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Abstract. The smoothness of the solutions of 1D scalar conservation laws is inves-11
tigated and it is shown that if the initial value has smoothness of order α in Lq with
α > 1 and q = 1/α, this smoothness is preserved at any time t > 0 for the graph of the13
solution viewed as a function in a suitably rotated coordinate system. The precise notion
of smoothness is expressed in terms of a scale of Besov spaces which also characterizes15
the functions that are approximated at rate N−α in the uniform norm by piecewise
polynomials on N adaptive intervals. An important implication of this result is that a17
properly designed adaptive strategy should approximate the solution at the same rate
N−α in the Hausdorff distance between the graphs.19

Keywords:

1. Introduction21

Solutions to hyperbolic equations derived from nonlinear conservation laws

∂tu + Divx[f(u)] = 0, u(x, 0) = u0(x), (1.1)23

may develop discontinuities even if the initial data is smooth. This well known
state of fact is the source of both theoretical difficulties — classical solutions should25

be replaced by weak solutions and side conditions need to be appended in order
to ensure their uniqueness — as well as numerical difficulties — conventional dis-27

cretization schemes may fail to converge and their convergence rate is in all cases
limited by the lack of smoothness of the solution. We refer the reader to [6, 7, 10]29

for a general introduction to conservation laws.
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In the case of scalar conservation laws, the classical theory developed by Kruzkov1

[8] ensures the uniqueness of an entropy solution u(x, t). This solution is also stable
in L1, i.e.,3

‖u(·, t) − v(·, t)‖L1 ≤ ‖u0 − v0‖L1 (1.2)

for two solutions u and v with initial data u0 and v0, and satisfies the BV diminishing5

property

‖u(·, t)‖BV ≤ ‖u0‖BV . (1.3)7

The BV boundedness plays a pivotal role in proving the convergence of numer-
ical methods and deriving convergence rates with respect to the mesh size. As9

already mentioned, these rates are inherently limited by the lack of smoothness:
the approximation uh of a function u by piecewise polynomials on a uniform mesh11

cannot converge in L1 with a rate better than O(h) when u has an isolated jump.
Adaptive methods offer a better compromise between error and number of13

degrees of freedom, especially when the solution is piecewise smooth with isolated
singularities. From approximation theory point of view these methods correspond15

to approximation from piecewise polynomials of a fixed degree on N intervals.
Note that this is a nonlinear set since the N intervals may vary with the func-17

tion being approximated and therefore this type of approximation is referred to
as nonlinear approximation. A precise description of those functions which can be19

approximated in L1 at rate N−α by such piecewise polynomial functions is given
by the Besov space Bα

q,q with 1/q = 1 + α, which consists of all functions u ∈ Lq21

such that

|u|qBα
q,q

:=
∫ ∞

0

[t−αωk(u, t)q]qdt/t < ∞, (1.4)
23

where k is an integer strictly larger than α and ωk(u, t)q := sup|h|≤t

∥∥∆k
hu
∥∥

Lq is the
kth order Lq modulus of smoothness. The norm in Bα

q,q is defined by25

‖u‖Bα
q,q

:= ‖u‖Lq + |u|Bα
q,q

. (1.5)

Roughly speaking, the functions in Bα
q,q have α derivatives in Lq. We refer to [2] as27

a general survey on nonlinear approximation.
In a series of papers [3, 4, 11], DeVore and Lucier have explored the smooth-29

ness properties of 1D scalar conservation laws using the above Besov spaces. They
have shown that for all α > 0, if the initial condition u0 belongs to Bα

q,q with31

1/q = 1 + α, then this property holds for the solution for all t > 0. The theo-
rem of DeVore–Lucier shows that the solutions of conservation laws have an arbi-33

trarily high order of smoothness α > 0 whenever the smoothness is measured
in Lq with 1/q = 1 + α, and therefore q < 1. From a numerical perspective,35

it also indicates that a properly designed adaptive strategy should approximate
the solution in L1 with an arbitrarily high rate of convergence with respect to37

the number of degrees of freedom. The proof of this theorem is based on the
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equivalence between smoothness and rate of nonlinear approximation, according1

to the following scheme:

1. The initial data u0 ∈ Bα
q,q is approximated at rate N−α by a piecewise polynomial3

function v0 on N intervals.
2. Then by the L1 stability (1.2) the solution u at time t > 0 is approximated at5

the same rate N−α by the solution v with initial value v0.
3. This rate of approximation allows to derive that u ∈ Bα

q,q.7

The main difficulty in this approach resides in the last step since it is no longer true
that v is a piecewise polynomial on N intervals.9

Since one of the goals of adaptive methods is to achieve uniformly accurate
approximation, one could hope for similar results with the L1 norm replaced by the11

uniform (L∞) norm as a measure of the error. However, such results are impossible
since there is no stability in the uniform norm due to the development of discon-13

tinuities. A natural alternative is to measure the closeness between solutions and
approximate solutions in the Hausdorff distance between their completed graphs, i.e.,15

d(u, v) = dH(Gu, Gv),

where Gf denotes the completed graph of the function f and17

dH(A, B) := max
{

sup
a∈A

inf
b∈B

|a − b|, sup
b∈B

inf
a∈A

|a − b|
}

denotes the Hausdorff distance between the sets A and B (with | · | denoting the19

Euclidean distance in R
2). Here the completed graph Gf of a function f is defined

as the minimal closed set in R
2 which contains the graph of f and is convex with21

respect to the y-direction, i.e., it is y-simple. It is easy to see that if f ∈ BV and
f(x−) ≤ f(x) ≤ f(x+) for every x, then to obtain Gf one has to add to the graph23

of f every segment in the plane connecting the points (x, f(x−)) and (x, f(x+)) at
every point x, where f is discontinuous (see [13]). The distance d(u, v) is a natural25

substitute for the L∞ distance for discontinuous functions for two reasons: on the
one hand it measures the closeness in L∞ in regions where one of the functions is27

smooth enough since one easily checks that

‖u − v‖L∞ ≤ d(u, v)[‖u′‖L∞ + 1]29

and on the other hand it measures how accurately a sharp transition in u is matched
in the x-direction by a sharp transition in v. In contrast to the L∞ norm, stability31

results in the Hausdorff metric are available from [1], where it was recently proved
that for 1D scalar conservation laws one has33

d(u, v) ≤ C(t)d(u0, v0) (1.6)

with C(t) ∼ 1 + t.35
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In this paper, we shall use these results to establish high order smoothness results1

on the graph of the solution viewed as a function in a suitably rotated coordinate
system. This approach is applicable in the case of strictly convex fluxes f , satisfying3

0 < m ≤ f ′′(u). (1.7)

In a case like this, we invoke the Oleinik inequality which ensures that the entropy5

solution u of (1.1) satisfies at time t > 0,

−∞ ≤ u′ ≤ 1
mt

. (1.8)7

This inequality ensures that the graph of u is the graph of a Lipschitz function ũ

in a suitably rotated coordinate system (which will be precisely specified in Sec. 3).9

In such a coordinate system the L∞ distance between two solutions is equivalent
to the Hausdorff distance between their graphs in the original coordinate system.11

This fact is illustrated in Fig. 1.
We shall prove that the function ũ can be approximated in L∞ by piecewise13

polynomials on N intervals at rate N−α, whenever u0 satisfies a similar property.
As it will be explained in Sec. 2, the set of functions which can be approximated in15
the uniform norm at rate (roughly) N−α with α > 1 by such piecewise polynomials
is given by the space17

B̃α :=
{
u ∈ W 1,1(R) :u′ ∈ Bα−1

q,q , q = 1/α
}
. (1.9)

The norm in B̃α is defined by19

‖u‖B̃α := ‖u‖L∞ + ‖u′‖Bα−1
q,q

. (1.10)

Notice that this space is slightly smaller than the Besov space Bα
q,q which may21

contain discontinuous functions if q < 1.
We next state our main result.23

Theorem 1.1. Assume that u0 is a compactly supported function which satisfies
u′

0 ≤ M . Then for all α > 1 and time t > 0, the rotated solution ũ satisfies25

‖ũ‖B̃α <∼ ‖u0‖B̃α + 1, (1.11)

where the constant in <∼ depends only on t and M .27

Fig. 1. Change of coordinate system.
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From numerical perspective, this result indicates that a properly designed adap-1
tive strategy should approximate the solution in the Hausdorff distance at an arbi-
trarily high rate with respect to the number of degrees of freedom.3

The paper is organized as follows: In Sec. 2, we give some preliminary results for
nonlinear approximation in L∞ and on the Hausdorff stability of conservation laws.5

Using these results, we develop in Sec. 3 the strategy of DeVore–Lucier from [3, 4],
namely, we construct approximate solutions which approximate the true solution7

at rate N−α in the Hausdorff metric, and as a consequence in L∞ with respect
to the rotated coordinate system. The “return ticket” which allows to derive the9

smoothness of ũ from the approximation rate relies on inverse estimates which are
the objective of Sec. 4.11

2. Preliminary Results

2.1. Nonlinear piecewise polynomial approximation13

For a fixed compact interval I and a positive integer k, let us denote by Σn the set
of all piecewise polynomials of degree not exceeding k with no more than 2n pieces15

on I. Then for a given u ∈ Lp(I)(0 < p ≤ ∞) the error of best Lp approximation
to u from Σn is defined by17

σn(u)p := inf
S∈Σn

‖u − S‖Lp . (2.1)

If some Sn realizes this infimum, it is said to be a best Lp approximation to u from19

Σn. We find useful the notion of a near-best approximation, that corresponds to
‖u − Sn‖Lp ≤ Cσn(u)p for some constant C ≥ 1 independent of n and u.21

In order to describe the approximation rate, it is convenient to introduce the
approximation space Aα

q (Lp), defined as the set of all functions u ∈ Lp such that23

‖u‖Aα
q (Lp) :=

( ∞∑
n=−1

[ 2nασn(u)p ]q
)1/q

(2.2)

is finite. Here we use the convention Σ−1 = {0}, so that σ−1(u)p := ‖u‖Lp. Clearly25

Aα∞(Lp) is the set of functions which are approximated in Lp by piecewise poly-
nomials with accuracy O(2−nα) and Aα

q (Lp) is a slight variation of this set since27

Aα+ε∞ (Lp) ⊂ Aα
q (Lp) ⊂ Aα∞(Lp) for any ε > 0. We also recall that if σn(u)p → 0

as n → ∞, one obtains an equivalent norm in Aα
q (Lp) by replacing σn(u)p by29

‖Sn+1 − Sn‖Lp , where Sn is a near-best approximation to u from Σn. Indeed,
clearly ‖Sn+1 − Sn‖Lp <∼ σn+1(u)p + σn(u)p with a constant independent of n.31

On the other hand, Sn converges to u in Lp and hence ‖u− Sn‖Lp can be bounded
by
∑

n′≥n ‖Sn′+1 − Sn′‖Lp , and we complete the argument by the discrete Hardy33

inequality.
Since the work of DeVore and Popov [5], it is known that when α < k+1, Aα

q (L1)35

coincides with the Besov space Bα
q,q with 1/q = 1 + α and they have equivalent

norms. In this paper, we are interested in piecewise polynomial approximation of37
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continuous functions in the uniform norm. In this context, Σn is redefined as the1

set of all continuous piecewise polynomials of degree ≤ k with no more that 2n

polynomial pieces. This type of approximation is studied by Petrushev in [12],3

where the following Jackson and Bernstein estimates are established:

σn(u)∞ <∼ 2−βn‖u′‖Bβ−1
r,r

(2.3)5

and

u ∈ Σn ⇒ ‖u′‖Bβ−1
r,r

<∼ 2βn‖u‖L∞, (2.4)7

with 1 < β < k + 1 and r = 1/β. These estimates are the classical vehicle for
characterizing the approximation spaces Aα

q (L∞) for 0 < α < β in terms of the real9

interpolation spaces (L∞, B̃β)α
β ,q, where

B̃β :=
{
u : u′ ∈ Bβ−1

r,r , r = 1/β
}
. (2.5)11

In the following, we shall prove directly that Aα
q (L∞) in fact coincides with B̃α for

1 < α < k +1. As already mentioned, B̃α is slightly smaller than Bα
q,q and does not13

contain discontinuous functions.

Lemma 2.1. We have Aα
q (L∞) = B̃α, q = 1/α, with equivalent norms.15

Proof. Assume that u ∈ Aα
q (L∞) and denote by Sn (n ≥ 0) a near-best L∞ appro-

ximation to u from Σn. We consider the discontinuous piecewise polynomial Tn :=17

S′
n of degree k−1 as an approximation to u′. Note that any polynomial S of degree

k satisfies19

‖S′‖L1([a,b]) ≤ C‖S‖L∞([a,b]),

where the constant C depends on k, but is independent of the interval [a, b] by21

a scaling argument. Since Tn − Tn−1 is a piecewise polynomial on at most 3
22n

intervals Ij , we have23

‖Tn − Tn−1‖L1 ≤
∑

j

‖Tn − Tn−1‖L1(Ij)
<∼ 2n‖Sn − Sn−1‖L∞ .

This gives25

∞∑
n=−1

[ 2n(α−1)‖Tn − Tn−1‖L1 ]q <∼ ‖u‖q
Aα

q (L∞),

which in turn shows that Tn converges to an L1 function which is necessarily u′. It27

follows that

‖u′‖Aα−1
q (L1)

<∼ ‖u‖Aα
q (L∞)29

and therefore, according to the result of [5] for piecewise polynomial approximation
in L1,31

‖u′‖Bα−1
q,q (L1)

<∼ ‖u‖Aα
q (L∞).
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Now since ‖u‖L∞ ≤ ‖u‖Aα
q (L∞), then1

‖u‖B̃α <∼ ‖u‖Aα
q (L∞).

For the estimate in the other direction, let us assume that u ∈ B̃α. Then u′ ∈3

Bα−1
q,q with 1/q = 1 + (α − 1), and due to the result of [5] for piecewise polynomial

approximation in L1, there exists a sequence (Tn)n≥−1 of piecewise polynomials of5

degree k − 1 with T−1 = 0 such that Tn converges to u′ in L1 and
∞∑

n=−1

2(α−1)qn‖u′ − Tn‖q
L1 <∼ ‖u′‖q

Bα−1
q,q

.
7

Clearly, there is a subdivision with at most 2n+1 intervals Ij such that Tn is a
polynomial on each of them and9

‖u′ − Tn‖L1(Ij) ≤ 2−n‖u′ − Tn‖L1 .

On each interval Ij = [aj , bj ], we define11

Pn+1(x) := u(aj) +
∫ x

aj

Tn(s)ds (2.6)

and further modify Pn+1 into13

Sn+1(x) := Pn+1(x) + (u(bj) − Pn+1(bj))
x − aj

bj − aj
. (2.7)

Thus the resulting Sn+1 is in Σn+1. On each Ij , we clearly have15

|u(x) − Pn+1(x)| ≤ ‖u′ − Tn‖L1(Ij) ≤ 2−n‖u′ − Tn‖L1

and hence17

|u(bj) − Pn+1(bj)| x − aj

bj − aj
≤ 2−n‖u′ − Tn‖L1 .

Consequently,19

‖u − Sn+1‖L∞ ≤ 2−n+1‖u′ − Tn‖L1 ,

which implies21

‖u‖q
Aα

q (L∞)
<∼ ‖u‖q

L∞ + ‖u′‖q

Aα−1
q (L1)

.

Now invoking the result of [5] for piecewise polynomial approximation in L1, we23

conclude

‖u‖Aα
q (L∞) <∼ ‖u‖B̃α.25

The proof is complete.

In the second part of the proof of Lemma 2.1, we constructed the approximation27

Sn+1 to u by using that Tn approximates u′ (see (2.6)–(2.7)). For future use, it will
be useful to construct Sn so that if u′ ≤ M , then Sn also satisfies S′

n ≤ M . To this29
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end, we slightly modify the above construction as is described in the following. Once1

the intervals Ij are determined, we define on each of them a new approximation
Rn+1 to u′ as the orthogonal projection of u′ onto the polynomials of degree k − 1,3

namely, Rn+1 is defined on each Ij so that∫
Ij

[Rn+1(x) − u′(x)]xνdx = 0, ν = 0, . . . , k − 1.
5

Since this orthogonal projection is a near-best L1 approximation, we have

‖u′ − Rn+1‖L1(Ij) <∼ ‖u′ − Tn‖L1(Ij).7

Inside Ij , there are at most [k/2 + 1] disjoint intervals on which Rn+1(x) > M . On
each of them we replace Rn+1 by the constant M and on the remaining part Ĩj of9

Ij we modify Rn+1 as M − c(M −Rn+1), where c ensures that the integral of Rn+1

on Ij remains unchanged. Note that since this integral is11 ∫
Ij

Rn+1 =
∫

Ij

u′ ≤ M |Ij |,

then the constant13

c :=

∫
Ij

[M − Rn+1]∫
Ĩj

[M − Rn+1]

is necessarily in [0, 1] and consequently M − c(M −Rn+1) ≤ M on Ĩj . The resulting15

function Un+a has at most 2n+a pieces with a = 1+[log2 k] and satisfies Un+a ≤ M

everywhere. We finally remark that this modification can only improve the L117

approximation error on Ij . Indeed, on the one hand

‖u′ − Un+a‖L1(Ij\Ĩj)
≤ ‖u′ − Rn+1‖L1(Ij\Ĩj)

−
∫

Ij\Ĩj

[Rn+1 − M ]
19

and on the other hand

‖u′ − Un+a‖L1(Ĩj)
= ‖u′ − M − c(Rn+1 − M)‖L1(Ĩj)

≤ ‖u′ − Rn+1‖L1(Ĩj)
+ (1 − c)‖M − Rn+1‖L1(Ĩj)

= ‖u′ − Rn+1‖L1(Ĩj)
+

(∫
Ĩj

[M − Rn+1] −
∫

Ij

[M − Rn+1]

)

= ‖u′ − Rn+1‖L1(Ĩj)
+
∫

Ij\Ĩj

[Rn+1 − M ].
21

Therefore

‖u′ − Un+a‖L1(Ij) ≤ ‖u′ − Rn+1‖L1(Ij)
<∼ ‖u′ − Tn‖L1(Ij). (2.8)23

We now define Sn+a ∈ Σn+a on each interval Ij by

Sn+a(x) := u(aj) +
∫ x

aj

Un+a(s)ds. (2.9)
25
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The continuity of Sn+a is ensured since by construction
∫

Ij
Un+a =

∫
Ij

u′ and we1

clearly have S′
n+a ≤ M . We complete the argument as in the proof of Lemma 2.1,

namely, we have3

‖u − Sn+a‖L∞ <∼ 2−n‖u′ − Tn‖L1

and hence5

‖u‖Aα
q (L∞) ≤

( ∞∑
n=−1

[2nα‖u − Sn‖L∞ ]q
)1/q

<∼ ‖u‖B̃α, (2.10)

where Sn := 0 for −1 ≤ n < a.7

2.2. Hausdorff stability and rotated graphs

In [1], it was proved that scalar conservation laws are stable in the Hausdorff metric9

d(·, ·) with respect to perturbations of the initial condition. More precisely, if u and
v are solutions of (1.1) with initial values u0 and v0, and if for some M > 0 the11

initial condition u0 satisfies

u′
0 ≤ M or u′

0 ≥ −M, (2.11)13

then we have

d(u, v) ≤ C(t)d(u0, v0), t > 0, (2.12)15

with C(t) ∼ 1 + M(1 + t). A stability result is also established with respect to a
perturbation of the flux function: If u and v are solutions of (1.1) with initial value17

u0 and fluxes f and g, respectively, then at time t > 0, we have

d(u, v) ≤ C(t)‖f ′ − g′‖L∞ (2.13)19

with C(t) ∼ 1 + t. These two results can be combined, namely, if u and v are
solutions of (1.1) with initial value u0 and v0 and fluxes f and g, and if u0 satisfies21

(2.11), then

d(u, v) ≤ C(t)[d(u0, v0) + ‖f ′ − g′‖L∞ ] (2.14)23

with C(t) ∼ 1 + M(1 + t).
As already explained in the introduction, our main idea is to employ the Oleinik25

inequality (1.8) to replace the Hausdorff distance by the L∞ distance in a suitably
rotated coordinate system. Indeed, assuming that u satisfies (1.8), it is readily27
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seen that the graph of u is also the graph of a Lipschitz function ū in the rotated1

coordinate system defined by {
x̄ = cx − sy

ȳ = sx + cy
(2.15)

3

with c := cos θ, s := sin θ, θ ∈ [0, π/2[ such that

τ := s/c = tan θ = mt/2. (2.16)5

One can indeed readily check that

−τ−1 ≤ ū′(x̄) ≤ 2τ + τ−1. (2.17)7

Clearly, the rotated solution ū is not compactly supported since it coincides with
the function ȳ = τx̄ outside the region corresponding to the support of u. In order9

to preserve the compactness of the support, we modify ū by setting

ũ := ū − τx̄. (2.18)11

Thus the new coordinate system is{
x̃ = x̄ = cx − sy

ỹ = c−1y.
(2.19)

13

If u is supported on I(t) = [a(t), b(t)], then ũ is supported on Ĩ(t) = [ca(t), cb(t)].
Clearly, we still have a Lipschitz bound15

|ũ(x̃) − ũ(ỹ)| ≤ ν|x̃ − ỹ| (2.20)

with17

ν := τ + τ−1. (2.21)

We also remark that if u ∈ BV , then ũ ∈ BV , and19

|ũ|BV (Ĩ) ≤ c−1 |u|BV (I) (2.22)

which follows immediately from the definition of the total variation:21

|u|BV := sup
n∑

i=1

|u(xi) − u(xi−1)|,

where the supremum is taken over all selections of points x0 < · · · < xn in the sup-23

port of u.
It is easy to see that if ũ and ṽ are obtained from u and v by such a change of25

the coordinate system, then

‖ũ − ṽ‖L∞ = ‖ū − v̄‖L∞ ≤ (1 + ν)d(ū, v̄) = (1 + ν)d(u, v)27

and in the other direction,

d(u, v) = d(ū, v̄) ≤ ‖ū − v̄‖L∞ = ‖ũ − ṽ‖L∞ .29

Therefore, the Hausdorff distance between two solutions is equivalent to the L∞

distance between the rotated solutions. In particular, if u and v are solutions of31
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(1.1) with initial values u0 and v0 and fluxes f and g, and if u0 satisfies (2.11), then1

we have

‖ũ − ṽ‖L∞ ≤ C(t)[‖u0 − v0‖L∞ + ‖f ′ − g′‖L∞ ] (2.23)3

with C(t) ∼ ν[1 + M(1 + t)].

3. Proof of the Regularity Theorem5

The proof of Theorem 1.1 relies on an approximation procedure by piecewise alge-
braic functions which stay close to the solution u in the Hausdorff metric for all7

t > 0. As shown above, this stability will hold in L∞ in the coordinate system (2.19).

3.1. Approximate solutions9

Assuming that u0 ∈ B̃α satisfies u′
0 ≤ M , let Sn be the L∞ approximation to u0

defined in (2.9). We recall that Sn is made up of at most 2n polynomial pieces of11

degree ≤ k with k > α − 1 and that it satisfies

S′
n ≤ M. (3.1)13

We also observe that since S′
n = Un is a near-best L1 approximation of u′

0, then

‖S′
n‖L1 ≤ C‖u′

0‖L115

for some constant C and therefore

‖Sn‖BV ≤ C‖u0‖BV . (3.2)17

Notice that Sn is not necessarily a near-best L∞ approximation to u0. However,
(2.10) guarantees that it is good enough for our purposes. Clearly, there is an interval19

Ω (whose size may depend on ‖u0‖BV ) such that u0(x) and Sn(x) belong to Ω for
any x.21

We next approximate the flux function. Assume that f ∈ C2 and f is strictly
convex, so that there exist two constants m and m̄ such that23

0 < m ≤ f ′′ ≤ m̄ on Ω.

We also assume that f belongs to W r+1,∞(Ω). Then by a classical spline approx-25

imation result, there exists an r − 1 times continuously differentiable piecewise
polynomial function gn of degree ≤ r with uniform knots at the points j2−n, j ∈ �,27

such that∥∥f (l) − g(l)
n

∥∥
L∞(Ω)

≤ C2−n(r+1−l)‖f (r+1)‖L∞(Ω) for l = 0, . . . , r. (3.3)29

Changing slightly the constants m and m̄, we may assume that the functions gn

also satisfy31

0 < m ≤ g′′n ≤ m̄ on Ω. (3.4)

We now define sn as the entropy solution at time t of (1.1) with initial value Sn33

and flux gn, and denote it by s̃n in the coordinate system (2.19). Before going any
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further, we observe that our stability result (2.23) combined with (3.3) guarantee1

that

‖ũ − s̃n‖L∞ ≤ C(t)[‖u0 − Sn‖L∞ + 2−nr] (3.5)3

as well as

‖s̃n+1 − s̃n‖L∞ ≤ C(t)[‖Sn+1 − Sn‖L∞ + 2−nr]. (3.6)5

Therefore, s̃n approximates ũ with the same rate as Sn approximates u0, up to an
additional term 2−nr. In the following, we assume that α + 1 < r. In particular, we7

can set r := k + 2.

3.2. Structure of the approximate solutions9

We recall that a function y := y(x) is said to be algebraic on an interval J if there
exists a polynomial F in two variables such that F (x, y(x)) = 0 for x ∈ J . We shall11

now describe the structure of the approximate solutions s̃n in terms of particular
algebraic pieces (y, J).13

Lemma 3.1. There exists a partition of the support of s̃n into O(2n) intervals such
that on each interval J, the function s̃n coincides with an algebraic piece (y, J) of15

one of the following two types:

Type I: y satisfies ‖y′‖L∞(J) ≤ ν and the algebraic equation17

R(T (x)) = y(x) + νx, x ∈ J, (3.7)

where ν is defined in (2.21), T (x) := y(x) + νx − Q(y(x)), and R and Q are19

algebraic polynomials of degrees k(r − 1) and r − 1, satisfying

(A1) 2 ≤ Q′ ≤ c1 on y(J),
(A2) 0 < R′ ≤ c2 on T (J),21

for two constants c1 and c2.

Type II: y satisfies23

y(0) = y(x) + νx, x ∈ J, (3.8)

i.e., s̃n is affine on J with slope −ν.25

Proof. Following DeVore–Lucier [4], we begin by introducing two special types
of points. First, let {ai}0≤i≤A denote the knots of Sn, that is, the points where27

Sn changes from one polynomial piece to another. By construction, A ≤ 2n.
Then let {bi}0≤i≤B denote the isolated points such that Sn(bi) is a knot of29

gn, that is, Sn(bi) = j2−n for some j. To count them, we shall denote by
{b̃i}0≤i≤B̃ all bj ’s such that Sn(bj−1) = Sn(bj) and we denote the remain-31

ing ones by {b̄i}0≤i≤B̄. Now, we have Var[b̄i, b̄i+1](Sn) ≥ 2−n for each i,
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hence ‖Sn‖BV ≥∑B̄−1
i=0 Var[b̄i,b̄i+1](Sn) ≥ B̄ 2−n and we infer from (3.2) that1

B̄ <∼ ‖u0‖BV 2n. On the other hand, if Ij is an interval where Sn coincides with
the polynomial Pj , P ′

j should vanish at least once in each [b̃i, b̃i+1] ⊂ Ij . Since P ′
j3

is of degree not exceeding k and by definition there are no second type points in Ij

when Pj is a constant, we see that B̃ is of order O(2n), and so is B.5

In [9], Lax shows that if the initial data Sn is continuous and the flux function
gn is strictly convex, the entropy solution sn of (1.1) satisfies7

sn(x, t) = Sn(z), where z := z(x, t) is a solution of
x − z

t
= g′n(Sn(z)).

There may be many solutions of this equation, but a minimization property picks9

a specific value z(x, t). Lax shows that z(x, t) is an increasing function of x for a
fixed t. Shocks occur wherever z(x, t) is discontinuous in x. If we denote by σi the11

positions of these shocks and set z−i := z(σ−
i , t) and z+

i := z(σ+
i , t), this means that

the function13

S: z → z + t g′n(Sn(z)) (3.9)

is increasing on each interval [z+
i , z−i+1], while S(z−i ) = S(z+

i ) = σi. From our15

previous discussion, we can describe S as O(2n) polynomial pieces of degree at most
k(r−2), so it follows that there cannot be more than O(2n) shocks. In addition, we17

see that there is a partition {I0
i }1≤i≤C 2n such that S is an increasing polynomial

on each interval I0
i and satisfies19

sn(S(z)) = Sn(z), z ∈ I0
i (3.10)

(here sn is multivalued at the shocks), while the intervals It
i := S(I0

i ) recover R and21

overlap only at the boundaries. Writing x = S(z), this leads to

S(x − t g′n(sn(x))) = x, x ∈ It
i . (3.11)23

Finally, we observe that in the coordinate system (2.19), each algebraic piece
(sn, It

i ) becomes a piece of Type I, while the shocks become pieces of Type II, as25

is seen from Fig. 1. Indeed, let us fix i and let P and Q denote the polynomials
coinciding with c−1Sn(s ·) and s−1tg′n(c ·) on s−1I0

i and c−1Sn(I0
i ) respectively.27

Define also R := Id + Q ◦ P the polynomial which coincides with s−1S(s ·) on
s−1I0

i . After a little algebra, in the new coordinate system, (3.11) becomes29

R(s̃n(x̃) + νx̃ − Q(s̃n(x̃))) = s̃n(x̃) + νx̃,

which gives (3.7) with J := Ĩt
i . Then31

Q′ =
t

τ
g′′n(c ·) and R′ = 1 + t g′′n(Sn(s ·))S′

n(s ·),

and hence (A1)–(A2) follow readily from (3.4) and (3.1) with c1 = 2m̄/m and33

c2 = 1 + tm̄M .
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3.3. An inverse estimate1

According to Lemma 3.1, each difference s̃n − s̃n−1 is made of O(2n) algebraic
pieces (A, J) which are differences of pieces of first or second type. Following DeVore3

and Lucier [4, Lemma 4.2], we can further split these pieces in order to obtain a
partition consisting of O(2n) pieces (A, J), each of them monotone together with5

all its derivatives of order ≤ k+1. We next state an inverse estimate for such pieces
which will allow to complete the proof of Theorem 1.1.7

Lemma 3.2. If (A, J) is an algebraic piece of s̃n − s̃n−1, then

‖A′ · �J‖Bα−1
q,q

<∼ ‖A‖L∞(J) + 2−(r−1)n (3.12)9

with a constant independent of n.

This inverse estimate has a delicate proof which will be given in Sec. 4.11

From (3.12), we next deduce an inverse inequality for the functions s̃n − s̃n−1.
Assuming that {(Ai, Ji)}1≤i≤C 2n is a subdivision of s̃n− s̃n−1 into algebraic pieces,13

we observe that the continuity of each s̃n yields

s̃′n − s̃′n−1 =
C2n∑
i=1

A′
i · �Ji .

15

Therefore, using the q-triangle inequality for Bα−1
q,q , we have

‖s̃′n − s̃′n−1‖q

Bα−1
q,q

≤
C2n∑
i=1

‖A′
i�Ji‖q

Bα−1
q,q

<∼
C2n∑
i=1

[‖Ai‖L∞(Ji) + 2−n(r−1)]q

<∼ 2n‖s̃n − s̃n−1‖q
L∞ + 2−n((r−1)q−1)

(3.13)

17

and using (3.6), it follows that

‖s̃′n − s̃′n−1‖q

Bα−1
q,q

<∼ 2n‖Sn+1 − Sn‖q
L∞ + 2−n((r−1)q−1).19

From (3.5), it also appears that ũ can be decomposed into a telescopic sum

ũ =
∞∑

n=0

s̃n − s̃n−1.
21

Then applying again the q-triangle inequality, we obtain

‖ũ′‖q

Bα−1
q,q

≤
∞∑

n=0

‖s̃′n − s̃′n−1‖q

Bα−1
q,q

<∼
∞∑

n=0

[
2n‖Sn − Sn−1‖q

L∞ + 2−n((r−1)q−1)
]

<∼ ‖u0‖q

B̃α
+ 1,23

where we used our assumption r − 1 > α = 1/q. The proof of Theorem 1.1 is thus
complete except for the proof of Lemma 3.2.25
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4. Proof of the Inverse Estimate1

In this section, n is a fixed positive integer and (A, J) denotes an algebraic piece of
s̃n − s̃n−1.3

4.1. An intermediate estimate

In order to prove Lemma 3.2, we first establish the following intermediate inverse5

inequality.

Lemma 4.1. If (A, J) is an algebraic piece of s̃n − s̃n−1, then7

‖A′‖L∞(J) <∼ |J |−1
(‖A‖L∞(J) + 2−(r−1)n

)
(4.1)

with a constant independent of n.9

Proof. Let y(x) and ȳ(x) denote the algebraic pieces of s̃n and s̃n−1 on the interval
J . Several cases are possible, depending on whether y and ȳ are of Type I or Type II.11

However, we observe that there is nothing to prove when y and ȳ are both of Type II.
Thus we can always assume that y is of Type I and set13

Θ(x) := 1 − R′(T )(1 − Q′(y)).

We begin by establishing the equivalences15

|Θ(x)| ∼ 1, x ∈ J, (4.2)

and17

|T (J)| ∼ |J | (4.3)

with constants of equivalence independent of n.19

For the proof of (4.2), we first see using (A1)–(A2) that ‖Θ‖L∞(J) ≤
1 + c2(1 + c1). In the other direction, differentiating both sides of (3.7) and the21

expression for T (x) with respect to x yields

R′(T )T ′(x) = y′(x) + ν (4.4)23

and

T ′(x) = ν − y′(x)[Q′(y) − 1]. (4.5)25

Hence

y′(x)Θ(x) = ν[R′(T ) − 1]. (4.6)27

Let J+ := {x ∈ J ; |1−R′(T )| ≥ 1/2} and J− := J\J+. If x ∈ J+, then |y′(x)Θ(x)| ≥
ν/2, and using |y′(x)| ≤ ν it follows that |Θ(x)| ≥ 1/2. In the case when x ∈ J−,29
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we infer from the positivity of R′(T ) on J that 1/2 > 1−R′(T ), and using (A1), it1

follows that

|Θ(x)| ≥ R′(T )Q′(y) − |1 − R′(T )|
≥ (1/2)Q′(y) − 1/2
≥ 1/2.3

Hence |Θ(x)| ≥ 1/2 for x ∈ J and the proof of (4.2) is complete.
We turn to the proof of (4.3). From (4.5), it is clear that ‖T ′‖L∞(J) ≤ ν(2+ c1).5

To bound T ′(x) from below, suppose first that y′(x) ≥ 0. Then (4.4) together with
(A2) yields T ′(x) ≥ ν/c2. If y′(x) ≤ 0, then (4.5) along with (A1) implies T ′(x) ≥ ν,7

and (4.3) follows.
We recall the following classical inequalities, valid for arbitrary intervals G, G′9

such that G ⊂ G′, and a polynomial P of degree ≤ l:

(P1) ‖P‖L∞(G′) ≤ C

( |G′|
|G|

)l

‖P‖L∞(G),

(P2) ‖P′‖L∞(G) ≤ C|G|−1‖P‖L∞(G).11

We now consider the case where ȳ is of Type II. By (4.6), (4.2) and (3.8), we
have13

‖y′ − ȳ′‖L∞(J) = ν‖Θ−1(R′(T ) − 1) + 1‖L∞(J)

= ν‖Θ−1R′(T )Q′(y)‖L∞(J)

<∼ ‖R′(T )‖L∞(J)

<∼ ‖R′‖L∞(T (J))

<∼ |T (J)|−1‖R − ȳ(0)‖L∞(T (J))

<∼ |J |−1‖R(T )− ȳ(0)‖L∞(J)

<∼ |J |−1‖y − ȳ‖L∞(J),

which proves the lemma in this case. Here the first inequality is again (4.2) together15

with (A1), the third one is (P2), the fourth one is (4.3), and the last one is (3.7)
together with (3.8).17

Let now y and ȳ be both of Type I. We use (4.6), (4.2) and (A2) to obtain

‖y′ − ȳ′‖L∞(J) = ν ‖(Θ Θ̄)−1[Θ̄(R′(T ) − 1) − Θ(R̄′(T̄ ) − 1)]‖L∞(J)

<∼ ‖Θ̄(R′(T ) − 1) − Θ(R̄′(T̄ ) − 1)‖L∞(J)

<∼ ‖R′(T ) − R̄′(T̄ )‖L∞(J) + ‖Θ − Θ̄‖L∞(J).

(4.7)
19

Therefore, the lemma will follow if we establish the estimates:

‖R′(T ) − R̄′(T̄ )‖L∞(J) <∼ |J |−1[‖y − ȳ‖L∞(J) + 2−rn] (4.8)21

and

‖Θ − Θ̄‖L∞(J) <∼ |J |−1[‖y − ȳ‖L∞(J) + 2−(r−1)n]. (4.9)23
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To this end, we need the following estimates:1

(i) ‖Q(y) − Q̄(ȳ)‖L∞(J) <∼ ‖y − ȳ‖L∞(J) + 2−rn,

(ii) ‖Q′(y) − Q̄′(ȳ)‖L∞(J) <∼ ‖y − ȳ‖L∞(J) + 2−(r−1)n,

(iii) ‖T − T̄‖L∞(J) <∼ ‖y − ȳ‖L∞(J) + 2−rn.

(4.10)

Proof of (4.10) (i). Let us denote Qe := s−1tg′n(c ·). Then3

‖Q(y) − Q̄(ȳ)‖L∞(J) ≤ ‖Q(y) − Qe(ȳ)‖L∞(J) + ‖Qe(ȳ) − Q̄(ȳ)‖L∞(J).

It follows from (3.4) that5

‖Q(y) − Qe(ȳ)‖L∞(J) ≤ 2m̄

m
‖y − ȳ‖L∞(J)

and since Q̄ coincides with s−1tg′n−1(c ·) on ȳ(J), we infer from (3.3) that7

‖Qe(ȳ) − Q̄(ȳ)‖L∞(J) <∼ 2−nr.

Proof of (4.10) (ii). The same argument can be applied here since (3.3) implies9

in particular that
∥∥g(3)

n

∥∥
L∞(Ω)

is bounded independantly of n as long as r ≥ 2.

Proof of (4.10) (iii). By (4.10) (i), we have11

‖T − T̄‖L∞(J) ≤ ‖y − ȳ‖L∞(J) + ‖Q(y) − Q̄(ȳ)‖L∞(J)

<∼ 2−nr + ‖y − ȳ‖L∞(J).

Proof of (4.8). Assume first that T (J) ∩ T̄ (J) = ∅ and without loss of generality,13

that a := sup(T (J)) < inf(T̄ (J)). We extend R by setting Re(x) = R(a) + (x −
a)R′(a) for x ≥ a. Then15

‖R′(T ) − R̄′(T̄ )‖L∞(J) ≤ ‖R′(T ) − R′
e(T̄ )‖L∞(J) + ‖R′

e(T̄ ) − R̄′(T̄ )‖L∞(J).

Since R′
e(T̄ ) is a constant over J , we have17

‖R′(T ) − R′
e(T̄ )‖L∞(J) ≤ ‖R′′‖L∞(T (J))|T (J)|

<∼ ‖R′‖L∞(T (J))

<∼ 1
<∼ |J |−1‖T − T̄ ‖L∞(J).

(4.11)

Here the second inequality is (P2), the third inequality is (A2), and for the latter19

inequality, we note that since T (J) and T̄ (J) are disjoint, then using (4.3),

|J | ∼ min(|T (J)|, |T̄ (J)|) ≤ ‖T − T̄‖L∞(J).21

On the other hand, Re− R̄ is a polynomial over T̄ (J) and hence we can apply again
(P2) and (4.3) to obtain23

‖R′
e − R̄′‖L∞(T̄ (J))

<∼ |J |−1‖Re − R̄‖L∞(T̄ (J))

<∼ |J |−1[‖Re(T̄ ) − R(T )‖L∞(J) + ‖R(T )− R̄(T̄ )‖L∞(J)]
<∼ |J |−1[‖T − T̄‖L∞(J) + ‖y − ȳ‖L∞(J)],

where we used (A2) and (3.7) for the latter estimate. Together with (4.11) and25

(4.10) (iii), this proves (4.8) in the case where T (J) and T̄ (J) are disjoint.
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Let T (J) ∩ T̄ (J) = ∅ and set K := T (J) ∪ T̄ (J). By (4.3), K is an interval of1

length O(|J |). Applying (P1) and (P2), we obtain

‖R′‖L∞(K) <∼ ‖R′‖L∞(T (J)) <∼ 13

and

‖R′′‖L∞(K) <∼ |J |−1.5

We then have

‖R′(T ) − R′(T̄ )‖L∞(J) <∼ |J |−1‖T − T̄‖L∞(J)7

and also

‖R′ − R̄′‖L∞(T̄ (J))
<∼ |J |−1‖R − R̄‖L∞(T̄ (J))

<∼ |J |−1[‖R(T )− R(T̄ )‖L∞(J) + ‖R(T̄ ) − R̄(T̄ )‖L∞(J)]
<∼ |J |−1[‖R′‖L∞(K)‖T − T̄‖L∞(J) + ‖y − ȳ‖L∞(J)]
<∼ |J |−1[‖T − T̄‖L∞(J) + ‖y − ȳ‖L∞(J)].9

Consequently,

‖R′(T ) − R̄′(T̄ )‖L∞(J) ≤ ‖R′(T ) − R′(T̄ )‖L∞(J) + ‖R′ − R̄′‖L∞(T̄ (J))

<∼ |J |−1[‖T − T̄‖L∞(J) + ‖y − ȳ‖L∞(J)].11

In view of (4.10) (iii), this completes the proof of (4.8).

Proof of (4.9). Observe that (A2) guarantees the boundedness of R′ on T (J) and13

since R is also obviously bounded on T (J), we can apply (P2) to obtain

‖R′‖L∞(T (J)) <∼ |J |−1.15

Then using the definition of Θ, we have

‖Θ − Θ̄‖L∞(J) = ‖R′(T )(1 − Q′(y)) − R̄′(T̄ )(1 − Q̄′(ȳ))‖L∞(J)

≤ ‖R′(T ) − R̄′(T̄ )‖L∞(J)

+ ‖R′(T )‖L∞(J)‖Q′(y) − Q̄′(ȳ)‖L∞(J)

+ ‖Q̄′(ȳ)‖L∞(J)‖R′(T ) − R̄′(T̄ )‖L∞(J)

<∼ |J |−1[‖y − ȳ‖L∞(J) + 2−(r−1)n],17

where the latter inequality follows from (4.8) and (4.10) (ii). This completes the
proof of Lemma 4.1.19

4.2. Proof of Lemma 3.2

For simplicity, we denote A′ := A′ · �J and proceed to estimate ‖A′‖Bα−1
q,q

following21

the approach of DeVore and Lucier [4]. Recall first the following inverse estimate
[4, Lemma 4.3].23

Lemma 4.2. Let v be twice continuously differentiable on an open interval I and
assume that v, v′ and v′′ each have one sign on I. If numbers p and q are given such25
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that 0 < p ≤ 1 and 1
p − 1

q > 1, then there exists a constant C such that whenever1

v ∈ Lq(I), then v′ ∈ Lp(I) and

‖v′‖Lp(I) ≤ C |I| 1p− 1
q −1 ‖v‖Lq(I). (4.12)3

According to the definition of the Besov norm in (1.4)–(1.5), we have to estimate
ωk(A′, t)q := sup|h|≤t

∥∥∆k
hA′∥∥

Lq(R)
for t > 0. Then because of symmetry, it suffices5

to bound
∥∥∆k

hA′∥∥
Lq only for 0 < h ≤ t. For a fixed h > 0, we introduce the following

sets:7

Γ := {x ∈ R : [x, x + kh] ⊂ J}, Γ′ := {x ∈ R \ Γ : [x, x + kh] ∩ J = ∅}

and9

Γ′′ := R \ (Γ ∪ Γ′) = {x ∈ R : [x, x + kh] ∩ J = ∅}.

If x ∈ Γ′′, then ∆k
hA′(x) = 0 and hence11 ∫

Γ′′

∣∣∆k
hA′(x)

∣∣qdx = 0. (4.13)

If x ∈ Γ′, then using
∣∣∆k

hA′(x)
∣∣ ≤ 2k(|A′(x)| + · · · + |A′(x + kh)|), we have13 ∫

Γ′

∣∣∆k
hA′(x)

∣∣qdx ≤ |Γ′| ∥∥∆k
hA′∥∥q

L∞(J)
<∼ |Γ′| ‖A′‖q

L∞(J).

Now, Lemma 4.2 and the obvious estimate |Γ′| ≤ min(h, |J |) yield15 ∫
Γ′

∣∣∆k
hA′(x)

∣∣qdx <∼ min(h, |J |)|J |−q(‖A‖L∞(J) + 2−(r−1)n)q. (4.14)

Finally, let x ∈ Γ and 0 < h ≤ |J |/k. Notice that Γ = ∅ if h > |J |/k. We shall17

employ the well known identity: ∆k
hA′(x) = hkA(k+1)(ξ) for some ξ ∈ [x, x + kh].

From this and the monotonicity of A(k+1), we have19

A(k+1)(ξ) = hk max{A(k+1)(x), A(k+1)(x + kh)}.

Without loss of generality, we can assume that A(k+1) is decreasing. Then21

∆k
hA′(x) ≤ hkA(k+1)(x), x ∈ Γ. (4.15)

The following embedding is well known: If 1 < β1 < β2, qj = 1/βj and f ∈ Bβ2−1
q2,q2

,23

then f ∈ Bβ1−1
q1,q1

and ‖f‖
B

β1−1
q1,q1

<∼ ‖f‖
B

β2−1
q2,q2

. Therefore, we may assume that k <

α < k + 1.25

Set q0 := q = 1/α, ε := 1
2 (α

k − 1) > 0 and define q1, q2, . . . , qk recursively by the
identity 1

qj
:= 1

qj−1
− (1 + ε) , j = 1, . . . , k. Evidently, 1

qj
:= α− j(1 + ε) and hence

1
qk

:= α − k(1 + ε) = 1
2 (α − k) > 0. Therefore, 0 < q0 < q1 < · · · < qk−1 < 1 and
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qk > 1. Now, applying repeatedly Lemma 4.2, we obtain

‖A(k+1)‖Lq(J) <∼ |J |ε‖A(k)‖Lq1(J) <∼ · · · <∼ |J |kε‖A′‖Lqk (J)

<∼ |J |kε+1/qk‖A′‖L∞(J) = c|J |1/q−α‖A′‖L∞(J). (4.16)

Using (4.15), (4.16) and Lemma 4.1, we get1 ∫
Γ

∣∣∆k
hA′(x)

∣∣qdx <∼ hkq|J |1−q−kq(‖A‖L∞(J) + 2−(r−1)n)q. (4.17)

Combining (4.13), (4.14) and (4.17), we arrive at

ωk(A′, t)q
q = sup

0<h≤t

∫
R

∣∣∆k
hA′(x)

∣∣qdx

<∼ [min(t, |J |) + tkq |J |1−kq
�(t)]|J |−q(‖A‖L∞(J) + 2−(r−1)n)q,

where � := �[0,|J|/k]. Therefore,3

‖A′‖q

Bα−1
q,q

=
∫ ∞

0

t−(α−1)q−1ωk(A′, t)q
qdt

<∼ [|J |−q

∫ |J|

0

tq−1dt + |J |1−q

∫ ∞

|J|
tq−2dt

+ |J |1−q−kq

∫ |J|/k

0

tq+kq−2dt](‖A‖L∞(J) + 2−(r−1)n)q

<∼ (‖A‖L∞(J) + 2−(r−1)n)q,

where we used that 0 < q < 1 and kq + q − 2 = (k + 1)/α − 2 > −1.5

The proof of Lemma 3.2 is complete.
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