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Abstract. An ω1-compact space is a space in which every closed discrete subspace is
countable. We give various general conditions under which a locally compact, ω1-compact
space is σ-countably compact, i.e., the union of countably many countably compact spaces.
These conditions involve very elementary properties.

Many results shown here are independent of the usual (ZFC) axioms of set theory, and
the consistency of some may involve large cardinals. For example, it is independent of the
ZFC axioms whether a locally compact, ω1-compact space of cardinality ℵ1 is σ-countably
compact. Modulo large cardinals, it is also ZFC-independent whether every hereditarily
normal, or every monotonically normal, locally compact, ω1-compact space is σ-countably
compact.

As a result, it is also ZFC-independent whether there is a locally compact, ω1-compact
Dowker space of cardinality ℵ1, or one that does not contain both an uncountable closed
discrete subspace and a copy of the ordinal space ω1.

On the other hand, it is a theorem of ZFC that every locally compact, locally connected
and connected, monotonically normal space is σ-countably compact. More generally, every
locally compact space with a monotonically normal compactification is the topological direct
sum of σ-countably compact spaces; and if it is totally disconnected, every summand can
be made countably compact.

Set theoretic tools used for the consistency results include ♣, the Proper Forcing Axiom
(PFA), and models generically referred to as “MM(S)[S]”. Most of the work is done by the
P-Ideal Dichotomy (PID) axiom, which holds in the latter two cases, and which requires no
large cardinal axioms when directly applied to topological spaces of cardinality ℵ1, as it is
in several theorems.

1. Introduction

A space of countable extent, also called an ω1-compact space, is one in which every closed
discrete subspace is countable. Obviously, every σ-countably compact space [i.e., the union of
countably many countably compact spaces] is ω1-compact. On the other hand, an elementary
application of the Baire Category Theorem shows that the space of irrational numbers with
the usual topology is not σ-countably compact, but like every other separable metrizable
space, it is ω1-compact.

The situation is very different when it comes to locally compact spaces. In an earlier
version of this paper due to the first author, he asked:
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Question 1.1. Is there a ZFC example of a locally compact, ω1-compact space of cardinality
ℵ1 that is not σ-countably compact? one that is normal?

Here too, local compactness makes a big difference: without it, the space of irrationals is
a counterexample under CH, while ZFC is enough to show any cardinality ℵ1 subset of a
Bernstein set is a counterexample.

As it is, the second author showed that the answer to Question 1.1 is negative; see Section
2. On the other hand, both the Kunen line and a Souslin tree with the usual topology are
consistent normal examples for Question 1.1. In Section 4 we will also show:

Theorem 1.2. Assuming ♣, there is a locally compact, monotonically normal, locally count-
able (hence first countable) ω1-compact space of cardinality ℵ1 which is not σ-countably com-
pact.

Monotonically normal spaces are, informally speaking, “uniformly normal” [see Definition
3.2 below]. They are hereditarily normal, and this theorem gives another independence result
when combined with:

Theorem 1.3. In MM(S)[S] models, every hereditarily normal, locally compact, ω1-compact
space is σ-countably compact.

An even stronger theorem will be shown in Section 3 along with related results under
weaker set-theoretic hypotheses. These will put some limitations on what kinds of Dowker
spaces (that is, normal spaces X such that X × [0, 1] is not normal) are possible if one only
assumes the usual (ZFC) axioms of set theory. The ZFC axioms do, however, suffice to imply
σ-countable compactness for some classes of spaces; see Section 5.

In the light of the negative answer to Question 1.1, it is natural to ask for the least
cardinality of a locally compact, ω1-compact space which is not σ-countably compact. This
is discussed in Section 6, and a new upper bound of b for this cardinality is given. The last
section gives more information of the ZFC example behind this upper bound, and about a
problem and a result of Eric van Douwen, under the assumption of b = c, that are related
to this example.

The individual sections are only loosely connected with each other, and each can be read
with minimal reliance on any of the others.

All through this paper, “space” means “Hausdorff topological space.” All of the spaces de-
scribed are locally compact, hence Tychonoff; and all are also normal, except for a consistent
example at the end.

2. The cardinality ℵ1 case

The P-Ideal Dichotomy (PID) plays a key role in this section and the following one. It
has to do with the following concept. A P-ideal of countable sets is a family P of sets such
that, for every countable subfamily Q of P , there exists P ∈ P such that Q ⊂∗ P for every
Q ∈ Q. Here Q ⊂∗ P means that Q \ P is finite.

The PID states that, for every P-ideal I of subsets of a set X, either

(A) there is an uncountable A ⊂ X such that every countable subset of A is in I, or
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(B) X is the union of countably many sets {Bn : n ∈ ω} such that Bn ∩ I is finite for all
n and all I ∈ I.

The routine proofs of the next lemma and theorem were given in [11]:

Lemma 2.1. Let X be a locally compact Hausdorff space. The countable closed discrete sub-
spaces of X form a P-ideal if, and only if, the extra point∞ of the one-point compactification
X + 1 of X is an α1-point; that is, whenever {σn : n ∈ ω} is a countable family of sequences
converging to ∞, then there is a sequence σ converging to ∞ such that ran(σn) ⊆∗ ran(σ)
for all n.

The key is that an ordinary sequence in X converges to the extra point of X + 1 if, and
only if, its range is a closed discrete subspace of X.

Theorem 2.2. Assume the PID axiom. Let X be a locally compact space. Then at least one
of the following is true:

(1−) X is the union of countably many subspaces Yn such that each sequence in Yn has a
limit point in X.

(2) X has an uncountable closed discrete subspace
(3+) The extra point of X + 1 is not an α1-point.

The key here is that (A) goes with (2), (B) goes with (1−), and (3+) is equivalent to the
countable closed subspaces failing to form a P-ideal, by Lemma 2.1.

The following is well known:

Lemma 2.3. If X is a space of character < b then every point of X is an α1-point.

We now have a negative answer to the second part of Question 1.1.

Theorem 2.4. Assume the PID and b > ℵ1. Then every locally compact, ω1-compact,
normal space of cardinality ℵ1 is σ-countably compact.

Proof. In a locally compact space, character ≤ cardinality. Lemmas 2.1 and 2.3 and ω1-
compactness give us alternative (1−) Theorem 2.2. The closure of each Yn is easily seen
to be pseudocompact (i.e., every continuous real-valued function is bounded). In a normal
space, every closed pseudocompact subspace is countably compact, cf. [28, 17J 3]. So the
closures of the Yn witness that X is σ-countably compact. �

As shown in [11], the hypothesis of normality in Theorem 2.4 can be greatly weakened to
“Property wD”. Also, the proof of Theorem 2.4 clearly extends to show that every locally
compact, ω1-compact space of character < b is σ-countably compact. However, this may
be a very limited improvement: the PID implies b ≤ ℵ2. This is a theorem of Todorčević,
whose proof may be found in [14].

The axioms used in Theorem 2.4 follow from the Proper Forcing Axiom (PFA) and hold in
PFA(S)[S] models. Each of these models is formed from a PFA(S) model by forcing with a
coherent Souslin tree S that is part of the definition of what it means to be a PFA(S) model.
The rest of the definition states that every proper poset P that does not destroy S when it is
forced with, has the following property. For every family of ≤ ℵ1 ↑-dense, ↑-open sets, there
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is a ↓-closed, ↑-directed subset of P that meets them all. 1 The PFA is similarly defined
by omitting all mention of S. What remains is very similar to the well-known definition of
Martin’s Axiom (MA); the only difference is that MA uses “ccc” instead of “proper.”

In this paper, we will use a slight abuse of language with expressions like PFA(S)[S] and
MM(S)[S] as though they were axioms. The latter is defined like the former, but with
“semi-proper” in place of “proper.”

For our negative answer to the first half of Question 1.1, we needed a strengthening of
b > ℵ1 to p > ℵ1. [It is a theorem of ZFC that p ≤ b.] In PFA(S)[S] models, p = ℵ1 while
b = ℵ2. On the other hand, the PFA implies both the PID and p > ℵ1. And this is enough
for our negative answer (Theorem 2.6, below).

The standard definition of the cardinal p is used directly in the proof of the key lemma
for Theorem 2.6. It involves families of subsets of ω (hence of any denumerable set) with
what is known as the Strong Finite Intersection Property (SFIP). This states thatevery finite
subfamily has infinite intersection.

p = min{|F| : F ⊂ [ω]ω and F has the SFIP but ¬∃A ∈ [ω]ω(A ⊂∗ F for all F ∈ F)}

Lemma 2.5. Let X be a T3 space and let Y ⊂ X. Suppose that |Y | < p, and that no
Z ∈ [Y ]ω is closed discrete in X. Then there exists a countably compact Y ′ ⊂ X containing
Y .

Proof. For every Z ∈ [Y ]ω let xZ be an accumulation point of Z. Let Y ′ = Y ∪ {xZ : Z ∈
[Y ]ω}. We claim that Y ′ is countably compact. Indeed, otherwise there exists a countable
T = {tn : n ∈ ω} ⊂ Y ′ which is closed discrete in Y ′. If Z = T ∩Y then Z is finite, otherwise
xZ would be an accumulation point of T in Y ′. So we may assume that T ∩ Y = ∅. For
every n fix Zn ∈ [Y ]ω such that tn = xZn . Let Wn 3 tn be a neighborhood of tn in Y such
that Wn ∩Wm = ∅ for all n 6= m. [In a T3 space, every countable discrete subspace extends
to a disjoint open collection.]

For every y ∈ Y ′ \ T find an neighborhood Uy of y in Y such that Uy ∩ T = ∅. For every
n ∈ ω, let Zn = {(Zn ∩Wn) \ (Uy) : y ∈ Y ′ \T}. Note that Zn has the SFIP. Since |Zn| < p,
there exists an infinite Z ′n = {znk : k ∈ ω} ⊂ Zn ∩Wn such that Z ′n ⊂∗ Z for any Z ∈ Zn.
Then σn = 〈znk : k ∈ ω〉 converges to tn, because the range of every subsequence of σn has
some xA ∈ Y ′ as a limit point, but there is nothing for xA to be except tn.

Let fy : ω → ω be such that {znk : k ≥ fy(n)} ∩ Uy = ∅. Since |Y | < b, there exists
f : ω → ω such that fy <

∗ f for all y ∈ Y ′ \ T . Now Zω = {znf(n) : n ∈ ω} ⊂ Y has no

accumulation points in T , because Zω∩Wn = {znf(n)}. Also, Zω∩Uy is finite for each y ∈ Y ′,
so xZω does not exist. This contradiction implies that Y ′ is countably compact. �

We can weaken the hypothesis in the statement of Lemma 2.5 by having Y be hereditarily
of Lindelöf degree < p. That is, if S ⊂ Y , and U is a relatively open cover of S, then U has
a subcover of cardinality < p. Applying this to S = Y ′ \T and U = {Uy : y ∈ S}, a subcover
of cardinality < p is enough to make the argument go through.

1The notation is as in [12]. It is the “Israeli” notation, whereby stronger conditions are larger. The
topology to which it refers is the one where each p ∈ P has the one basic neighborhood {t : t ≥ p}.
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Now we can finish answering Question 1.1.

Theorem 2.6. Assume the PID and p > ℵ1. Then every locally compact, ω1-compact space
of cardinality ℵ1 is σ-countably compact.

Proof. Again Lemmas 2.1 and 2.3 and ω1-compactness give us alternative (1−) of Theorem
2.2. The rest is clear from Lemma 2.5. �

Returning to Theorem 2.4, its proof also gives:

Theorem 2.7. Assume the PID. Then every locally compact, ω1-compact normal space of
cardinality < b is countably paracompact.

Proof. A normal space X is countably paracompact if, and only if, for each descending
sequence of closed sets 〈Fn〉∞n=1 with empty intersection, there is a sequence of open sets
〈Un〉∞n=1 with empty intersection, with Fn ⊂ Un for all n. If X is a countable union of
countably compact subsets Cm, as in Theorem 2.4, then in such a sequence of closed sets Fn,
we can only have Fn ∩ Cm 6= ∅ for finitely many n. [Otherwise, countable compactness of
Cm implies

⋂∞
n=1Cm∩Fn 6= ∅.] In any Tychonoff space, every pseudocompact subspace, and

hence every countably compact subspace, has pseudocompact closure, and every normal,
pseudocompact space is countably compact; and so the complements of the sets Cm form
the desired sequence of open sets. �

The equivalence in the preceding proof is shown in [28, 21.3] and is due to Dowker, who
also showed its equivalence with X × [0, 1] being normal. In honor of his pioneering work,
normal spaces that are not countably paracompact are called “Dowker spaces.” Theorem 2.7
thus implies the consistency of there being no locally compact, ω1-compact Dowker spaces
of cardinality ℵ1. Specialized though this fact is, its is one of the few theorems as to what
kinds of Dowker spaces are unattainable in ZFC. Another interesting such result was obtained
recently by Tall [25]:

Theorem 2.8. If PFA(S)[S], then every locally compact non-paracompact space of Lindelöf
number ≤ ℵ1 includes a perfect preimage of ω1.

Alan Dow has improved “perfect preimage” to “copy” [private communication]. Combin-
ing this with Theorem 2.7, we have:

Corollary 2.9. If PFA(S)[S], then every locally compact Dowker space of cardinality ≤ ℵ1
includes both a copy of ω1 and an uncountable closed discrete subspace.

The consistency of PID was shown using forcing from a ground model with a supercompact
cardinal. There are versions for spaces of weight ℵ1, hence all locally compact spaces of
cardinality ℵ1, which require only the consistency of ZFC. One restricted version of the PID
axiom is designated (∗) in [1], and is adequate for Theorem 2.7. But it is still an open
problem whether the main results of our next section are ZFC-equiconsistent.
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3. When hereditary normality implies σ-countable compactness

For the main theorem of this section, we recall the following concepts:

Definition 3.1. Given a subset D of a set X, an expansion of D is a family {Ud : d ∈ D}
of subsets of X such that Ud ∩D = d for all d ∈ D. A space X is [strongly] collectionwise
Hausdorff (abbreviated [s]cwH) if every closed discrete subspace has an expansion to a
disjoint [resp. discrete] collection of open sets.

The properties of ω1-[s]cwH only require taking care of those D that are of cardinality
≤ ω1.

A well-known, almost trivial fact is that every normal, cwH space is scwH: if D and {Ud :
d ∈ D} are as in 3.1, let V be an open set containing D whose closure is in

⋃
{Ud : d ∈ D};

then {Ud ∩ V : d ∈ D} is a discrete open expansion of D.

The following class of normal spaces plays a big role in this section and in the following
one.

Definition 3.2. A space X is monotonically normal if there is an operator G( , ) assigning
to each ordered pair 〈F0, F1〉 of disjoint closed subsets an open set G(F0, F1) such that
(a) F0 ⊂ G(F0, F1)
(b) If F0 ⊂ F ′0 and F ′1 ⊂ F1 then G(F0, F1) ⊂ G(F ′0, F

′
1)

(c) G(F0, F1) ∩G(F1, F0) = ∅.

Monotone normality is a hereditary property; that is, every subspace inherits the property.
This is not so apparent from this definition, but it follows almost immediately from the
following criterion, due to Borges.

Theorem 3.3. A space is monotonically normal if, and only if, there is an assignment of
an open neighborhood h(x, U) =: Ux containing x to each pair (x, U) such that U is an open
neighborhood of x, and such that, if Ux ∩ Vy 6= ∅, then either x ∈ V or y ∈ U .

Every monotonically normal space is (hereditarily) countably paracompact [23, Theorem
2.3] and (hereditarily) scwH: the Borges criterion easily give cwH, and normality does the
rest.

The main theorem of this section, Theorem 3.6, also involves the following concepts.

Definition 3.4. An ω-bounded space is one in which every countable subset has compact
closure. A space is σ-ω-bounded if it is the union of countably many ω-bounded subspaces.

Clearly, every ω-bounded space is countably compact. Theorem 3.6 below makes use of
the following axiom, which is shown in [11] to follow from PID and whose numbering is
aligned with that of Theorem 2.2:

Axiom 3.5. Every locally compact space has either:

(1) A countable collection of ω-bounded subspaces whose union is the whole space or

(2) An uncountable closed discrete subspace or

(3) A countable subset with non-Lindelöf closure.
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Of course, (1) and (2) are mutually exclusive, but each is compatible with (3).

Part (iii) of our main theorem is the promised strengthening of Theorem 1.3.

Theorem 3.6. Let X be a locally compact, ω1-compact space. If either

(i) X is monotonically normal and the P-Ideal Dichotomy (PID) axiom holds, or

(ii) X is hereditarily ω1-scwH, and either PFA or PFA(S)[S] hold, or

(iii) X is hereditarily normal, and MM(S)[S] holds,

THEN X is σ-ω-bounded, and is either Lindelöf or contains a copy of ω1.

Proof. The σ-ω-bounded property in case (i) follows from the fact that, in a monotonically
normal space, every countable subset has Lindelöf closure [22], and from Axiom 3.5.

The PID, and hence Axiom 3.5, holds in any model of PFA or PFA(S)[S], so σ-ω-
boundedness in case (ii) follows from the following two facts. First, every point (and hence
every countable subset) of a locally compact space has an open Lindelöf neighborhood (see
[18, Lemma 1.7]). Second, in these models, every open Lindelöf subset of a hereditarily
ω1-scwH space has Lindelöf closure (see [18] and [20], respectively). So again, (3) in Axiom
3.5 fails outright, and σ-ω-boundedness for (ii) follows from (1) of Axiom 3.5. As for (iii),
Dow and Tall [8] have shown that MM(S)[S] implies that every normal, locally compact
space is ω1-cwH, and we can continue as for (ii).

That X is either Lindelöf or contains a copy of ω1 in case (i), is immediate from the
following fact, whose proof is deferred to Section 5 (see Corollary 5.6):

Every locally compact, monotonically normal space is either paracompact or contains a
closed copy of a regular uncountable cardinal.

The Lindelöf alternative for case (i) uses the fact [10, 5.2.17] that every locally compact,
paracompact space is the union of a disjoint family of (closed and) open Lindelöf subspaces.
Now ω1-compactness makes the family countable, and so X is Lindelöf.

The same either/or alternative for (ii) and (iii) uses the ZFC theorem that any ω-bounded,
locally compact space is either Lindelöf or contains a perfect preimage of ω1, along with the
reduction of character in Lemma 1.2 of [18], which uses MA(ω1), which in turn is implied
by the PFA. Moreover, the proof of this lemma carries over to PFA(S)[S]. This proof
shows that in a locally compact, hereditarily ω1-scwH space, every open Lindelöf subset has
Lindelöf closure and hereditarily Lindelöf (hence first countable) boundary.

Now, given a perfect surjective map ϕ : W → ω1, let Y be the union of the boundaries
of the subsets ϕ←[0, α) where α is a limit ordinal, and apply to Y the theorem [7] that
PFA(S)[S] implies that every first countable perfect preimage of ω1 contains a copy of ω1.
That the PFA also implies this is a well-known theorem of Balogh, shown in [6]. �

The following theorem can be derived from Theorem 3.6 (ii) in the same way that Theorem
2.7 is derived from Theorem 2.4.

Theorem 3.7. Let X be a locally compact, ω1-compact, normal, hereditarily ω1-scwH space.
If either PFA or PFA(S)[S] holds, then X is countably paracompact.
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To put it positively, every ZFC example of a locally compact, hereditarily ω1-scwH Dowker
space must contain an uncountable closed discrete subspace. However, to be absolutely
certain of this, we need a negative answer to the second part of the following question:

Problem 1. Do we need the large cardinal strength of PID to obtain any or all of the
conclusions of Theorem 3.6 or Theorem 3.7?

Where Theorem 3.7 is concerned, the other applications of PFA, etc. are taken care of
by axioms MA(ω1) and MA(S)[S] [18], [21], both of which are equiconsistent with ZFC.
However, we may need something more for the conclusion about the copy of ω1, or for the
theorem [8] that MM(S)[S] implies that every locally compact normal space is ω1-cwH, or
for the following corollary of this fact and of Theorem 3.7:

Corollary 3.8. If MM(S)[S], then every locally compact, hereditarily normal Dowker space
must contain an uncountable closed discrete subspace. �

4. Examples under ♣ for Theorem 1.2

This section features consistent examples of locally compact, ω1-compact, monotonically
normal spaces of cardinality ℵ1 that are not σ-countably compact. The axiom used is ♣,
and the following concept is part of its definition.

Definition 4.1. Given a limit ordinal α, a ladder at α is a strictly ascending sequence of
ordinals less than α whose supremum is α. Given an ordinal θ, a ladder system on θ is a
family

L = {Lα : α ∈ θ, α is a limit ordinal of countable cofinality}
where each Lα is a ladder at α.

We will use the symbol Λ for the set of countable limit ordinals.

Axiom 4.2. Axiom ♣ states that there is a ladder system L on ω1 such that, for any
uncountable subset S of ω1, there is Lα ∈ L such that Lα ⊂ S.

We now define a general family S of spaces similar to the two families in [13]. One
subfamily of S consists of examples for Theorem 1.2.

Notation 4.3. Let S designate the set of topologies τ on ω1 in which, to each point α there
are associated B(α) ⊂ [0, α] and B(α, ξ) = B(α) ∩ (ξ, α] for each ξ < α, such that:

(1) {B(α, ξ) : ξ < α} is a base for the neighborhoods of α [we allow ξ = −1 in case α = 0].

(2) If α ∈ Λ and β > α, then there exists ξ < α such that B(α, ξ) = B(β) ∩ (ξ, α]. [In
particular, α ∈ B(β).]

(3) There is a ladder system L = {Lα : α ∈ Λ}, such that if Mα = {ξ + 1 : ξ ∈ Lα}, then
α = sup[Mα ∩B(α)] = sup[Mα \B(α)].

Examples 4.4. Let τ be a topology defined using L, and using the base B(α) and B(α, ξ)
defined by recursion as follows:

Let B(0) = {0} and, if α = ξ+ 1, let B(α) = B(ξ)∪{α}. Given Lα ∈ L, let Mα = {ξ+ 1 :
ξ ∈ Lα} be bijectively indexed as {αn : n ∈ ω}. If α = ν + ω where ν either is 0 or a limit
ordinal, let B(α) = B(ν) ∪ (ν, α] \ {α2n : n ∈ ω}.

8



If α is not of the form ν+ω, let S(α, 0) = B(α0) and, for n > 0, let S(α, n) = B(αn, αn−1)
and let

B(α) =
∞⋃
n=0

(S(α, n) ∪ {α2n+1 : n ∈ ω}) \ {α2n : n ∈ ω}.

Claim 1. (ω1, τ) ∈ S.

` Assuming (2) in Notation 4.3, we first show (1). If α ∈ B(β, η)∩B(γ, ν) and α > ν, α /∈
Λ then obviously B(α, ν) = {α} works. Otherwise, we can find a basic open neighborhood of
α inside the intersection by using (2). Just choose ξ greater than η and ν and large enough
so that B(α, ξ) = B(β) ∩ (ξ, α] and also B(α, ξ) = B(γ) ∩ (ξ, α].

Next we show (2) by induction. Suppose it is false, and that β is the first ordinal for
which there is a limit ordinal α < β where it fails. Clearly β ∈ Λ. Only successor ordinals
are in [0, β] \ B(β), so α ∈ B(β). Let α ∈ S(β, n) = B(γ, ν). By minimality of β, there
exists µ ≥ ν such that B(α, µ) = B(γ, ν) ∩ (µ, α]. However, S(β, n) only contains finitely
many members of Lβ; once ξ is above all the members of Lβ that are below α, we must have
B(β) ∩ (ξ, α] = B(γ, ν) ∩ (ξ, α], and if ξ ≥ µ then this equals B(α, ξ), a contradiction.

Finally, (3) is true by construction since α is the supremum of the points of Mα that have
odd subscripts and also of the ones that have even subscripts. a

Claim 2. (ω1, τ) is locally compact.

` Obviously, B(0) = {0} and B(ξ+1, ξ) are singletons for all successor ordinals ξ+1. If
β ∈ Λ, then, since B(β) is countable, it is enough to show that B(β) is countably compact.

Let A be an infinite subset of B(β). Then A contains a strictly ascending sequence σ of
ordinals. Let sup(ran(σ)) = α. If α = β then σ → α by (1), while if α < β, then (1) and
(2) have the same effect, implying that α is a limit point of A in B(β). a

Theorem 1.2 now follows from:

Theorem 4.5. If L witnesses ♣, then (ω1, τ) is monotonically normal and ω1-compact but
not σ-countably compact.

Proof. Recall the Borges criterion for monotone normality, Theorem 3.3:

There is an assignment of an open neighborhood h(x, U) =: Ux containing x to each pair
(x, U) such that U is an open neighborhood of x, and such that, if Ux ∩ Vy 6= ∅, then either
x ∈ V or y ∈ U .

The choice of h(z, U) = {z} for all isolated points z works for the case where either x or y
is not a limit ordinal. So it is enough to take care of the case where x and y are both limit
ordinals and x < y. Given α ∈ U, let Uα = B(α, ξ) for some ξ such that B(α, ξ) ⊂ U . It
follows from (2) that x ∈ Uy whenever Ux ∩ Uy 6= ∅.

It also follows from (2) that the τ -relative topology on Λ is its usual order topology. So, to
show ω1-compactness it is enough to show that every uncountable set S of successor ordinals
has an ascending sequence 〈sn : n ∈ ω〉 that τ -converges to its supremum.

Let R = {ξ : ξ+ 1 ∈ S}. Since L witnesses ♣, there exists α ∈ R such that Lα ⊂ R. Then
Mα ⊂ S and the odd-numbered elements of Mα converge to α.
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Finally, to show that (ω1, τ) is not σ-countably compact, let ω1 =
⋃∞
n=1An. It is clearly

enough to show that any An that contains uncountably many successor ordinals is not
countably compact, since there is at least one such An. Let one of these be S, and let R and
Mα be as before. Then the even-numbered members of Mα are an infinite τ -closed discrete
subset of ω1. �

5. Some ZFC results

For the following theorem, shown in [20], we do not even have to assume ω1-compactness;
it comes free of charge:

Theorem 5.1. Every locally compact, locally connected and connected, monotonically nor-
mal space is σ-countably compact.

Monotone normality has one strange feature that is not shared by normality and most of its
natural strengtheninngs: it is often not preserved in taking the one-point compactification. 2

Mary Ellen Rudin gave the first example where this preservation fails, and in [13] two general
kinds of examples are given. The following lemma makes it easy to show that all these
examples, as well as our ♣ examples, fail to have monotonically normal compactifications.

Lemma 5.2. Let X be a locally compact space whose set C of nonisolated points is a copy
of an ordinal of uncountable cofinality. If X has a monotonically normal one-point compact-
ification, then C has a clopen, ω-bounded neighborhood.

Proof. We use the original definition of monotone normality. Identify C with the ordinal θ
of which it is a copy, and let Γ = θ+ 1, with the last point of θ+ 1 identified with the extra
point∞ in the one-point compactification of X. For each α ∈ C, let Vα = G([0, α],Γ\ [0, α]).
Let V =

⋃
α∈θ Vα. Clearly, V is a neighborhood of C in X, and Vα ⊂ Vβ whenever α < β.

Because G([Γ \ [0, α], [0, α]) is a neighborhood of∞ disjoint from Vα, the latter has compact
closure in X. From this it quickly follows that V is an ω-bounded clopen neighborhood of
C. In fact, every union of fewer than cf(θ) compact subsets of V has compact closure. �

The main theorem of this section (Theorem 5.10) will give an alternative proof that our
♣ examples do not have monotonically normal one-point compactifications. The first step is
to recall a remarkable and powerful theorem of Balogh and Rudin and one of its corollaries
[2].

Proposition 5.3. Let X be monotonically normal, and let U an open cover of X. Then
X = V ∪

⋃
E, where E is a discrete family of closed subspaces, each homeomorphic to a

stationary subset of a regular uncountable cardinal, and V =
⋃
V is the union of countably

many collections Vn of disjoint open sets, each of which (partially) refines U .

Corollary 5.4. A monotonically normal space is paracompact if, and only if, it does not have
a closed subspace homeomorphic to a stationary subset of a regular uncountable cardinal.

2Locally connected, locally compact spaces are an exception: monotone normality is preserved in the
one-point compactification [13].
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Lemma 5.5. Let δ be an ordinal of uncountable cofinality, and let E be a locally compact
stationary subset of δ. There is a tail (final segment) T which is a closed (hence club) subset
of δ.

Proof. Each x ∈ E has an open neighborhood Hx which meets E in an interval [βx, x] whose
least element is isolated in E; and if Hx has compact closure, then [βx, x] is compact. Then
the PDL gives us a single β which works for a cofinal subset S of E, and so

⋃
{[β, x] : x ∈ S}

is a tail of E and a club in δ. �

Lemma 5.5 gives the strengthening of Corollary 5.4 for locally compact spaces that was
used in the proof of Theorem 3.6:

Corollary 5.6. A monotonically normal, locally compact space is paracompact if, and only
if, it does not contain a closed copy of a regular uncountable cardinal.

Proof. Necessity is immediate: every ordinal is a stationary subset of itself. Conversely, the
T obtained in Lemma 5.5 has a closed subset that is a copy of the regular uncountable
cardinal cof(δ). �

Example 5.7. Let δ = ω1 · ω1, let T = {ω1 · ξ : ξ ∈ ω1}, and let E = ω ∪ T . Then E is
locally compact, and T is a tail of E that is a copy of ω1 and a club in δ, but no tail of E is
a tail of δ.

In this example, E is homeomorphic to A = (ω1+ω)\{ω1} in its relative topology inherited
from ω1 + ω. Note that this relative topology is not equal to the order topology on A, i.e.,
the topology on A generated by the subbase {α∩A : α ∈ A}∪{A\ (α+1) : α ∈ A}, because
A with this topology is homeomorphic to ω1 + ω and hence is σ-compact, whereas A with
the subspace topology is not Lindelöf. On the other hand, the two topologies coincide on
any closed subset of any ordinal in its inherited order.

We are indebted to Heikki Junnila for the concise proof of the following theorem. Recall
that a space is a topological direct sum of subspaces if these subspaces partition it into open
(hence clopen) subspaces. A great many properties of topological spaces need only be verified
for the summands to be true for the whole sum.

Theorem 5.8. A subspace of an ordinal is locally compact if, and only if, it is a topological
direct sum of countably compact copies of ordinals.

Proof. Sufficiency is obvious. For the converse, let θ be an ordinal and let A be a locally
compact subspace of θ. The closure A of A is a copy of an ordinal, and since A is locally
compact, it is open in A.

Working in A, let G be the collection of convex components of A. These are the maximal
intervals of A within A. Each is a copy of an ordinal, and G is a partition of A into relatively
clopen subsets. Let G1 = {G ∈ G : cof(G) > ω}. Each member of G1 is is countably
compact. If G ∈ G \ G1, then G has a partition into compact open intervals. Replacing each
member of G \ G1 by these partition members gives us the desired partition of A. �

Next, we show a strengthening of Property 5.3 for locally compact spaces that makes use
of 5.3 in an essential way.
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Theorem 5.9. Let U be an open cover of a locally compact monotonically normal space X.
Then X has a discrete collection C of closed copies of regular uncountable cardinals, such
that X \

⋃
C has a σ-disjoint cover by open sets refining the trace of U on X \

⋃
C.

Proof. Assume without loss of generality that U is compact for each U ∈ U . Let E = {Eα :
α ∈ κ} be a discrete collection of closed copies of stationary subsets of regular cardinals θα
as in Property 5.3. For each α ∈ κ, use Theorem 5.8 to break up each Eα into a discrete
family Kα ∪ Pα, where each P ∈ Pα is a compact subset of some U ∈ U and each K ∈ Kα
is a copy of an ordinal of uncountable cofinality. Let K =

⋃
α∈κKα.

Given a fixed K ∈ K, let B be a set of successors (hence isolated points) in K that is cofinal
in K and of order type cof(K). Let CK be the closure of B in K, so that CK is homeomorphic
and order-isomorphic to cof(K). For each ζ ∈ B, let β(ζ) = sup{ξ ∈ CK : ξ < ζ}.

Then K\CK breaks up into the intervals (β(ζ), ζ). Each interval is compact: the maximum
element is the immediate predecessor of ζ, and the minimum element is the immediate
successor of β(ζ). So each interval has a finite partition PK(ζ) into clopen sets, each a
subset of some U ∈ U . Let PK =

⋃
{PK(ζ) : ζ ∈ B}.

Let C = {CK : K ∈ K} and P =
⋃
{PK : K ∈ K} ∪

⋃
{Pα : α ∈ κ}. Then P is a

relatively discrete partition of (
⋃
E) \ (

⋃
C) into compact sets. Every monotonically normal

space is collectionwise normal, which means that every discrete collection of closed subsets
can be expanded to a discrete collection of open sets; the proof is similar to that for the
cwH property (see the discussion after Theorem 3.3). So P can be expanded to a disjoint
collection V∞ of open sets, each contained in a member of U . Combine this with the Vn of
Property 5.3 to get the desired σ-disjoint cover. �

Now we are ready to prove the main theorem of this section.

Theorem 5.10. Every locally compact space with a monotonically normal one-point com-
pactification is a topological direct sum of σ-ω-bounded spaces, each of which is the union of
an open Lindelöf subset and of a discrete family of closed, ω-bounded subsets. If the space is
totally disconnected, it is a topological direct sum of ω-bounded subspaces.

Proof. Let X be monotonically normal and locally compact, with a monotonically normal
one-point compactification. Let C be as in Theorem 5.9. For each Cα there is an open subset
Wα ⊃ Cα so that {Wα : α < κ} is a discrete collection of open sets. Each Cα converges to
the extra point ∞ in the one-point compactification of X, so there is an open set V α ⊃ Cα
with ω-bounded closure, built similarly to V in the proof of Lemma 5.2. Do it so that
c`XV

α ⊂ Wα by using V α
ξ = G([0, ξ], {∞} ∪ (X \Wα) \ [0, ξ]).

The complement of
⋃
α<λ V

α in X is a closed subset of X \
⋃
C, so it is paracompact.

By the classical theorem cited earlier, every locally compact, paracompact space can be
partitioned into a family of clopen Lindelöf subsets. If, in addition, the space is totally
disconnected, it is zero-dimensional [10, 6.2.4] 3, and each of these Lindelöf subsets can be
further partitioned into compact open subsets. In either case, let H = {Hα : α ∈ γ} be such
a partition.

3In [10], totally disconnected spaces are called “hereditarily disconnected.”
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In the zero-dimensional case, the boundary of each V α is partitioned into compact rela-
tively open sets where it meets

⋃
H. By countable compactness, there can be only finitely

many such sets. Cover the boundary with finitely many compact open subsets of Wα. The
resulting clopen expansions of the V α are a discrete collection in X and the complement of
their union can be partitioned into clopen sets as before. The resulting partition of X is as
desired.

In the more general case, we still have the countably compact boundary of each V α par-
titioned into X-closed subsets of Lindelöf sets. Hence it is compact here too, and only
finitely many members of H meet it. Now, the following is clearly an equivalence relation
for K = H ∪ {V α : α < λ}. Let K0 ≈ K iff there is a finite chain K0, . . . Kn such that
c`X(Ki) ∩ c`X(Ki+1) 6= ∅ and Kn = K. The closure of each V α meets that of only finitely
many other members of K, while the closure of each H ∈ H meets that of only countably
many other members. The union of the members of each equivalence class is open, because
the boundary of K0 ∈ K is covered by its union with all the eligible candidates for K1. The
unions of members of each equivalence class give the desired partition into σ-ω-bounded
subspaces. �

This theorem solves Problem 2 of [13], which asked:

Question 5.11. If a locally compact space has a monotonically normal one-point compacti-
fication, is it the topological direct sum of ω1-compact subspaces?

This question was independently answered by Heikki Junnila [private communication] but
his proof made use of the monumentally difficult solution by Mary Ellen Rudin of Nikiel’s
conjecture [24]. The Balogh-Rudin theorem used here also has a very complicated proof, but
nowhere near as complicated as the one for solving Nikiel’s Conjecture.

Theorem 5.10 actually characterizes the class C (denoted LM in [13]) of locally compact
spaces with monotonically normal one-point compactifications. In the zero-dimensional case
this follows immediately from the theorem [13, 4.2] that every countably compact, locally
compact, monotonically normal space is in C and the easy lemma that C is closed under
taking topological direct sums. The more general case is shown in the second paragraph in
the proof of [13, 4.4], after all use of local connectedness is over.

6. The minimum cardinality theme

In the wake of the negative answer to Question 1.1, it is natural to ask:

Problem 2. What is the minimum cardinality of a locally compact, ω1-compact space that
is not σ-countably compact?

Problem 3. What is the minimum cardinality of a locally compact, ω1-compact normal
space that is not σ-countably compact?

One might also ask whether it is consistent for the minimum for Problem 3 to be strictly
greater than the minimum for Problem 2. These are difficult problems, and each may need
to be settled on a model-by-model basis. But we do have some general results. Here is a
recent result by the first author [21]:

Theorem 6.1. The least cardinality of a locally compact, normal, ω1-compact space that is
not σ-countably compact is no greater than b.
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Previously, the best upper bound for the minimum was c, using one of E.K. van Douwen’s
“honest submetrizable” examples [5]. Theorem 6.1 still leaves a lot unsaid. On the one
hand, the following “echo” of Question 1.1 is made difficult by the fact [14] that PID implies
b ≤ ℵ2:

Problem 4. Is there a ZFC example of a locally compact, ω1-compact space of cardinality
ℵ2 that is not σ-countably compact? one that is normal?

At the opposite extreme, we have:

Problem 5. Can b be “arbitrarily large” and still be the minimum cardinality of a locally
compact, ω1-compact space that is not σ-countably compact? of one that is also normal?

The question of what happens under Martin’s Axiom (MA) is especially interesting since
it implies b = c. It also implies that ♣ fails and that there are no Souslin trees. Now a
Souslin tree with the interval topology is of cardinality ℵ1 that is locally compact, ω1-compact
and hereditarily collectionwise normal [16, 4.18] (hence hereditarily normal and hereditarily
strongly cwH) but is not σ-countably compact.

To show ω1-compactness, use the fact that every closed discrete subspace in a tree with
the interval topology is a countable union of antichains, and the fact that a Souslin tree is,
by definition, an uncountable tree in which every chain and antichain is countable. To show
that a Souslin tree is not the union of countably many countably compact subspaces, use
these facts together with the fact that at least one subspace would have to be uncountable,
and the observation that the Erdős - Radó theorem implies that every uncountable tree
must either contain an infinite antichain or an uncountable chain. [The interval topology
on a subtree is not always the relative topology, but the relative topology is finer, so new
infinite closed discrete subspaces could arise.]

It is worth noting here that adding a single Cohen real adds a Souslin tree but leaves b
as the same aleph that it is in the ground model. So b can be arbitrarily large while the
minimum cardinality for Problems 2 and 3 is ℵ1.

A Souslin tree is not monotonically normal because every monotonically normal tree is a
topological direct sum of copies of ordinals [17], and the following problem is still unsolved:

Problem 6. Is the existence of a Souslin tree enough to produce a locally compact, mono-
tonically normal, ω1-compact space that is not σ-countably compact?

Most independence results pertaining to monotonically normal spaces revolve around
whether a Souslin tree (equivalently, a Souslin line) exists. However, Problem 6 suggests
that this may not be the case with the question of which models have a locally compact,
monotonically normal, ω1-compact space that is not σ-countably compact. This would al-
ready be true if there is a model of ♣ where there are no Souslin trees [the model in [9]
turned out to be flawed].
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7. Locally compact, quasi-perfect preimages

The examples that make Theorem 6.1 true are the first nontrivial examples for the follow-
ing problem by van Douwen [4].

Problem 7. Is ZFC enough to imply that each first countable regular space of cardinality at
most c is a quasi-perfect image of some locally compact space?

Definition 7.1. A continuous map : X → Y is quasi-perfect if it is surjective, and closed,
and each fiber f←{x} is countably compact.

The following theorem was the key to Theorem 6.1.

Theorem 7.2. [21] Let E be a stationary, co-stationary subset of ω1. There is a locally
compact, normal, quasi-perfect preimage of E, of cardinality b. If b = ℵ1, then this preimage
can also be locally countable, hence first countable.

Theorem 6.1 follows from this theorem and from the following simple facts.

Theorem 7.3. Let f : Y → X be a continuous surjective map.

(i) If X is not σ-countably compact, neither is Y .

(ii) If X is ω1-compact, and f is closed, and each fiber f←{x} is ω1-compact, then Y is
ω1-compact.

Proof. Statement (i) easily follows by contrapositive and the elementary fact that the con-
tinuous image of a countably compact space is countably compact.

To show (ii), let A an uncountable subset of Y . Then either A meets some fiber in an
uncountable subset, in which case it is not closed discrete in Y , or f→[A] is uncountable and
so it is not closed discrete. Let B be a subset of f→[A] that is not closed, and let p ∈ B \B.

Let A0 = {xb : b ∈ B} be a subset of A such that f(xb) = b for all b ∈ B. Because f
is closed, and B is not closed, neither is A0 and, in fact, it has an accumulation point in
f←{p}. �

Theorem 6.1 now follows easily. If E is co-stationary, then all countably compact subsets
of E, being closed, are countable. So E cannot be σ-countably compact unless it is countable.
And if E is stationary, it has limit points in the closure of every uncountable subset of ω1, and
so it is ω1-compact. It therefore follows from Theorem 7.3 that any quasi-perfect preimage
of E is ω1-compact, but not σ-countably compact.

Problem 7 was motivated by a theorem in 13.4 of [4], which stated that the preimages it
asks for do exist if b = c. The preimages van Douwen constructed were locally countable.
But it is also consistent that some of them are not normal:

Theorem 7.4. Let X be a locally compact, locally countable, quasi-perfect preimage of the
space P of irrationals with the relative topology. If the PFA holds, then X is not normal.

Proof. Let p ∈ P and let π : X → P be a surjective quasi-perfect map. Let {σα : α < ω1} be
a family of injective sequences in X with disjoint images that converge to p. Let Aα be the
set of all limit points of σα. Clearly Aα ⊂ π←{p}.
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Case 1. Aα is uncountable for some α. Then Aα ∪ ran(σα) is a separable, uncountable,
countably compact, noncompact subspace of X, and since it is first countable, the PFA
implies it contains a copy of ω1 [6]. But also, the PFA implies p = ℵ2, and the result follows
from [15, 3.2], which reads:

If p > ℵ1, no separable, normal, first countable, countably compact space can contain a
perfect preimage of ω1.

Case 2. Aα is countable for all α. This case only requires CH to fail. By induction, build
sequences τα(α < ω1) in X whose π-images converge to p, and such that ran(σβ) ⊂∗ ran(τα)
for all β < α. If some τα has uncountably many limit points, argue as in Case 1. Otherwise,
the set Cα of limit points of each τα is compact and countable, so it is contained in a
countable, compact, open subset Vα of X. Let V =

⋃
α<ω1

Vα. Since the Cα form an
increasing chain, their union C is ω-bounded, hence countably compact, hence closed in X
by first countability of X. However, inasmuch as the σα have disjoint ranges, π[N \ C] is
uncountable for any neighborhood N of C. And so, the π-image of every closed neighborhood
of C is an uncountable, closed subset of P; hence it must be of cardinality c. But |V | = ℵ1,
so V cannot contain a closed neighborhood of C, contradicting normality. �

In the absence of b = c we still have very little idea of which first countable spaces
have locally compact quasi-perfect preimages. It is unknown whether even the space P of
irrationals has such a preimage if b < c. It is also unknown whether there is a locally
compact, locally countable, quasi-perfect preimage of [0, 1] if b < c. Such a space would
solve the following problem:

Problem 8. Is there a ZFC example of a scattered, countably compact, regular space that
can be mapped continuously onto [0, 1]?

See [19] for discussion of this problem, including an explanation why the answer is affir-
mative if “regular” is omitted.
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