x+ p) — F(X).

Let Q be any domain in R?. For functions f defined on Q, A, (f,X) is defined
whenever x € Q(u), where Qi) == {x: [X,x+ p] C Q} and [x,x + y] is the line
segment connecting x and x+ u.. Note that if Q is bounded and 1 is large enough
then Q(u) is empty. Let g, j = 1,2, be the two coordinate vectors in R2. We say
that a function f € L1(Q) isin BV (Q) if and only if

2

2
(22)va(f) = sup h™* 21: 18he (T, ) ILytngy = Jim 21: 180 (. )l[Ly(@tng)
I I

is finite. Here, the last equality in (2.2) follows from the fact that
[[Ang (f, MILuihgy) 1s subadditive (see e.g. Theorem 7.11.1 in [HPF]). By defi-
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nition, the quantity Vo (f) isthe variation of f over Q. It provides a semi-norm
and norm for BV (Q):

(2.3 | flev@ =Va(f); [fllev =Iflev@ * IfllLi@)-

Let Q = Q;UQ,, where Q1 and Q, are digjoint sets. Then for any h > 0 and
J = 1,2, one has the inclusion Q1(hg) U Q»(hg) C Q(hg). Hence, for j = 1,2,

(24)  |&ng (f,)ILi(@ithg)) + [1Bng (F, )lLs(@athg)) < [|Bhg () )lILi@(ng))-

Summing over j and taking the limit as h tends to O, we obtain
(2.5) Vo, (f) +Va, (f) < Vva (f).

By induction, the analogue of (2.5) holds for any finite union of digoint sets.
We recall the L1-modulus of continuity w(f,t)o which is defined by

(2.6) w(f,t)a = sup [[Au(F, )Ly
<t

Here and later |x| := /X2 + X3 is the Euclidean metric. For any ring, we have
that BV (Q) is identical with Lip(1,L1(Q)), where the latter set consists of all
functions such that

(2.7) | flav (@) = supt™w(f, t)o
t>0
is finite. We also have

(2.8) | flev@ < flev@) < 2 flav()-

Indeed, the right inequality in (2.8) is obvious from the definition of the two
semi-norms. The left inequality follows from the fact for any point x € Q(u),
= (1, p2), €ither [X,x+ pie1] and [X+ p1€1, X+ ] are both contained in Q or
[X, X+ u2eo] and [X+ pp€, X + 1] are both contained in Q.

For aring Q =1\ J, we define D(Q) to be the set of al | € D which are
contained in Q and similarly, we define Dy(Q) to be the subset of D(Q) that
consists of the cubes of sidelength 2%, If 272 < |J|, when J is nonempty or if
2-2 < |I| when Q =1 is a cube, we can define Sk(Q) to be the restriction of Sk
to Q. For any f € L1(Q), we define the Py( f) to be the orthogonal projection of
f onto Sk(Q). Then,

(2.9) P(f)= > a(f)pr.

1EDK(Q)
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It is easy to prove that whenever f € BV (Q)

(2.10) If = Pi(F)llLyey < 2 *Va(f)
and
(2.11) Va (Pu(f)) < Vo (f).

For a proof of these results see [L, Chapter 3, Lemma 3.2] for the case when Q
is a cube (the same proof aso works for rings).

It is also easy to calculate the BV norm of functions S € S(Q). For any
set A C R?, let Lx(A) denote the edges L of the cubes | € Dy(Q) which are
contained in A. We also denote by Q° the interior of Q, and by J, L € £x(Q°),
the jump in f across L. Then, (see again [L, Chapter 3, Lemma 3.1])

(2.12) Va(f)=27% Y |
LELK(QO)

3. Inverseestimates. Intheintroduction, we have introduced three families
of nonlinear spaces (=, Z§, and ;). We begin our study of these spaces in this
section by proving (1.8) for any ring Q. We shall obtain specific constants in
(1.8) although this is not important for the theoretical results that follow.

We first treat the space Z{ which appears in wavelet thresholding.

THeEOREM 3.1. For eachf € XY, we have
(3.1) Vo (f) < 8NY?|[f |-
Proof. We first observe that any Haar basis function v, (see (1.11)) satisfies

(3.2) Vo(hy) < 8= 8|[thx||L,-

Indeed, if the support of ¢, is a square | of side length h = 27K, then it takes
the values +h~1 on |. We can calculate V@ (1)) by (2.12). The jumps across the
outer boundary of | give h—14h = 4 and those across the inner boundary give at
most 2h~—12h = 4. Thus, (3.2) is proved.

Iff =3 \cefavy isin X, then

(3.3 Vo(f) <83 1Al < BEIYAL S | 14[21Y2 < 8NY2If |,
A€EE AeE

by the Cauchy-Schwarz inequality. O

Remark 3.1. Using that Vo(f) < 83 ,cg|fx|, we aso obtain the following
variant of the inverse inequality (3.1): Lett > 0and f =}, f\¢) be alinear
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combination of Haar wavelets such that | f\| >t for al A € E, then
8 ¢12
(34) | flgy < Y“fHLz'

We now prove the Bernstein inequality for Zi; by a very similar argument.

THeoOReM 3.2. For eachf € X, we have
44/5
35 Vo (f) < 2= NY/2|f .
(3.5) o(f) < 7 Il

Proof. We first prove that if Q =1\ J isany ring contained in Q, then

4/5
3.6 < — .
(3.6) lvaley < /3 leallL,

To prove this, let £ be the side length of | and h¢ be the side length of J.
Then, |[¢all?,q = ¢%(1 — h?). We consider two cases. In the first case, we
assume that J is in the interior of I. Then necessarily, h < 1/4. In this case
Vo (pq) < 40+4lh = 4/((1+h), where the first term comes from the jump across
the outer boundary and the second the jump across the inner boundary. Since
%%2 < g we have verified (3.6) in this case. In the second case, we assume
that J shares an edge with |. Then Vg (¢q) < (4¢— ¢h)+3¢h = 4¢(1+h/2). Since

aﬂ{?z < 25/12 for 0 < h < 1/2, (3.6) follows in this case as well.

If f e >y, thenf =3 qcp fapo with P a partition of Q into rings, then

4\/5 4\/5
(37 Vo(h < 7= 3 Ifalllvall, < ZZN"2lf
QeP
by the Cauchy-Schwarz inequality. |

We close this section by using ideas from [DP] to prove the Bernstein in-
equality for Z§. If E isafinite collection of dyadic cubes, then for each | € E we
define B (E) to be the set of al cubes J that are maximal inl,i.e,JCl,J€E,
and J is not contained in another cube with these properties. It was shown in
Lemma 6.1 of [DP] that any set E can be embedded in a set E’ with |E'| < 4|E]
and

(3.9) IBI(E')| <4, fordlleFE.

THEOREM 3.3. For each f € ¢, we have

28
3.9 Vo (f) < ZZNY2)f .
(3.9 Q( )_\/ﬁ [l
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Proof. If f € 2§, we canwritef =3, . iy, where E € D(Q) and |E| < N.
Let E' be a set which contains E, satisfies (3.8), and such that |E’| < 4N. Then,
we can also represent f as

(3.10) f=> dr.
leE/
If 1 € E/, wedefinel” :=1\ U{J: J € B(E")}. The functions ¢+, | € E/, have
disoint supports and
(3.11) f=> cor,
leE!

with ¢ = 3755 jepr dy- We can assume that al ¢ appearing in (3.11) are
nonzero.
For each of these functions, we have a basic inverse estimate

14
3.12 V )< — ' .
(3.12) Qo) < \/§’|<P| L,

The proof of (3.12) is similar to that of (3.2) and (3.6) except that we have to
check more cases. The quotient

Vq (o11)

[ranire

takes its largest value for the configuration in Figure 1 which gives the constant
%. We leave this verification to the reader.
Using the Cauchy-Schwarz inequality, we find

Vo(f) < lalValer)
=l =4

14
< — C ’
< \/§Z| e,

IeE’

IN

1/2
28 28
%Nl/z (Z |C||2||<P|'HEZ) = ﬁNl/zllflle(Q)- O

IeE!

4. Approximation by a constant on a ring-shaped domain. In this sec-
tion, we shall give bounds for the L,-error of approximation of a BV function by
a constant on a ring-shaped domain. At first, we shall make certain preliminary
constructions which will be used in the proofs of these results as well as those
of the next section.

Let Q be aring contained in Q: Q := 11\ lg, lo,I1 € D(Q), lo C 1. We
shall consider piecewise constant functions in Sk(Q). We assume that k is large
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Figure 1.

enough that 2-2¢ < |I1| and 2=% < |lo] if 1o is not empty. We can therefore write
|11] = m2=2 and |lo| = mg2~2¢ with my, my positive integers and my < my.

Let B(Q) denote the external layer of boundary cubes for Q, i.e., the set of
cubes | € Di(R?) such that | is not in Dy(Q) but | N Q contains a line segment.
Let (a, b) be the lower left vertex of 11. We index each cube | € Dy(l1) by the pair
of integers (i,j), 1 < i,j < my, such that (a,b) +2X(j —1/2,i—1/2) isin | (we
have purposefully reversed i and j in the indexing so that i will now correspond to
arow and j to a column). Boundary cubes can be indexed in the same way with
i,j now alowed to take the values 0 and my + 1. Note that, in general, there are
two types of boundary cubes: the interior boundary cubes (which are contained
in lp) and the exterior boundary cubes which are outside of I;. If | isindexed by
(i,j), wesay that | isinrow i and column j. We say arow i (respectively column
j) is unobstructed if all cubes | € Dy(l1) from row i (respectively column j) are
in D(Q).

By an admissible path p for Q, we shall mean a piecewise linear path with
the following properties. Each segment of p is paralléel to a coordinate axis and
connects a center of a cube | € Dy(Q) U Bx(Q) to the center of another cube
J € D(Q) U Bi(Q). Each edge L € Lx(Q U 0Q) is transversed at most once by
p and each edge not in this set is never transversed by p.

For eachi=1,...,my, there are either two or four boundary cubesin By(Q)
which are in row i. For each distinct pair of these cubes (I, J), we shall construct
an admissible path pi(l,J) which connects | to J as follows.
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If there are exactly two such boundary cubes for row i, we take the strictly
horizontal path which connects the center of | to the center of J.

Consider next the case where there are four boundary cubes in row i. The
indices of these cubes are (i,j), ] = jo,j1,j2,]3, Where jo = 0 < j1 < j2 < j3 =
my +1. Moreover, j1 > mg and jz—j2 > mp. Let | and J be two of these boundary
cubes with indices (i,j) and (i,j’) and j < j’. If j = jo and j’ = j1, we take the path
pi(l,J) to again be the strictly horizontal path connecting the center of | to the
center of J. We proceed similarly if j =j, and j’ = js.

We now consider the remaining cases. Let j(i) € [1,mg] be congruent to i
mod my. Then, the column with index j(i) is unobstructed. Similarly, the column
with index j’(i) := my — j(i) + 1 is unobstructed. Also, for one of the two choices
i1 := 1+ my, the row with index iy is unobstructed.

If I, J are a pair for which we have not yet constructed p;i(l,J), then we
construct this path as the concatenation of the the five segments which connect
the centers of the cubes with the following indices in the specified order: (i,]),
(,j@@)), (i1,j0)), (i1,i'0)), (,j@)), (i,j). It follows that pi(l,J) is an admissible
path.

We shall need one last type of row path that occurs only in the case that row
i is obstructed but there are only two boundary cubes. This case occurs when g
touches the boundary of 11. Let | be the boundary cube in row i which touches
the boundary of 11. We assume that | has index (i, 0) (the case when | has index
(i,my + 1) is handled in a symmetric manner). We let j(i) and i; be as above.
We let p(l) be the admissible path which consists of the three segments which
connect the centers of the cubes with indices (i, 0), (i, (1)), (i1,j(i)) and (i1, m +1)
in that order.

We make the analogous construction of paths which connect the boundary
cubes in column j and denote these paths by (1, J).

We shall now use these paths to prove the error estimate (1.17) for rings.
Before proceeding to the proof of (1.17), we remark that this inequality holds
for general Lipschitz domains Q. Indeed, using the known embedding of BV (Q)
into L»(Q): we have

(4.1) If — allL@ < ClIf —allsv (@)

for any function f and constant a. Therefore, taking the infimum over a, we
obtain

(4.2) |If —ag(f)|lL @) < Cinf If —allsv (@ < Cif flav (@ = C1Va (f).

The last inegquality in (4.2) follows for example from elementary results in ap-
proximation (see e.g. Theorem 3.5in [DS)]). It is easy to see that the constant C;
is invariant by isotropic scaling of Q, but grows by anisotropic (e.g. one direc-
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tional) scaling. Thisrevealsthat C; strongly depends on the shape of Q. Our goal
isto prove (1.17) directly with a constant C; that is uniform for rings Q =11\ lo.

Let Se Sk(Q) be a piecewise constant function on Q with k such that 22
islessthan |11| and 2~ isless than |lo| in the case where | is not empty. Given
apath p, let

(4.3 Ip) = |l
L

where the sum is taken over al edges L € Li(Q°) which are crossed by p. Here
and later, we use the notation K° to denote the interior of a set K ¢ R2.
For each i, we define

(4.4) =Y ),
Pi

where the sum is taken over al the paths p; associated to the row index i (recall
there are one or six such paths) and

(4.5) R:= % ri.
i=1

Similarly, we define

(4.6) G = ZJ(’Y,‘),
g
where the sum is taken over al the paths ; associated to the column index j and
m
(4.7) C:=> g.
=1

LemmAa 4.1. For any ring Q and any S € Sx(Q), we have
(4.8) 27KR+C) < 9Vvq (f).

Proof. We shall first estimate how often |J. |, with L a fixed vertical edge,
L € £x(Q°), appears in the sum R+ C. Suppose first that L isin an unobstructed
row i. Then L appears exactly once for paths pj. The row i is used at most four
times for paths pj, with i # i’. The row i is also used at most four times for
paths ~j. Hence J_ appears at most 9 times in the sum R+ C. Consider next the
case when i is obstructed. Then, J. appears exactly once for paths p; and it never
appears for any other paths p;: or ~j. The same estimate holds for J. when L is
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a horizontal edge. Thus,

(4.9) 27%R+C) <9 Y 2743 =9vq(f),
LeLK(QO)
where the last equality is given by (2.12). O

Remark 4.1. In the case Q is a cube, the constant 9 in (4.8) can be replaced
by 1.

THeEOREM 4.1. For anyring Q =1 \ lp and any function f € BV (Q), we have
(4.10) If — aa(f)lly@) < 6v3Va(f).

Proof. Let us first observe that it is sufficient to prove this estimate for the
special case of functions S € Sk(Q). Indeed, if this has been shown, then we have

(411) |If —aa(f)|l@) < IIf = Pu(f)l|lL@ + [IPk(f) — aa(f)|lL0).

where Py is the projector onto Sk(Q). The first term tends to zero with k and the
second would provide our estimate since an(Pk(f)) = an(f) and since by (2.11)
Vo (Pk(f)) < Vo (f) if kis sufficiently large.

Henceforth, we consider f € Sy, with k such that 22 is less than |I1] and
2~ js less than |lg| in the case where |y is not empty. Let p; = pi;j denote the
value of f on the cube | with | in row i and column j (with similar notation
for I"), and let A denote the set of (i,j) such that the cube with index (i,j) is
contained in Q and let N := |A|. Then, A:=ag(f) = %Z(i,’j,)e,\ pij. Therefore,

(4.12) P —ASNT > Ipij—pipl.
(i",J")eN

We can construct an admissible path p which connects the center of | to the
center of 1" using portions of the paths p; and ;.. Indeed, it is easy to see from
our constructions that thereis a path p; associated to row i which passes through |
and a path ~; associated to column j which passes through j such that p; intersects
7;- We take p as the shortest path contained in p; U «; which connects the center
of | to the center of J. It follows that |pj j — pir,7| does not exceed the sum of
the J_ crossed by this path. Hence,

(413) |pi,j — pi’,j’| <r+ CJ'/.
By a symmetric argument, we obtain that

(414) |pi,j — pi/yjl| < l +Cj.
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By (4.13) we obtain

(4.19) ij— A <Nt (ri+c)<ri+ %
Pi,j J N
(i",iNeN

and by (4.14)

R
(4.16) Ipij— Al <G+ %
Hence

m C m R m m 2
Py —AlZ < (ri + ﬁ) <Cj + ﬁ) =rig + eriR+ chjC+ ~BRC.

We note that N2-% = |Q| > 3|I3| = 2mf2-%. In other words, mé < 2N.
Therefore, summing over i,j we obtain

- _ mé mé me
IS— Aty = 272 > Ipj-AP<2* (RC+W1R2+W102+W1RC>
(i,j)en
4 -2k 2 4 2 2
< Z27%R+C)° < =9V (),
3 3
where we have used Lemma 4.1. This proves (4.10). O

Remark 4.2. In the case Q is a cube, the constant 6v/3 in (4.10) can be
replaced by 1.

5. Projectionsonto piecewise constant functions. In this section, we shall
prove the BV stability of projections onto a space of piecewise constant functions
related to a partition of Q into rings.

We denote by P a partition of Q into a finite number of rings. This means
that the elements of P are rings K which are pairwise digoint and union to Q.
For each such partition P, we define

(5.2) Pr(f) = 3 ac(ex,
KeP

where we recall that ax () isthe average of f over K and ¢k is the characteristic
function of K.

THeorem 5.1. For any finite partition P of Q intoringsand any f € BV (Q),
we have

(5.2) Vo (Pp(f)) < 10Vo(f).
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Proof. Let k be large enough so that for any K € P, K =11\ lp, we have
l11] > 2% and [lg| > 2% if 1o is not empty. Then Pp(f) = Pp(Pk(f)). Thus, in
view of (2.11), it is enough to show that (5.2) holds for any f € Sx. We consider
only such f in the remainder of this proof.

If L € Lk(Q), we denote by J_ := J.(f) the jump in f across L and by
JL(Pp(f)) the jump in Pp(f) across L. For any set R C Q, we define

(5.3) (R = > |l

LeLy(R

Fix one set K from P and let fy be obtained from f by redefining f to be
ak () on K. Note that the jumps in fy are the same as those of f except for those
inside K (which will be 0 in fp) and those on 0K, the boundary of K. We shall
prove that

(5.4) 5(fo,Q) < =(f,Q) +95(f,K \ K).

Assume for the moment that we have proven (5.4). Then, repeating succes-
sively for each K € P the process that constructs fg from f, we arrive at

(55  Z(Pp(f),Q <Z(f,Q+9 ) =(f K\ dK) < (1+9(f,Q).

KeP

Since Vo(f) = 27¥5(f,Q), (5.5) implies (5.2).

We finish the proof by proving (5.4). We shall use the paths that were con-
structed in §4. We fix aring K € P and we index the cubes | € Dy(K) U Bk(K)
asin §4. Let pp = p;,j denote the value of f on | when | has index (i,j). Let
J| = J.(fo) bethejumpinfy acrossL € Li(Q°). We need to estimate J| for those
L contained in the boundary of K. To each such L, thereisan | = I(L) € Bk(K)
which contains L as one of its sides.

We let (i,]) denote the index of 1. Then, we have

1
(5.6) D < 2 1P =Pyl
(i",j")en

where as before A denotes the set of (i,j) such that the cube with index (i,j) is
contained in K, and N = |A|. Let I” have index (i’,}). Asin the proof of Theorem
4.1, using a subpath of one of the p; and a subpath of one of the ;/ (in the case
1 <i <) or from p;r and ~; (in the case 1 < j < my), we can construct an
admissible path (i, j,i’,j’) for K which connects the center of | to the center of
I”. Let ['(i,j,i’,j’) denote the collection of all of the M € Lx(Q) which intersect
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this path. Then,
, 1
(57) pl<g 2 2 Bl
(i",i"YEAMET(,],i",j")
Thus,
, 1
(5.8) > < N > mmldwml,
LeoK MeL(QO)

where ny is the total number of times M appears in al of the sets ['(i,j,i’,j’),
with (i, ) the index of a cube in Bx(K) and (i’,j’) the index of a cube in Dy(K).
We shall complete the proof by showing that

(i) nm =0, if M isnot contained in Lx(K) U Lx(9K),
@i) nw =N, if M € Lx(9K),
@iii) nuv < 9N, if M € L(KO).

Clearly, these three estimates used in (5.8) prove (5.4).

Now, statement (i) is obvious because all the paths p(i, ], i’,j’) are admissible
for K. Statement (ii) is also obvious because Jy, M € Lx(0K) is crossed only
by the paths that emanate from 1 (M) and there are exactly N of these (one for
each cube I’ in Dy(K)). To prove (iii), consider for example a vertical segment
M e Lx(K\ 9K). If M isin an obstructed row, then for each (i’,j’), M will appear
in exactly one (i, j,i’,j’); namely, for one pair (i,j) with i the index of the row
which contains M. So for these M, we have ny = N. On the other hand, if M is
in an unobstructed row i*, then for each (i’,j’), M will appear in only one of the
r(*,j,i’,j’) for the two values of j corresponding to boundary cubes. At the same
time, M can appear at most four timesin the sets(i,j,i’,j’), 1 <i < my, i #i*;
namely, for the one possible obstructed row with index i which is congruent to
i* mod my. Similarly, for each (i’,j’), M can appear at most four times in the sets
r@,j,i’,j"), 1 <j < m. Thus ny < 9N in this case. We have proved (i—iii) and
completed the proof of the theorem. m|

6. A partition algorithm and a direct estimatefor Z{,. In this section, we
shall prove the direct estimate (1.7) for Z{,. Our proof is based on two ingredients:

(i) The projection error inequality (1.17) for ring-shaped domains that was
established in §4.

(ii) A genera result on the partitioning of Q into rings with respect to a
super-additive function.

The proof of this second result will actually provide a concrete algorithmic
procedure that builds adaptive partitions of Q into rings for the approximation of
a given function f.
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If f € Lo(Q), we define
r — o
(6.1) on(f) = glegfh If — gl

which is the error of approximation by the elements of Z..

In the following, we let ® denote a positive set function defined on the
algebra A(Q) generated by therings K C Q. That is, A(Q) consists of all subsets
of Q which can be formed by finite unions and intersections of rings K ¢ Q and
their complements. We make the following assumptions on @:

(i) @ is super-additive: if K; and Ky are digjoint sets in A(Q), we have

(6.28) P(Kq) + P(K2) < P(K1 UKDY).
(ii) @ applied to cubes of decreasing size goes uniformly to zero, i.e.

(6.2b) lim sup P(K)=0.
k=00 KeDy(Q)

Note that an immediate consequence of (6.2a) is that d(K1) < d(K2) when
Ky C Ko

We shall prove a genera partitioning result with respect to such functions.
In practice, we shall be interested in applying this result in the case where

(6.3) ®(K) = 1(K) = [If — a(DIZ,),
for f € L(Q), and aso in the case where
(6.4) D(K) =V () = | flBv ),

for f € BV (Q). It is easy to see that properties (i) and (ii) are satisfied in both
of these cases (see [Z] for a proof of (ii) for the second example using a slight
modification of the BV norm).

We next make some preliminary remarks which will be useful for stating and
proving our main result (Theorem 6.1) of this section. Recall that each dyadic
cube | has four children J; these are the dyadic cubes J C | with |J| =|1|/4 and
one parent. Given a function ® as above and a parameter ¢ > 0, we define 7, to
be the set of cubes| € D(Q) such that ®(1) > €. The collection of cubesin 7,
form a tree which means that whenever | € 7. and | # Q, then its parent also
belongs to 7.. We aso remark that 7. has finite cardinality, due to (6.2b).
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In what follows, we shall assume that ®(Q) # 0 and that ¢ is small enough
so that 7. is not empty. In the tree 7., we shall make the distinction between
severa types of cubes:

(i) The set of final cubes F. consists of the elements | € 7. with no child
in7..

(ii) The set ;. of branching cubes consists of the elements | € 7; with more
than one child in 7.

(iii) The set C. of chaining cubes consists of the elements | € 7. with exactly
one child in 7.

From the fact that a branching cube always contains at least two final cubes,
one easily derives

(65) N < |7 -1

The set C. can be partitioned into maximal chains Cq. That is, C. = nglcq,
where each Cy is a sequence of m= m(qg) embedded cubes:

(6.6) Cq=(o,...,Im-1),

where ly41 is a child of I, and where 1o (resp. Im_1) is not a child (resp. parent)
of a chaining cube.

The last cube Im—1 of achain Cqy, always contains exactly one cube Iy, from
7. and this cube is either afinal cube or branching cube. The cube I, is uniquely
associated to this chain. This shows that the number of chains n = n(e) satisfies

6.7) N< N +|F|—1< 27| -1

Our next theorem gives our main result of this section. It algorithmically
constructs a partition P. of Q into rings K with ®(K) < e. It also describes
a second partition P. whose sole purpose is to help count the number of rings
inP..

THEOREM 6.1. Let € > 0 be such that 7. # (). Then, there exist a partition P
of Q into digjoint rings such that

(6.8) O(K) < ¢ if K P,

and a set P, = P} U P2 of pairwise digoint sets K which are cubes (in the case
K € P1) or rings (in the case K € P?) such that

(6.9) d(K) > ¢, if K e P,

and

(6.10) |P| < 8P +3/P?| < 8P|
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Proof. We define P, = P U P2 U P3, with
(i) P al children J of the final cubes| € F..
(i) P?: the children J of the branching cubes | € A, such that J ¢ 7.

(iii) P3: rings and cubes obtained from the chains of 7; by an algorithm that
we now describe.

If Cq=(lo,...,Im-1) isamaximal chain (1 < qg < n), and Iy, is as above,
then we associate a chainring Kq = lg \ Im to each chain Cqy. Note that

(6.11) PLUP?U{Kg q=1,...,n}

is a partition of the cube Q. We next partition each chain ring K, g=1,...,n,
according to

(6.12) Kq = (Ijo \ Ijl) u (Ih \ Ijz) u---u (ij—l \ ij),

where0=jo < j1 < --- <jp=m(p=p(q)) are uniquely defined by the following
recursion algorithm; assuming that j is defined, and that jx < m, we choose jk+1
as follows:

(i) if @(j \Im) < ¢ then jiig == m, i.e. p := k+ 1 and the agorithm
terminates.

(i) if O\ lj+1) > €, then jier = jic + 1.

(iii) if neither (i) or (ii) apply, then ji+1 is chosen such that ®(lj, \ 1;,,,) < €
and ®(lj, \ lj,,,+1) > e In other words, jk+1 is the largest j > jk such that
o, \ 1)) < e

We can now define the set P3. For each chain ring Kg» d=1,...,n, we
include in P3:

(i) al rings I, \ Ij,,, such that ®(l;, \ I;,,,) < ¢ (ii) the children of I,
(J, 92, 32) that differ from I;,,, for all k such that ®(lj, \ Ij,,,) > € (in this case
jkrr = jk+ 1, i.e I, isachild of I;,). Note that the cubes (J;,J7,J3) are not
in7..

Because of (6.11), P. is a partition which clearly satisfies (6.8).

Next, we define P, := P1 U P2, where

M 7{61 is the set of al of the final cubes of 7:.

(i) P? is a set of rings constructed by an algorithm that we now describe.

For each chain ring Kg: 9=1,...,n, we recal its decomposition according
to Kgq = (lj \ lj)) U -+~ U (lj,_, \ Ij,), and we construct a new decomposition

where0 =5 < s < --- < & =m(r =r(qg)) constitute a subset of (jo,.-.,jp)
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uniquely defined by the following recursion algorithm: assuming sc = j; < mis
defined,

(i) if jl+1 = m, we take s+1 ;= mand r := k+ 1 and terminate the algorithm.

(i) if jlez < m, and if ®(lj, \ Ij,,,) < €, we take S+ = jj+2. In the case that
jl+2 = M, we terminate the algorithm.

(iii) if jlea < m, and if ®(lj, \ Ij,,,) > €, we take Se+1 = ji+1.

For each chainring Kg, = 1,...,n, wethenincludein 753 theringslg \ls,,,
k=0,...,r — 2, for which we have ®(ls, \ Is,,) > ¢ (by the construction of P2)
and we also include the last ring Is._, \ I only if it satisfies ®(Is_, \ Ig) > e.
This means that we do not include any ring from the chain ring Kq if ®(Kg) <.

We now claim that

(6.14) P3| < 3[P?|+n < 3P| +2|F.| —1=3P? +2/P} -1

Indeed, each ring I \ Ig,, Of 7362 contains (as subsets) at most three rings of P
and in each chain Cq, 9 = 1,...,n, a most one ring of Pf is not contained in
some element of P2,

Finally, we prove the estimate (6.10). First, we clearly have

(6.15) [P < 4P}
and
(6.16) 1P| < 2|V, < 2(|F.| — 1) = 2(|PY - 1).

Using these last two estimates with (6.14), we obtain
(6.17) |Pe| < 3|P2| + 8P| — 3 < 8P +3|P? < 8P

This proves (6.10) and completes the proof of the theorem. O

We shall now use Theorem 4.1 to prove a direct estimate for approximation
by the elements of Z},. To do so, we fix f € L,(Q) which is not constant and we
take for @ the L,-error function defined by (6.3). For each ¢ > 0, the algorithm
described in the proof of Theorem 6.1 gives a partition P. = P.(f) adapted to f.
We then consider the piecewise constant approximation

(6.18) Af =Pp,f,

where Pp, is defined by (5.1).
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THEOREM 6.2. If f € BV (Q) is not constant and if ¢ > 0, then the algorithm
of Theorem 6.1, with ® given by (6.3), produces a partition P, that satisfies

M
Ve

and an approximation A, fthat satisfies

(6.19) Pe| < —=Vo(f), M:=18V3,

(6.20)

|f —Aef“EZ(Q) < M\/EVQ(f)-
Consequently, one has the Jackson estimate
(6.21) oh(f) < MN~Y2y(f).

Proof. We consider the set P, with the properties indicated in the statement
of Theorem 6.1. Using the error estimate (4.10) with constant 61/3 for rings and
1 for cubes (see Remark 4.2) together with (6.10) we obtain

Ve8P +3[P?]

8 > [OK)]YZ+3 S [O(K)]Y?
Kep? Kep?

8 ) Vk(f)+18V3 > Vk(f)
Kep? KeP?

18v3 Y vk (f) < 18V3Vq(f).

KeP.

Ve[ Pe|

VARVA

IN

IN

Dividing by /¢, we obtain (6.19).
The approximation error (6.20), is then obtained from

If —Aflf0 = Y. PK) < |Pele,
KEPE

and (6.19). If we take /e := 19U then (6.19) and (6.20) imply (6.21). O

We can aso obtain (6.21) by using the function ®(K) = vk (f). We now
denote by P.( f) the resulting partition and A f := Pp_() f the resulting partition
when the tolerance is chosen as e.

THeorem 6.3. Iff € BV (Q), Vo(f) Z0,N > 0ande := 8N_1VQ(f), then
the algorithm of Theorem 6.1, with @ given by (6.4), produces a partition P, that
satisfies

(6.22) Pl <N
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and an approximation A’ f that satisfies
(6.23) If — A% |y < 48V3N~Y2vq (f).

Proof. The proof is similar to the previous theorem. We consider the sets 7.
and P, of Theorem 6.1. Using (6.9) and (6.10), we have

e[Pe| < 8elP| <83 d(K)=8 > vk (f)<8Vql(f),
KeP. KeP.

which gives (6.22).
We use the error estimate (4.10) and (6.22) to obtain

If = AR = D IIf—a(H)lEu < 6V3)? S Vi ()2
KePe KePe
(6V3)?P|e® < (48V3)®N Lvq(1)?,

IN

which proves (6.23) O

We close this section with the following simple remark about existence of
best approximants from Z,.

LemmA 6.1. For eachf € L»(Q) and N > Othereexists g € X, such that

If — gl = on(f).

Proof. By the definition of oy (f) (see (6.1)), there exist g1,0p, . . . such that
g € Z and

If — gillLa@ < on(f)+i~%

Let P, (|P;| = N) be the partition for g; and furthermore let Kiy = 14\ Jh € P,
m=1,2,...,N, be the rings of P} with the indices selected such that |K)| >
KL > - > KL

By selecting a subsequence from (g;), we can find ann > 0 and an No < N
such that [Kin| > 7, 1 <m<Np,j=12,...,and |Kl — 0,] — 00, No < m<
N. It follows that for each m, either the [I4] > n for al j or [Ih] — 0, j — co. A
similar statement applies to the Ji. Since there are only a finite number of dyadic
cubes with measure > 7, by again extracting a subsequence, we can assume that
for each m, either 14, does not change with j or |Ih] — 0. A similar statement
applies to the J. _

It follows that there exist digjoint rings Ky, m = 1,...,N, such that |K{ \
K|+ K\ K]| = 0,j — oo and K}, =0, No < m < N. It is now easy to see that
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19— gjllLyq — 0, ] — oo, for

No
g:= Z Ak, K-
m=1
Therefore, g satisfies the conclusions of the theorem. O

7. Minimization of the K-functional by piecewise constant approxima-
tion. In this section, we shall use the Jackson and Bernstein estimates that we
have proved for Z, to show that a near minimizer for the problem (1.2), i.e. the
K-functional, can be taken from some space Z;. We shall aso show how the
algorithm of the previous section can be used to find a near minimizer.

We begin with the following simple result.

THEOREM 7.1. For eachf € L»(Q)and N > 0, and for each § > 0, there exists
afunction h € X}, such that

(7.1) If — hllL@ + N"Y2Vg(h) < (1+68)18V3K(f,N"1/?).

Proof. If K(f,N=%/2) = 0 then f is constant and (7.1) follows by taking h = f.
If K(f,N~¥2) #0and 6§ > 0, let g € BV (Q) satisfy

(7.2) If — glla@ + N~72Vo(g) < (L +§)K(F,N~?).

Then, according to (6.21) of Theorem 6.2, for each N, there exists a function
On € Z such that

(7.3) lg — anllL, < 18V3N~Y2vq(g).

We take h := gy so that

(7.4) If — hllyQ

IN

If = 9l * 119 — hllLa@
If = glia +18V3NT2Vq ()
< 18V3(1+§K(f,N Y3,

IN

We can estimate the variation of h by Theorem 5.1. Since h = Ppg with P
the partition for h, this gives

(7.5) Vo(h) < 10Vo(g) < 10(1 + )NY2K(f,N~Y/2),

Then, (7.4) together with (7.5) proves the theorem. O
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We say that an element g € Z}, is a near best approximation to f € L2(Q)
(with parametersa > 1, and N < M) if

(7.6) If = dlleo@ < aon(f).

We next show that any such near best approximation is a near minimizer for
1.2).

CoroLLARY 7.1. Iff € Lo(Q) and g € Z; isa near best approximation with
parameter a, then g satisfies

7.7 If — gl + N~Vo(g) < CoaK(f,N"2),
with Co < 2016 + 18V/3.
Proof. Let h € X} be the function of Theorem 7.1. Then,
(7.8) If = gl @ < aon(f) < allf —hilL -
Also, since g — h € X5, from the Bernstein estimate (3.9), we conclude that
N~Y2Vo(g) < N™H2Vg(h) + N~/2Vg(g — h) < N~H/2Vq(h)
+ 2 lg—h
/3 L2(Q)

_ 56
N=Y2vq(h) + A= gl +If = bllea)

IN

IN

B 56
N2V (h) + ﬁ(“ a)If — hllLQ-

Combining this with (7.8) gives that the left side of (7.7) does not exceed

56
a+—=(1+a)) [If — hllLq +N""2Vg(h
(a+ 2@+ ) I = Al + N"2vg(h)

56
= <a+ %(1 + a)> (If = hllLy@ + N7Y2Vg(h)).

We now use (7.2) to arrive at (7.7). m]

While Theorem 7.1 and Corollary 7.1 both provide near minimizers of (1.2)
they are not of practical interest since they are not constructive. Yet, they show
that a near minimizer for (1.2) can be taken from Z{, when N is chosen so that
N~1/2 has the same order of magnitude as t.

We shall use the remainder of this section to prove that a near minimizer
can also be obtained by applying the algorithm of the previous section to the
function f. Recall that this algorithm is controlled by the parameter ¢ > 0: by
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decreasing ¢, we increase the number of rings in the partition P. and we decrease
the approximation error ||f — A, f||,q). We thus have A f € X}, with N = N(e)
increasing as e goes to zero. In practice, we would like to control directly the
number of rings. This leads to the following question: given N > 0, can we find
€(N) such that |P.| = N, or equivalently does the function N(e) reach all possible
values of N € M? Strictly speaking, the answer to this question is negative.
However, we can circumvent this difficulty as we shall now describe.
For agiven f, and agiven N € NV, we define

(7.9) e(N) :=min{e > 0; [P <N},
(7.10) PR = Peny,s

and

(7.12) Anf = Aqyf = Pp.f.

If ¢(N) > O, the minimum is attained in (7.9). Indeed, the construction of 7,
P. and A.f described in the previous section ensures that, for any given ¢ > 0,
there exists € > 0 small enough so that 7cvs = 7, Pevs = Pe and Asf = AT,
foral 0 < s<e.

If ¢(N) = O, then from Lemma 6.1, f € Z. We can therefore apply the
algorithm with e = 0 since the tree 7o will be finite. With this choice, the algorithm
gives Aof =f and therefore Anf = f as well.

In order to prove that lef is a near minimizer for the K-functional, we first
need two lemmas that will be used to compare the partition Py produced by the
algorithm and the partition that is associated to the element g € Z\ which is a
known minimizer.

LemmA 7.1, If P isafinite set of pairwise digoint ringsand P’ a partition of
Q into a finite number of rings, then for each K’ € P’, there are at most two sets
K € P suchthat K N K’ # () but K isnot contained in K’.

Proof. Let K’ =1\ J whereJ’ C I’ and J’ may possibly be empty. If K =1\J
isinPand KNK’' #0, thenl N1" # (). Hence either | c I or I’ C |. We shall
show that there is at most one K of each of these types that intersects K’ but is
not contained in K’.

(i) Case 1: I’ C |. Suppose that there were two setsK; = 11\J; and Kz = 15\ J,
from P with I’ C 11,1,. Then, obviously I3 NI, # (0 and hence without loss of
generality I’ C 11 C I». For Ky and K5 to be disjoint (as they must be since both
are in P) we must have I; C J,. But this means K, does not intersect K’, which
is a contradiction. Thus, we have shown that there is only one set K of this type.

(i) Case 2: | C I'. Suppose again that there were two sets K1 = 1; \ J; and
Kz =12\ J2 from P with I’ D 14, 1,. Then, ;N i = 1,2, since otherwise K; C K.
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Hence, J' C Iy,12. Obvioudly, 11 N1y # () and hence without loss of generality
I, C Il C I Since K1 NKy = (), we have

hclhiclhclcl

Since J' C I; C Jp, thisis a contradiction since it impliesthat K, c K. 0O

LemmA 7.2. If P isafinite set of pairwise digoint rings and P’ a partition of
Q into a finite number of rings, and if |?’| < N and |P| > 2N, then the subset P*
of all K € P contained in some K’ € P’ satisfies |P*| > N.

Proof. Let us denote by P2 the set of al K € P that are not contained in
any K’ € P/, and by P3 the set of K’ € P’ such that there exist K € P, having
a nonempty intersection with K’.

By the previous lemma, each K’ € P2 is associated with at most two K € P2
such that K and K’ are not disjoint. On the other hand, each K € P? is associated
to at least two K’ € P2 such that K and K’ are not digoint. We thus have
necessarily

[PEL< [P < P <N,
so that |PY = |P| — |P?] > 2N - N=N. |
We are now ready to prove the main result of this section.

THEOREM 7.2. Let f € L»(Q) and N > 1 be an integer and M := 16N. The
function Auf = A f isa near best approximation to f in the sense of (7.6) and
satisfies

(7.12) If = Awf o) + N2V (Auf) < CoK(F,N7Y2),

with Cj = 8Cp and Cy the constant of Corollary 7.1.

Proof. We consider first the case that ¢ := ¢(M) > 0. Let g be a best ap-
proximation to f from N and P be the partition associated to g. Fix an arbitrary
0 <n < eandlet P = 73 be the partition of Theorem 6.1. Then, using the
fact that n < e together Wlth Theorem 6.1, we find M < |P,(f)[ < 8|P|. Hence
|P| > 2N and we can apply Lemma 7.2 to find a set P! C 73 with [P > N and
each element K € P! is contained in some ring of P. It follows that

Np < > If —ak(D[E,w < If — 9llE,q = on( )2
Kept

Since n < e is arbitrary, we have

Ne < o ()2
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Therefore,

If — AufllE g = Y. (K) < Me < 1607(f)%
KEPE

Thus Awf is a near best approximation to f with parameter a = 4 and (7.12)
follows from Corollary 7.1.

In the second case, where ¢(M) = 0, we have Auf = Agf =f and f ¢ -
The left side of (7.12) does not exceed N~Y/2v/q (f). Let h be the function of
Theorem 7.1. Sincef —h € 25,y = Z54n, We have from the Bernstein inequality
(3.9

If = hlly@ + N~Y2Vo(h) > %Nlﬁv@(f — h) + N"2Vg(h)
> 28\\//53_4N_1/2VQ(f).
Hence, the left side of (7.12) does not exceed
%3_4(”“ — hllLy) + NT72Vq(h)
and the proof is completed by invoking inequality (7.1). O

8. Direct estimates for Haar thresholding In this section, we fix a func-
tion f in BV and show that its Haar coefficients are in weak ¢;. That is, we shall
show that when the Haar coefficients are put in decreasing order according to
the absolute value of their size, then the nth rearranged coefficient is in absolute
value less than C| f|gy/n, with C an absolute constant. We shall see that this also
yields the Jackson estimate (1.7) for Z{.

In the next section, we shall then use this result to show that the extremal
problems (1.1) and (1.2) have near minimizers which can be obtained by wavelet
thresholding of the coefficients with respect to the Haar basis.

Associated to each dyadic cube | = [27Tky, 271 (ky + 1)) x [27Tk, 271 (ko + 1)),
there are three Haar coefficients ¢fy = (f,HJ), e € V, k = (k, k2) with V the
nonzero vertices of the square Q = [0, 1] (see (1.10-11). In this section as well
asin §9, we shall denote any of these by ¢, = ¢(f) and the corresponding Haar
function by H,: when we state a property about ¢;, we mean any of these three
coefficients and similarly for H;.

We shall assume without loss of generality that f has mean value zero so
that the coefficient of ¢q is zero. We shall denote by v, ( f) the nth largest of the
absolute values of the Haar coefficients ¢f of HF, | € D(Q), e€ V.

We begin with the following well-known lemma.
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Lemma 8.1. Iff € BV(Q) and e > O, then there exists a continuous function f.
which is piecewise continuously differentiable on Q such that

(8.1) [f —fellLa@ <€
and
(82) Va((f.) < Vo(f).

Proof. This can be proved in many ways by mollification; for example using
Steklov averages. We shall prove this by using piecewise bilinear interpolants.
We recall (see (2.11)) that

(8.3) Vaq (Pf) < Vvq(f),
where Py is the projector onto Si. Since ||f — Pyf||L,q) goes to zero as k tends

to infinity, it is sufficient to prove the result assuming that f isin Sk.
For such an f, and 0 < ¢ < 271, we define a tensor product grid

(8.4) re=rteri
where the univariate grid I'? is defined by
(85) rt:={0,13u{2*n+¢ n=0,...,2—1}U{2*n—¢ n=1,...,2.

The f is well defined at each point in I'.. Let f. be the the function which is
piecewise bilinear relative to I'. and interpolates f at each grid point in I'.. That
is f. is the unique continuous function, which is piecewise bilinear (i.e. of the
form a + bx + cy + dxy) on each rectangular patch defined by I'. and equa to f
onl..

One easily checks that by construction,

(8.6) Vq(fe) < Vvq(f).
On the other hand, it is clear that f. tendsto f in L»(Q) as e goes to zero. |

In view of Lemma 8.1, in going further, we can assume without loss of
generality that f is continuous and piecewise continuously differentiable on Q.
Then,

(87) Vi() :/K[|fx1| +Hll,

for any ring K. Therefore, v (K) := Vk (f) is set additive on rings, i.e. V (K1 U
K2) =V (K1) +V (K2) for any two digoint rings K; and Ko.
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THEOREM 8.1. For eachf € BV (Q) and each n > 1, we have

©9) () < 6 Vel

with C; = 36C} and C} := 480\/5 + 168/3.

Proof. We can assume that f is continuous and piecewise continuously dif-
ferentiable on Q. We can also assume that Vg () = 1 since the general case then
follows by scaling. We shall show that there is a set A, C D such that

(i) A <6-2"n=12,..,
(i) |a| <C2" 1 ¢ A,

where in (ii), ¢ is any of the three Haar coefficients associated to |. It is easy to
see that this implies (8.8).

We shall use constructions of trees similar to that in §6. We shall also use
the abbreviated notation Vv (S) := Vs(f) for any set Sin the algebra of rings.
Foreechm=1,2,..., let 7, denote the collection of all cubes| € D for which
V (1) > 2™ The cubes in 7, form atree. Note also that the tree 7p, is contained
in the tree 7m+1 and we can obtain 71 from 7y, by growing 7p,.

We shall give each cube | € D an index m(l) as follows. We consider the
four children Jj C I, i =1,2,3,4, of . We can write \V (J;) = 2~™*%  where my is
a nonnegative integer (or m = oo) and 0 < ¢ < 1. We define m(l) as the second
smallest of the four numbers m;. Another way to describe m(1) (when it is finite)
is that it is the smallest integer m such that | has at least two of its children in
Tm. Note also that if | hasindex mthen| € 7,,—1 and | has at least two children
in 7m. We have remarked in §6 that for any tree the number of branching cubes
(i.e. cubes with at least two children in the tree) does not exceed the number of
final cubes. Since the final leaves of 7y, are disjoint and on each final cube I,
V(1) > 2™, it follows that there are at most 2™ cubes | in D with index m.

We shall also define a distance between two dyadic cubesJ C |. Thisdistance
is the difference of the dyadic levelsof Jand I, i.e.

d(1,9) = (logy ] ~ log, 3

We fix n > 0 and define for all 0 < m < n the set Ay, consisting of
the cubes | in 7, which contain a cube J with index m = m(J) which satisfies
d(l,J) < 2(n — m). We thus have

(8.9) |Aml < [2(n—m)+1]2", m=0,1,...,n.
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Defining An := Ufj-oAm, it follows that

(8.10) IAn| < an 20— m)+12"<6-2"— 1,

m=0

so that (i) is satisfied.

To prove (ii), let | € D be acube not in A,. We consider two cases. The first
caseiswhen | ¢ 7p. Inthiscase V (I) < 2 ". Let (as before) a := a(f) be the
average of f on |. By Remark 4.2, we have for any of the three coefficients ¢,

G1) ol <] [(160—a)H(d < |f —aflup < V) <2 "

Hence, we have verified (ii) in this case.

Consider now the remaining case when | € 7,,. We define a chain of cubes
I =lpDI1D--- DI asfollows: given that I has been defined, we define Ij+1
as the child of I; in 7, on which f has largest variation. The chain terminates
when |, isafina leavein 7. Let Kj := Ij\ lj+1,) =0,...,r—1, and K := ;. The
three children J different from I, all satisfy v (J) < 2~ ™" 1t follows from
the additivity of v that

(8.12) V(K)<6-2™) j=0,...,r—1,
and
(8.12a) V(K)<4.27"

since each child of K, isnot in 7,.
We can now estimate any of the three Haar coefficients ¢, as follows. We
define

r
(813) g:= Z aKj(ij’
i=0
where
1
(8.14) ag = —— / £(x) dx.
K| Uk

We let H, denote the Haar functions associated to | and ¢;. Then,

(=}

/ FOOH (x) dx
lo

< ol ™2 [ 116 - g e+
|
=t

/I gOH; () dx
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We can estimate n; by using Theorem 4.1 and the Cauchy-Schwarz inequality.
This gives

r r
ol 2> IIf = gl < ol 2D~ [If — gl IKi1 Y2
j=0 j=0

r r
6v/3/10| 72V (K)IKj|Y? < 6v3 " 271 v (K)).

j=0 j=0

IN

m

IN

We now show a similar estimate for n,. Since g is a constant on each ring K; we
get

IN

r
- ||o|—1/2/||g<x)—aKo|dx:||o|—1/ZZ/K|g(x)—aKo|dx
1 i=1 7Ki

r r

]
ol /23" law; — ax,|IKj| < [lo] 23 IKiI D lak,, — a,, -
j:]_ ]=1 n=1

We now change the order of summation to find

r r

]
m2 < ol %Y lak, — ak, - D 1K < [lo] M2y fak, — ak,ylllal-
p=1 = p=1

For each 1, the set K := K, UK, _1 isaring and if a is the average of f over K,
then

IN

&, —ak, | < lak, —a +]ak, ; — 4

1 / 1
— f(x) —aldx+ f(x) — al dx
Kol Ji, | 1O ey, 1T~ 2

1
< W/K|f(x)—a|dx
oW
IKIY2IK| 7HIf — alliao < 6V3VBIKL| T2V (K).

IN

N

since [lo|~¥2|K,,|~Y2]1,,| < %2—“, we obtain

(8.15) 2 < 1253 (V(K,) + V(K1) 27
pn=1
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This together with the estimate of 71 and (8.12a) shows that

r—1
(8.16) a] < (18V5+6v3) Y 27V(K)) + (12V5 + 6V3)V(K,)
j=0
= 3OS+ (48V5 + 24v3)2",

k=0

where S consists of that portion of the sum on the left side of (8.16) correspond-
ing to the terms for which m(l;) =k, 0 < j <r — 1. Then, as we have shown
earlier in (8.12), V(Kj) <6- 2=k for each such j. Also, inthecaseof 0 < k < n,
l; is at a distance > 2(n — K) from | because of the definition of Ax and An.
Hence,

o0

(8.17) S < (108v5+36v3) Y 27K

v=2(n—k)+1

= (108V5+36v3)272™K  k=0,...,n.

On the other hand, we have, fork=n+1,n+2,.. .,

(8.18) S < (108v5+36V/3) i 27K = (108v/5 + 36v/3)2 7K1,

v=0
We now return to (8.16) to find, using (8.17) and (8.18),

n [e’e]
la| < (108V/5+ 36V/3) (Z 272k N 2k+1> +(48v/5+241/3)2° "
k=0 k=n+1
< (480v/5+168v/3)2 "

Thus, we have provided the desired estimate for these | as well. O

Remark 8.1. One can easily generalize Theorem 8.1 to higher dimension by
simply mimicking the proof: one obtains that if f € BV ([0,1]9) then its nor-
malized coefficients |12/2~9¢; are in ¢¥. This results only fails to be true in
dimension d = 1 (the characteristic function of [0, 1/3] constitutes a simple coun-
terexample). In this case the proof fails due to the possible lack of connectivity
of aring, which does not allow us to estimate the wavelet coefficients as in the
above proof.

Theorem 8.1 immediately yields a direct estimate for Haar thresholding. For
this, we define two nonlinear operators associated to the Haar decomposition. Let
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f have mean value zero on Q and f = >~ ¢ctHF. We define for e > 0

(8.19) Hef= > cfHf,

\Cf|>e
the thresholding of f at level ¢, and for each positive integer N

(8.20) onf= ) ofHf
(1L &CEN(f)

the best approximation of f from Z: the set Ex( f) contains the indices of the N
largest Haar coefficientscy of f. In the case of tiesin the size of the coefficientswe
make an arbitrary assignment to the set En(f) in order to remove the ambiguity.

THeEOREM 8.2. Iff € BV has mean value zero on Q, we have

(8.21) If — HefllLyg) < ColeVa (F)1Y2

and

(8.22) giegfw If = gllLa@) = IIf = GnF i@ < CaN“ 2 v (f),
N

with C, = 2,/C; and C3 = C4, with C; the constant of Theorem 8.1.

Proof. If € > Vg(f), then (8.21) and (8.22) follow trivialy from the embed-
ding theorem (Theorem 4.1 and Remark 4.2). We can therefore assume Vo( f) > €
in going further. For each n, let vy := v5( f) denote the nth largest Haar coefficient
of f in absolute value and for each k = 0,1,.. ., let A := {n: 7, < 27X}, We
then have

(8.23) If—H o = D%A=>. > 7%

neNg k>0 neA\Aksq
< 327N\ Awsal-
k>0

For each n € A¢ \ A1, We have v > 27%=1¢ and hence from Theorem 8.1,
Ak \ Ake1] < C1Vo (f)2K*1/e. Using thisin (8.23) we arrive at (8.21).
For (8.22), we have from Theorem 8.1,

If—GOnflle e = D 7 <Civo(f)? Y. n2<Civo(f)’N'L. O
n>N+1 n>N+1

9. Minimization of the K and U-functionals by Haar thresholding. We
shall now show that Haar thresholding provides near minimizers for (1.1) and
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(1.2). For this, we shall thus prove a stability result concerning the nonlinear
operators that we have introduced in the previous section.

THeorem 9.1. The operators Gy and H, satisfy for all ¢ > 0, N > 0 and
f € BV(Q),

(9.2) Vo (OnF) < Cavo (),
and
(9.2) Vo (Hef) < Cava (),

with C4 = 10 + 281/2(181/3 + C3) and Cs the constant of Theorem 8.2.

Proof. Clearly, it suffices to prove (9.1) since H.f = Gnf for some N = N(e).
Let g be a best approximation to f from Z§,. We can write g = Ppf with P the
partition associated to g. Recall that each element of X isin Z§y and also Gnf
isin Z§y. Therefore, we have

Vo (Onf) < VQ(9)+VQ(298NT -0)
< 10Vq(f)+ ﬁ(eN)l/anNf )

< 10Vq () +28V2NY[|[f - glliy * IIf — Gnf Ll

< [10+28v2(18V/3 + C3)] Vo (),

where we have used Theorem 5.1 to estimate Vg (g) and the inverse estimate
(3.9) for Zf§, as well as the direct estimates (6.21) and (8.22) in the estimate of

Vo(onf — ). O

Remark 9.1. The stability of the Haar thresholding is quite a surprising result
since the operation of discarding coefficientsis in general not uniformly stablein
BV (i.e. stable independently of the set of coefficients which is discarded). Also
in the proof of this result, we have made use of our approximation results for
Z}: amore direct proof of this stability is still to be found. Note that we also
have used decompositions into rings to prove that the Haar coefficients of a BV
function are in weak ¢*, leaving open the possibility of a more direct proof.

THEOREM 9.2. For each N > 1, and each f € L»(Q), we have
(9.3) If — GnFlla) + N2 Vo (Gnf) < CsK(f,N7Y2),

with C5 = (112% + 1)C3 + C4 with C3 the constant of Theorem 8.2 and C,4 the
constant of Theorem 9.1.
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Proof. Let g be any function in BV (Q). Since Gnf is the best N term ap-
proximation to f, we have

If —Onflll@ < NI — GngllLa
< |If = 9glla@ * 19 — NGl L@
< |If = gllLa@ + CaN~ Y2V (9),

where the last inequality uses Theorem 8.2. The function Gnf — Gng isin Z§y.
We can therefore use the Bernstein inequality (3.9) and Theorem 9.1 to obtain

N~Y2[Vq (Gnf — GnG) + Vo (GnO)]

56+/2 N
\/_“ng GndllL) + CaN Y2 Vg (9)

112V/2 _
5 If = 9ngl@ + CaN Y2vq(9)

112
S\[\[Ilf 9@ * \f{ 3+ CaONT2Vq (g).

N—1/2 Vo (Onf)

IN

IN

IN

Combining these two estimates, we obtain
(94) |If — Gnfll@ + N"Y2 Vo (Gnf) < CslIf — gll@ + N2 Vo (9)].
Taking an infimum over all g € BV (Q) gives (9.3). O

Our next result concerns the minimization of the U-functional, i.e. problem
(1.1). Asin the case of the Besov space B}(L;), a thresholding procedure, now
in the Haar system, yields the approximate minimizer.

THeorem 9.3. For each e > 0, and each f € L»(Q), we have
(9.5) If — He F 1,0 *+ €V (He(F)) < CeU(T, 6),

withCg = C4+ 1120% +4C; +2 and C; the constant of Theorem 8.2, C, the constant
of Theorem 8.2 and C, the constant of Theorem 9.1.

Proof. Let g be any function in BV (Q). We first remark that we have
(9.6) If = HeFlIE 0 < IIf — H2eOlIE )
Indeed, if the coefficient ¢, (f —Hf) = (f —Hf,H,) isnonzero, then necessarily

la(f)| <eandc(f—H,f)=c/(f). For this coefficient, we either have |c(g)| <
2¢, in which case

(9.7) a(f —Hef)=ca(f) =c(f - Hza0),
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or |c(g)| > 2¢, in which case
(9.8) lai(f —Hag)| = |ai(f) —c(9)| > e > [a(f —HF)).

In all cases the coefficients of f — Ho.g dominate those of f — H, f, so that (9.6)
holds. We thus have

A

(9.9) If — Hef e 0 < 20If = gllf,0 + 219 — HaedllE 0
< 2|If — glltq *+4C3¢ Va ().
where we have used (8.21) of Theorem 8.2.

We now estimate the variation of H.f as follows: using Theorem 9.1, we
obtain

(9.10) Vo (Hef) < Vo(Hef —Heg) + Vo (HeQ)
< Vo(Hef —Heg) +CaVa(9).

A

We are left with estimating the variation of H.f — H.g. For this, we write
(9.11) Hof —Heg=H[H S — Heg] + H[HF — Hcg],

where for a function h, H.h = h — H.h is the part of the Haar expansion of
h corresponding to the coefficients which satisfy |c(h)| < e. Using the inverse
estimate (3.4) of Remark 3.1 and then (9.9), we have

V(MM f —Hog)) < 8e Y Hef - HegllRy )

< 16€ M[Hf =l * If — HeOllE o)

< 166 1[2|If — g%, 0 + 4C2eVoa(9) + 2|If — g2
+ 2[|g - HEQHEZ(Q)]

16 4||f — 9|12, + 6[C2l’e Vo ()],

IN

where the last inequality again uses (8.21) of Theorem 8.2.

It remains to estimate the variation of ﬁE[HEf — 'H.q]. For this, we remark
that if 0 < |¢(Hef — HeQ)| < ¢, then necessarily |ci(g)| > e. In other words, if
we denote by Ng(e) the number of coefficients of g above the threshold ¢, we see
that H.[H. f — H.g] has at most Ng(e) nonzero coefficients. We can then use the
inverse estimate (3.1) of Theorem 3.1 to obtain

(9.12) VQ (H[Hef — Heg]) < 8INg()]Y2||He f — HeglL(@)-
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From Theorem 8.2, we have the estimate
(9.13) Ng(e) < Cae™ Vo (9).
Combined with (9.12), this gives

eVQ(HH f —Hegl) < 8[CreVq <g)]1l/2uHef — Mol
< 4e[C1Vq(9) +e T|Hef — Hegll 0]
< 4C1eVq(9) +8|If — Hef |2, + 8lIf — HedllZ, 0
< 4C1eVq(Q) + 16||f — g|If, ) +32C5¢ Vo (9)
+16|f — 9|12, + 16]19 — Hedl1E,0)
4C1€Vq (9) +32|f — g2, + 32C5¢ Vq (9)
+ 16C5€ Vo ()

< 32||f — g||Z, ) * (4C1 + 48CH)e Vo (0),

IN

where we have used (9.9) and (8.21) of Theorem 8.2.
Combining all our estimates we obtain

(9.14) If — Hef |20 + € Vo (He(F))
< 98|f — g||?,(q) + (Ca + 148C3 + 4C1)e Vq (0),

which gives (9.5) by taking the infimum over all g € BV. |

10. Interpolation spaces between L, and BV. As a by-product of our
results, we shall obtain several results concerning interpolation spaces between
L2(Q) and BV (Q). For each 0 < a < 1 and 0 < g < oo, let Ag(L2(Q)) denote
the set of functions f € L»(Q) such that

(10.1) | flaga@) = [(N“on(F)l gz < oo,

where on(f) = infgesy, I — 9llL(Q. Zn is any of the three families XY, Z|, or
=<, and with E;; the ¢4 norm with respect to Haar measure:

(Xre lan/9)Y9, 0< g < o,
SUP>1 [anl, q=oo.

@)l = {

Then, it follows from the Jackson and Bernstein estimates, which were proved
throughout the paper for these different families of approximation spaces, that

(102)  AG(L2A(Q) = (L2(Q), BV (Q)ag, 0<a <1, 0<g< o0,
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with equivalent norms, where (L2(Q), BV (Q))..q are the real interpolation spaces
for the pair (L2(Q), BV (Q)) (see[DL, Chapter 5] for the definition of interpolation
spaces and for the general mechanism relating these with approximation spaces,
through Jackson and Bernstein estimates).

Moreover, it was shown in [DP] that

(10.3) Ag (L2(Q) = (L2(Q), BE(L1(Q)) o

in the case of the particular family Z§;.
We thus obtain the following corollary to our results, where the second state-
ment exploits the known interpolation results for Besov spaces (see [T] or [DP1]).

CoroLLARY 10.1. We have

(104) (L2(Q),BV (Q)aq = (L2(Q), Bi(L1(Qag 0<a <1, 0<q< oo,

and in particular

(105) (L2(Q).BV (Qag =Bi(Le(Q), 0<a <1, 1/9=1/2+a/2.

We end by mentioning an application of Theorem 8.1 which is detailed in
[CMQ]. It exploits the fact that the ¢}’ property of the Haar coefficients of a BV
function can actually be generalized to the coefficients of the expansion in any
compactly supported wavelet basis (the proof of this fact is due to Yves Meyer
and can aso be found in [CMQ]). From this we can derive the interpolation result

(10.6) L%(Q) = (BV (Q), B3l (Q)1/22-

Indeed B}, is characterized by the /., norm of the wavelet coefficients. On
the other hand, we have proved that BV C B, where By is by definition
characterized by the ¢}’ quasi-norm of the wavelet coefficient. Since we also have
Bil C BV, the identity (10.6) simply follows by remarking that [{«, ¢1]1/22 and
[0, €111/2, are both identical to /.

In the dlightly different setting of homogeneous function spaces defined on

the whole R?, this results gives the inequality
(10.7) Iflle < CLIVE Ll g2 172,

which is an improvement on the classical Sobolev inequality ||f || .2 < C||Vf||.1.
Here we need to assume that f isin L' in order to exclude counter-examples such
as a constant function. The space B3, is defined in its homogeneous version,
i.e. the set generated by the second derivatives of the functions in the Zygmund
class BY, ...
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In particular the inequality (10.7) is more “robust” than the classical inequal-
ity under the action of oscillations: if f = fo(X)é“™ with fy a fixed compactly
supported smooth function, we see that the growth in |w| of |Vf|| 1 is compen-
sated by the decay in |w|~! of || V|1 .
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