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Abstract. A detailed structure theorem is shown for locally compact, locally connected,
hereditarily normal spaces and for normal, locally compact, locally connected, hereditarily
ω1-scwH spaces in models of PFA(S)[S], and for the latter kinds of spaces in models

of PFA. Corollaries include a powerful refinement theorem like that for monotonically
normal spaces, and the corollary that the spaces involved are [hereditarily] collectionwise
normal and [hereditarily] countably paracompact. Among the problems left unsolved and

discussed at the end is the ambious question of whether it is consistent that hereditarily
normal, locally compact, locally connected spaces are actually monotonically normal.
An affirmative solution would also solve the problem of consistency of every perfectly

normal, locally compact, locally connected space being metrizable and thus also solve a
1935 problem due to Alexandroff.

In [Ny3], the consistency of a strong metrization theorem for manifolds was “proven”:

Statement M. Every T5 (i.e., hereditarily normal), hereditarily cwH manifold of di-
mension > 1 is metrizable.

[Here “cwH” stands for “collectionwise Hausdorff” and “manifold” means “con-
nected space in which each point has a neighborhood homeomporphic to R

n for some
positive integer n”; by Invariance of Domain, n is the same for all points.]

Also in [Ny3], the consistency of the following more general statement was an-
nounced:

Statement A. Every (clopen) component of every locally compact, locally connected,
T5, hereditarily cwH space is either Lindelöf or has uncountably many cut points.

These results rested on a pair of axioms that turned out to be incompatible. The
metrization theorem was salvaged [Ny5] within a week after this discovery, but the
consistency of Statement A remained in doubt for a decade. But now we have a
theorem of which it is an immediate corollary.
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Main Theorem. Let X be a locally compact, locally connected space. If either

(1) PFA(S)[S] holds and X is T5, or

(2) PFA or PFA(S)[S] holds and X is normal and hereditarily ω1-scwH,

then every component of X is the union of an open Lindelöf space L and a countable
discrete collection of closed, connected, countably compact noncompact subspaces, each
of which includes uncountably many cut points of the component and has exactly one
point in the closure of L.

Moreover, each subspace in this collection is a “string of beads” in which there is a
set C of cut points of the whole component, such that C is homeomorphic to an ordinal
of uncountable cofinality, and each “bead” is the connected 2-point compactification of
an open subspace whose boundary consists of the two extra points, successive members
of C. The union of these “beads” comprises the entire string.

This theorem recalls the fact that a locally connected space is the topological direct
sum of its (connected) components; in other words, its components, which are disjoint,
are open (and closed because they are components). Thus, almost any topological
property of a locally connected space can be ascertained by examining its components
separately.

The more specialized topological properties in the Main Theorem involve the fol-
lowing concepts. An expansion of D ⊂ X is a family {Ud : d ∈ D} of subsets of X
such that Ud ∩D = {d} for all d ∈ D. A space X is [strongly] collectionwise Hausdorff
(abbreviated [s]cwH) if every closed discrete subspace of X has an expansion to a dis-
joint [resp. discrete] collection of open sets. A space is ω1-[s]cwh if every closed discrete
subspace of of cardinality ω1 has an expansion to a disjoint [resp. discrete] collection
of open sets.

A quick corollary of the main theorem is that X is both collectionwise normal and
countably paracompact. Under alternative (1) this is (therefore) true of every subspace
of X. This and other strong corollaries will be proven in Section 7. Their proofs are
self-contained once the Main Theorem is granted, so the interested reader may skip to
there now.

All manifolds of dimension > 1 are Lindelöf, hence metrizable, under the conditions
in the Main Theorem, because they have no cut points and so the set of countably com-
pact, noncompact subspaces given by the Main Theorem is empty. Thus the following
theorem, which strengthens Statement M by significantly relaxing its hypothesis, is a
corollary of (1) in the Main Theorem [but was obtained a few months earlier]:

Theorem T. [DT] Under PFA(S)[S], every T5 manifold of dimension > 1 is metriz-
able.

Theorem T was the culmination of years of work by several researchers, especially
Frank Tall, showing that the set theoretic and topological axioms which were used
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to show the consistency of Statement M, and which were derived from the PFA, also
hold in PFA(S)[S] models. [Incidentally, PFA(S)[S] is not an axiom in the usual sense,
but a recipe for producing certain models of ZFC.] This research also showed that the
following axioms hold in PFA(S)[S] models.

Axiom C [resp. Axiom C′]. Every locally compact [resp. first countable] normal space
is ω1-cwH.

Axiom C′ was adequate for Theorem T, but the Main Theorem requires Axiom C,
which was much more difficult to show in PFA(S)[S] models [Ta].

The Main Theorem requires axioms beyond the usual ZFC axioms of set theory.
Nonmetrizable T5, hereditarily scwH manifolds of dimension > 1 have been constructed
in many models of the ZFC axioms. The first one, due to Mary Ellen Rudin, is even
perfectly normal. It is described in [Ny, Example 3.14].

The three Hausdorff nonmetrizable manifolds-with-boundary of dimension 1 are the
long line L and the open and closed long rays L+ and L+ ∪ {0} respectively. In the
first case, L can be taken to be the real line, and there are two strings S0 and S1 such
that C0 can be taken to be the set ω1 \ω of countably infinite ordinals, while C1 is the
copy of C0 with the ordinals in reverse order. The “beads” are then the copies of [0, 1]
overlapping at their endpoints.

The open and closed long rays are the subspaces of L consisting of the points > 0
and ≥ 0, respectively. Each is the union of a Lindelöf subspace and one “string of
beads.” In the case of the closed long ray, the Lindelöf subspace can be taken to be
empty.

It is not known whether the PFA also works for (1) in the Main Theorem. In other
words, the following is open:

Problem 1. Does the PFA imply that every T5 locally compact, locally connected
space is (hereditarily) scwH?

Remarkably enough, this remains unanswered if “the PFA” is replaced by “ZFC.”
Similarly, the following is open:

Problem 2. Is every locally compact, locally connected normal space scwH?

It would be enough to prove that any such space is cwH, since every normal cwH
space is scwH. By the Main Theorem, and the quick corollary mentioned above, Prob-
lem 1 is equivalent to asking that any such space is ω1-scwH. [Recall that T5 = hered-
itarily normal.] Neither local compactness nor local connectedness can be dropped in
Problem 1: under MA(ω1), implied by the PFA, adding ℵ1 points on the x-axis to the
open upper half plane in the Niemytzki tangent disk space results in a normal Moore
(hence T5) locally connected space that is not ω1-cwH, while adding ℵ1 points of the
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Cantor set to the full binary tree of height ω has the same effect, except that now the
resulting space is locally compact but not locally connected.

In Sections 1, 2, and 3, the only consequence of the PFA used in these sections is
MA(ω1), to give some purely topological axioms, and similarly modest consequences
of PFA(S)[S] will used. These consequences will be used on the base case of connected
spaces of Lindelöf degree ω1. The fictitious picture that confronts us there is that of a
tree of height ω1, with at most countably many limbs (but possibly uncountably many
twigs) at each fork, and twigs and barbed thorns growing out of its trunk and limbs.
In Section 1 we build such a base case space Y inside an arbitrary component of a
general space X as in the Main Theorem. In section 2, after some lemmas that will be
applied to any such space Y , we obtain a result for the special case of manifolds that
was originally obtained via algebraic topology [Ny3].

In Section 3, the bead strings of Y emerge, and are clipped to produce a space T
where their remnants look like thorns (perhaps with barbs) growing out of the limbs of
the tree. This sets the stage for Section 4, where, for the first time since Section 1, ZFC-
independent consequences of the PFA and PFA(S)[S] are brought into play. Due to
them, the space T shrivels down to a countable height, looking somewhat like a cycad,
with the bead strings of Y emanating from the tips of sharply pointed leaves. This
completes the case where the space has Lindelöf degree ω1 and sets a solid foundation
for the general case.

In the remaining sections, there are no new uses for the ZFC-independent axioms.
In Section 5, we start to build a tree for the Lindelöf degree > ω1 case, using some
maneuvering to overcome a hurdle at the ω1+1st stage, because the first ω1 stages may
not result in a closed subspace, and we need normality for the Section 4 core collapse.

In Section 6 units like that obtained at the end of Section 5 are used to accelerate
the analysis of the space and thus complete the proof of the Main Theorem.

Section 7 features some major consequences of the Main Theorem and of its proof
and gives a preview of a forthcoming paper, posing some additional problems. The
paper closes with a proof that the Main Theorem holds for a special class of T5 spaces,
the monotonically normal spaces, without using any axioms besides the usual (ZFC)
axioms.

All through this paper, “space” means “Hausdorff (T2) topological space.” Concepts
not defined here may be found in [E] or [W] or in a reference given when the concept
is first discussed.

1. The ω1-Lindelöf case: canonical sequences and associated trees

Up through Section 5, we will be mostly be considering a non-Lindelöf space Y as in
the Main Theorem, with the additional properties of being connected, and of Lindelöf
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degree ω1 (that is, every open cover has a subcover of cardinality ≤ ℵ1). In a locally
compact space, the latter property is easily shown to be equivalent to being the union
of ℵ1 open sets with compact closures. Such open sets form the most natural base for a
locally compact space, but we will often find it useful to use other kinds of basic open
sets. For example:

Lemma 1.1. Every locally compact space has a base of open Lindelöf subsets. If in
addition the space is locally connected, then the open Lindelöf connected subsets form
a base.

Proof. The first sentence has a quick proof using the fact that locally compact spaces
are Tychonoff. But here is a unified proof for both sentences.

Let X be locally compact. For each p ∈ X and open set G such that p ∈ G, let G0

be an open set such that G0 is compact and p ∈ G0, G0 ⊂ G. Suppose Gn has been
defined so that Gn is compact and Gi ⊂ Gn for all i < n. Cover the boundary of Gn

with finitely many open subsets whose closures are compact and contained in G. Let
Gn+1 be the union of Gn with these finitely many open sets; then Gn ⊂ Gn+1 and
the induction proceeds through ω. Let H =

⋃
∞

n=0 Gn; H is an open Lindelöf (because
σ-compact) neighborhood of p contained in G.

If X is, in addition, locally connected, let G0 be connected, and let all the open
sets covering the boundary of each Gn be connected and meet Gn. An easy induction
shows that each Gn is connected and so H is connected. �

We introduce an extension of the concept of a canonical sequence [Ny1], which is
the case C = ω1 of:

Definition 1.2. Let θ be an ordinal of uncountable cofinality and let C be a closed
unbounded (“club”) subset of θ. A canonical C-sequence in a space X is a well-
ordered family Σ = 〈Xξ : ξ ∈ C〉 of open subspaces of X such that Xξ is Lindelöf and

Xξ ⊂ Xη for all ξ < η in C, and Xα =
⋃
{Xξ : ξ < α} for all limit points α of C.

With a slight abuse of language, we let
⋃

Σ mean
⋃
{Xξ : ξ ∈ C} and will usually

suppress the C- prefix.

The proof of the Main Theorem involves the construction of a canonical sequence
for the components of a space X as described. In the nontrivial case where X has non-
Lindelöf components, the first ω1 stages will produce a subspace Y as above inside any
non-Lindelöf component of X. To get beyond the first ω stages under the PFA, we need
the following result. Its proof in [Ny2] has “hereditarily scwH” instead of “hereditarily
ω1-scwH,” but the proof goes through unchanged for the present wording.

Theorem 1.3. [MA(ω1)] In a locally compact, hereditarily ω1-scwH space, every open
Lindelöf subset has Lindelöf closure and hereditarily Lindelöf, hereditarily separable
boundary. �
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In particular, the boundary is first countable. This reduction of character plays an
essential role in Section 4.

The proof of Theorem 1.3 in [Ny2, Lemma 1.2] established the fact, true in ZFC,
that a hereditarily ω1-scwH space has the property that every open Lindelöf subset has
a boundary of countable spread. The place where Martin’s Axiom came in was that
MA(ω1) implies the following ZFC-independent axiom:

Axiom Sz. Every locally compact space of countable spread is hereditarily separable
and hereditarily Lindelöf.

When using PFA(S)[S], one uses the theorem that its weakening MAω1
(S)[S] implies

Axiom Sz [To]; a different proof is given in [LT].

Theorem 1.4. Under the hypotheses of the Main Theorem, if X is connected and of
Lindelöf degree (= ℓ(X)) ≥ ω1, then there is a canonical sequence Σ = 〈Xα : α ∈ ω1〉
in X such that each Xα is connected, open, Lindelöf, and properly contained in Xβ

whenever β > α. If X is of Lindelöf degree ω1, then
⋃

Σ = X is obtainable.

Proof. If we are not aiming for {Xα : α ∈ ω1} to cover X (which is impossible anyway
if ℓ(X) > ω1) the proof is very much like the proof of Lemma 1.1, but with some
numbers increased. We need not be concerned about Xα having compact closure if
α is a natural number, and cannot expect it if α ≥ ω. We do make X0 a connected
Lindelöf open subspace, and by MA(ω1) it will have Lindelöf closure.

In general, if Xα has been defined, we cover its boundary with countably many
connected Lindelöf open sets, each of which meets the boundary of Xα, and let Xα+1

be the union of Xα with the added sets. If α is a limit ordinal and Xξ has been defined
for all ξ < α, we do what is called for by 1.2, viz., let Xα =

⋃
{Xξ : ξ < α}. Since α is

countable, Xα is Lindelöf, etc.

To ensure that
⋃

Σ = X in case ℓ(X) = ω1, we utilize a theorem and a concept in
[W, 26.14, 26.15]. If S is a connected space, and U is any open cover of S, then any
two points p, q of S are connected by a simple chain in U .

That is, there is a finite sequence U0, . . . Un of members of U such that p ∈ U0 \
U1, Ui ∩ Uj 6= ∅ ⇐⇒ |i− j| ≤ 1, and q ∈ Un \ Un−1.

Let W = {Wξ : ξ < ω1}. Let X0 = W0. If Xα has been defined, we proceed as
above, but if Wα meets the boundary of Xα we include it in a countable cover of the
boundary of Xα. Otherwise, if Wα ⊂ Xα we define Xα+1 as before; if, in contrast,
Wα ∩Xα = ∅, we also pick a point pα on the the boundary of Xα and include in Xα+1

a simple chain in W, W (0), . . .W (n), such that pα ∈ W (0) and W (n) = Wα. �

It is useful to picture X as a tree, using the components of each open subspace of
the form X \Xξ as the “limbs” that start at the “fork” at the boundary of Xξ. Because
X is locally connected, each component is open. Note that “limbs” never re-connect:
if V is a component of X \Xη and W is a component of X \Xξ and η < ξ then either
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W ∩V = ∅ or W ⊂ V ; and then, W ⊂ V because Xξ is an open set containing V \V . In

general, the boundary of each component of X \Xα is a nonempty subset of Xα \Xα.

There are only countably many really large limbs at each fork:

Lemma 1.5. Under the hypotheses of Theorem 1.4, all but countably many components
of X \Xξ are subsets of Xξ+1 whenever ξ < ω1.

Proof. Let V be the (disjoint) collection of all components ofX\Xξ that meetX\Xξ+1.

Connectedness of each V ∈ V implies that V meets Xξ+1 \ Xξ+1. But this set is
hereditarily Lindelöf and so cannot contain a family of more than countably many
disjoint (relatively) open sets, so V must be countable. �

Rather than letting Y =
⋃
{Xα : α < ω1} be obtained by an arbitrary application of

the proof of Theorem 1.4, we will utilize Lemma 1.5 and Theorem 1.6 below to produce
a fast-growing “tree” inside X.

Theorem 1.6. Let X be a locally compact, locally connected space in which every open
Lindelöf subset has Lindelöf closure, and let V be a connected open subspace of X with
Lindelöf boundary. Then there is a connected, Lindelöf, V -relatively open neighborhood
H(V ) of bd(V ) in V .

Proof. Using Lemma 1.1, cover bd(V ) with countably many Lindelöf, connected open
sets Wn(n ∈ ω). Then bd(V ) is in the V -interior of

⋃
{Wn ∩ V : n ∈ ω} = W . The

boundary of W ∩V is the union of two disjoint closed sets, bd(V ) and the boundary B
in V of W ∩ V in X. If W ∩ V is not connected, each component meets B, so that if
H is a connected, Lindelöf, open subset of V containing B, then H(V ) = W ∪H is as
desired.

To obtain H, let D be a cover of V by connected Lindelöf open subsets and let
{Dn : n ∈ ω} ⊂ D cover B. For each i ∈ ω let Ci be a simple chain in D from Di to
Di+1. Let Ci =

⋃
Ci and let H =

⋃
∞

i=0 Di ∪ Ci. �

We now build {Yα : α < ω1} by induction, using an arbitrary {Xα : α < ω1} as
in Theorem 1.4 as a foundation. Let Y0 = X0. If Yα ⊃ Xα has been defined for
α ∈ ω1 so that Yα is connected, open, and Lindelöf, use Lemma 1.1 and Theorem 1.3
and the remarks following 1.3 to get a cover {Gn : n ∈ ω} of the boundary Yα \ Yα

of Yα by connected, open, Lindelöf subsets of X, each of which meets Yα, and let
Sα+1 = Yα ∪Xα+1 ∪

⋃
∞

n=0 Gn.

Then Sα+1 is Lindelöf, and as in Lemma 1.5, only countably many components of
X \ Yα meet X \ Sα+1. Let V be such a component. If V is Lindelöf, let H(V ) = V ,
otherwise let H(V ) be as in Theorem 1.6. Let

Yα+1 = Sα+1 ∪
⋃

{H(V ) : V is a component of X \ Yα that meets X \ Sα+1}.
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Then Yα+1 is clearly connected, open and Lindelöf. Letting Yα =
⋃

ξ<α Yξ whenever
α is a countable limit ordinal completes the construction of the canonical sequence
Σ(Y ) = 〈Yα : α < ω1〉. In particular, Yα is Lindelöf for all α by Theorem 1.3 and the
susequent remarks, and it is connected by the elementary fact that the closure of a
connected set is connected. Let Y =

⋃
{Yα : α < ω1}.

Lemma 1.7. Let α ∈ ω1 and let V be a component of X \ Yα. Then V ∩ Y is a
component of Y \ Yα. Moreover, V ∩ Yβ is connected and V ∩ Yβ = V ∩ Yβ for all
β > α. Also, if V has Lindelöf closure in X, then V ⊂ Yα+1.

Proof. First, suppose V has Lindelöf closure. If V ∩X \ Sα+1 = ∅, then V ⊂ Sα+1 ⊂
Yα+1. Otherwise, H(V )∩V = V ⊂ Yα+1 and so V ∩Y = V is a component of Yα+1\Yα

and hence of Y \ Yα.

If V has non-Lindelöf closure, then H(V ) is a connected subset of Yα+1 that contains
the boundary of V \ Sα+1. Also, H(V ) ∩ V is an open, connected subset of V and is
the only summand in the definition of Yα+1 that meets V . Therefore, H(V ) ∩ V =
H(V ) \ Yα = V ∩ Yα+1.

The component of Y \Yα that contains H(V )∩V must be a subset of V ; on the other
hand, Y is built up by induction in such a way that this component contains all points
of Y ∩ V . Indeed, the boundary of H(V ) ∩ V in V is the intersection of the boundary
of Yα+1 with V ; and the open summands in the definition of Yα+2 are all either subsets
of V or disjoint from V , and the union of the former with Yα+1 ∩ V is connected. The
rest of the induction works in the same way, so that V ∩ Yβ is connected for all β > α.

Obviously,

(1) V ∩ Yβ ⊂ V ∩ Yβ = (V ∩ Yβ) ∪ [V ∩ (Yβ \ Yβ)].

Since Yβ is open, it follows that (V ∩ Yβ) = V ∩ Yβ ⊂ V ∩ Yβ .

As for V ∩ (Yβ \ Yβ) = (V ∩ (Yβ) \ Yβ : points of Yβ \ Yβ are in the closures of

the individual components of Yβ \ Yα and there is no overlap where the closures meet

Yβ \Yβ , and so V ∩Yβ) \Yβ ⊂ V ∩ Yβ \Yβ , and the reverse containment is trivial. �

Lemma 1.8. Let α < β and let Vα and Vβ be components of Y \ Yα and Y \ Yβ

respectively, such that Vβ ⊂ Vα. Then Vα \ Vβ and Vα \ Vβ are both connected, and

Vα \ Vβ = Vα \ Vβ.

Proof. Since the closure of a connected set is connected, it is enough to show that
Vα \ Vβ is connected and that Vα \ Vβ = Vα \ Vβ .

Clearly, Vα = Vα \ Vβ ∪ Vβ , and so

(2) Vα \ Vβ is the union of Vα \ Vβ \ Vβ and Vβ \ Vβ .

but Vα \ Vβ ∩Vβ = ∅ because Vβ is open, so the first summand is simply Vα \ Vβ , which

is thus a subset of Vα \ Vβ . And since Vβ ⊂ Vα, the second summand is a subset of

Vα \ Vβ ⊂ Vα \ Vβ , so equality holds.
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To show Vα \ Vβ is connected, let W = (Vα \ Yβ) \ Vβ and let Z = Vα ∩ Yβ . Clearly,
W ∪ Z = Vα \ Vβ . So we will be done as soon as we show:

Claim 1. Z is connected.
and

Claim 2. V ∩ Z 6= ∅ for every component V of W .

Proof of Claim 1. We will show Z ⊂ Vα ∩ Yβ , from which Claim 1 follows because
Vα∩Yβ is connected by Lemma 1.7: in general, if A is a connected subset of a topological

space and A ⊂ B ⊂ A, then B is connected.

Now Y \ Yα is the topological direct sum of its components, one of which is Vα. So
if A ⊂ Y \ Yα, the closure of A in Y \ Yα is the union of the closures of the sets A ∩ V
where V ranges over the components of Y \ Yα. Applying this to A = Yβ shows that

Z ⊂ Vα ∩ Yβ .

Proof of Claim 2. Let V be any component of W ; then V is also a component of Y \Yβ .

Hence V ∩ Yβ 6= ∅, but V ⊂ Vα and so V ∩ Z 6= ∅. �

2. Singleton boundary components and the case of manifolds

As our first step in pinning down L and the bead strings in the Main Theorem, we
show what might be called the “Thorn Lemma”:

Lemma 2.1. Let X be a locally compact, locally connected space with a canonical C-
sequence Σ = 〈Xα : α ∈ C〉. Let α be a limit ordinal and let p ∈ Xα \ Xα. If p
is isolated in the relative topology of Xα \ Xα, and G is an open neighborhood of p
with compact closure, such that G ∩Xα \Xα = {p}, then there exists ξ < α such that
G ∩Xα \Xν is (nonempty, and) clopen in the relative topology of Xα \Xν whenever
ξ ≤ ν < α.

Proof. Since G is a neighborhood of p, and Σ is canonical, G ∩Xα \Xµ is nonempty
for all µ < α. If there is no such ξ, then there is an ascending κ-sequence 〈ξν : ν ∈ κ〉
(where κ is the cofinality of α) whose supremum is α and for which there exists aν ∈
G \ G ∩ (Xα \ Xξν ). Any complete accumulation point of A = {aν : ν ∈ κ} must be

in G and can only be p itself, but G is a neighborhood of p missing A, contradicting
compactness of G. �

Note that G ∩ Xα \ Xν = {p} ∪ (G ∩ Xα) \ Xν for all ν as in Lemma 2.1. In the
case of Y as constructed in Section 1, the structure of the “thorn” G ∩ Yα \ Yα can be
analyzed further.

Theorem 2.2. Let α be a countable limit ordinal. If p is isolated in the relative
topology of Yα \ Yα, there exists ξ < α and an open neighborhood G of p with compact
closure, such that

(a) G ∩ Yα \ Yα = {p};
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(b) G ∩ Yα \ Yξ = G ∩ Yα \ Yξ is clopen in the relative topology of Yα \ Yξ;

(c) Vξ ∩ Yα ⊂ G; and

(d) If ξ ≤ ν < α, and Vν is the component of Y \Yν containing p, then Vν∩Yα\Yα = {p},
and Vν is the only component of Vξ \ Yν that meets Y \ Yν+1.

Proof. Let G be an open neighborhood of p satisfying (a). Then (b) is immediate from
Lemma 2.1 and the fact that p is isolated in the relative topology of Yα \ Yα. To show
(c), use Lemma 1.7 (with ξ for α and α for β) to conclude that Vξ ∩Yα is connected. It

is also a subset of Yα \ Yξ, and has p in its closure, so it meets G, and is thus a subset
of the component of G that contains p and hence of G itself.

This also implies Vξ ∩ Yα = {p}. Of course, Vν ∩ Yα ⊂ G also for ξ ≤ ν < α and

so Vν ∩ Yα = {p}. Any component of Vξ \ Yν besides Vν is a subset of G and so has
compact closure. By the construction of Y in Section 1, it must therefore be a subset
of Yν+1. �

It is clear from (d) in Theorem 2.2 that {p}∪ (Vν ∩Yα) = Vν ∩Yα is a neighborhood
of p in the relative topology of Yα and that the set of all such neighborhoods is a
local base at p in the relative topology. An interesting consequence of (d) is that
Vν \ Yα = Vξ \ Yα(= {p} ∪ Vξ \ Yα) whenever ξ ≤ ν < α. Informally, the part of Vξ

above {p} is funneled through p, while the part below p is like a thorn, perhaps with
barbs represented by the Lindelöf components of Vξ \Yν for various ν above ξ; and the
part above p does not change as we move from one ν to another. This implies that {p}
is the boundary of a non-Lindelöf component of Y \ Yα.

The key lemma for our next theorem has as a corollary the well known fact that
every locally compact, totally disconnected space is 0-dimensional [E, Theorem 6.2.9].
Its proof is virtually the same as that of this corollary.

Lemma 2.3. In a locally compact space, every compact component has a neighborhood
base consisting of clopen sets.

The proof of the next theorem utilizes not only Lemma 2.3 but the proof of Lemma
2.1. Of course, its conclusion feeds directly into 2.1:

Theorem 2.4. Let α be a countable limit ordinal. If {p} is a component of Yα \ Yα,
then p is isolated in the relative topology of Yα \ Yα.

Proof. Let Bα = Yα \ Yα. Since Bα is locally compact and first countable, there is a
sequence 〈Kn : n ∈ ω〉 of compact clopen neighborhoods of p in the relative topology
of Bα, that form a base for the neighborhoods of p there. We assume Kn+1 ⊂ Kn for
all n, with the containment proper for all n if p is not isolated in Bα.

Let 〈αn : n ∈ ω〉 be a strictly increasing sequence of ordinals whose supremum is α.
For each n ∈ ω, let Gn be a connected open neighborhood of p in Y such that Gn is
compact and Gn ∩Bα = Gn ∩Bα = Kn.
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For each n, as in the proof of the Thorn Lemma (2.1), there exists k(n) such that
Gn ∩ Yα \ Yν is clopen in the relative topology of Yα \ Yν whenever ν ≥ αk(n). Let
〈νn : n ∈ ω〉 be a subsequence of 〈αn : n ∈ ω〉 such that νn ≥ αk(n).

Let Vn be the component of Y \ Yνn
that contains p. Then Vn ∩ Yα is a subset of

Yα \ Yνn
and is connected by Lemma 1.7, and meets Gn. Therefore, it is a subset of

Gn ∩ Yα \ Yνn
. Then Vn ∩ Yα ⊂ Gn. Again by Lemma 1.7, Vn ∩ Yα = Vn ∩ Yα, so that⋂

∞

n=0 Vn is the union of {p} with a (perhaps empty) family of (open) components of

Y \ Yα, all of which have boundary {p}.

Again by Lemma 1.7, each “closed wing” of the form Vn \ Vn+1 is connected. If p is
not isolated in Bα, then infinitely many of these “wings” meet Bα = Yα \ Yα.

Case 1. All but finitely many “closed wings” Vn \ Vn+1 are Lindelöf. Say Vn \ Vn+1 is
Lindelöf for all n ≥ m. By Lemma 1.7, none of the components of (Vn \ Vn+1) \ Yνn+1

reaches beyond Yνn+2
; but Yνn+2

∩ Yα \ Yα = ∅, a contradiction.

Case 2. There is a subsequence 〈ni : i ∈ ω〉 such that Vni
\ Vni+1

is not Lindelöf for all
i.

Claim. There is a point zni
on the boundary of Gni

in Vni
\ Vni+1

for all i. Once

this is proven, any limit point of the zni
’s is in

⋂
∞

n=0 Vn, but since none of the zni
’s is

in any component of Y \ Yα that has {p} as its boundary, the only possible limit point
of the zni

’s is p. However, G is a neighborhood of p that excludes every zni
, and we

get a contradiction as we did at the end of the proof of Lemma 2.1.

Proof of Claim. Note that Vni
\ Vni+1

is connected and that Vni
∩ Yα ⊂ Gni

.

Compactness of Gni
implies that (Vni

\Vni+1
)\Gni

is nonempty. If there were no such

zni
, then (Vni

\ Vni+1
) \Gni

and (Vni
\ Vni+1

) ∩Gni
would thus be nonempty, disjoint

open sets whose union is connected. �

All our efforts up to now have had the aim of extending the following key theorem
in [Ny3] to a carefully selected subspace of Y :

Theorem 2.5. If M is a connected Hausdorff n-manifold with n > 1 and Σ = 〈Yα :
α < ω1〉 is a canonical sequence for M with each Yα a proper subset of M , then there is
a canonical sequence Σ1 = 〈Mα : α < ω1〉 for M such that every point of Bα = Mα\Mα

is contained in a connected infinite subset Kα of Bα.

This theorem is the version of Lemma 2.6 of [Ny3] which was needed for the final
proof of the manifold metrization Theorem M [Ny5]. As actually stated, Lemma 2.6 of
[Ny3] had the additional condition of compactness for Kα. This can easily be obtained
by cutting an infinite connected Kα down if necessary, but it was not needed in [Ny5].
Our extension of 2.5, for which we need one more section, will play a similarly crucial
role in the proof of the Main Theorem.
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The remainder of this section is about the special case of Hausdorff manifolds and
can be skipped without loss of continuity. Readers interested in manifolds, on the other
hand, can read to the end of this section and then skip to Section 4 without loss of
understanding.

As part of the proof of Theorem 2.5 and hence of Theorem M in [Ny3] and [Ny5],
the following theorem was given a proof, due to David Gauld, using algebraic topology.

Theorem S. Suppose that D is an open, connected subset of Sn, and n > 1. Then for
every component C of the complement of D, the frontier of C is connected.

We can now give a short proof of Theorem 2.5 using elementary general topology,
which includes the fact that Rn \ {p} is connected for all p ∈ R

n if n > 1.

Proof of Theorem 2.5. By following the construction of Σ(Y ) in Sections 1 and 2, we
may assume that all the theorems and lemmas of these sections apply to Σ.

Claim. If α is a limit ordinal, then Kα exists for each point of Bα.

Once this claim is proved, let l(α) be the αth limit ordinal and let M0 = Y0 and
Mα = Yl(a) whenever α > 0. Then Σ1 is as desired.

Proof of Claim. Suppose Bα has a finite component, which must be a singleton {p}.
By Theorem 2.3, p is isolated in Bα. Let G be as in Lemma 2.1. We may take G to be
an open n-disk D in M with p in its interior. If D \ Yα 6= ∅, then D \ Yα and D ∩ Yα

are disjoint open subsets of D, making p a cut point of D, which is impossible. So
D ⊂ Yα, and D \ {p} is a connected subset of Yα.

By the proof of Lemma 2.1, there exists ξ < α such that D ∩ Yα \ Yξ is clopen in

the relative topology of Yα \ Yξ; therefore, D \ Yξ is clopen in the relative topology of

Yα \ Yξ. Let V be the component of M \ Yξ containing p. Since V ∩ Yα is connected
by 1.7 and meets D ∩ Yα \ Yξ, it follows that V ∩ Yα is a subset of D.

From the fact that D \ Yξ is clopen in Yα \ Yξ, it follows that D ∩ V is clopen in V .
Hence V ⊂ D, and so V has Lindelöf closure, but then V ⊂ Yξ+1, contradicting p ∈ V.
�

Those interested in seeing how Statement M was shown consistent can now skip to
Section 4 and see the key role played by Theorem 2.5.

3. Dealing with bead strings in the ω1-Lindelöf case

The “tree” introduced in Section 1 converts into a tree in the formal set-theoretic
sense if we make the “limbs” (i.e., the components of the various X \Xα) into elements
ordered by reverse inclusion. Trivially, the set of ⊃-predecessors of any element is well-
ordered.

A closely related tree was introduced in [Ny1] for canonical sequences Σ on locally
connected spaces Y of Lindelöf degree ω1. We now extend this to arbitrary spaces X
with canonical Σ as in Definition 2.1.
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Definition 3.1. Let X be a space with a canonical sequence Σ indexed by an ordinal
θ of uncountable cofinality and any club C ⊂ θ. The tree Υ(Σ) (or Υ(X) or simply Υ
if the context is clear) has as elements all boundaries bd(V ) = V \ V of components V
of some X \Xα whose closure V is not Lindelöf.

The order on Υ is from “bottom” to “top”, i.e., if V0 is a component of X \Xα and
V1 is a component of X \Xβ for some β > α, then we put bd(V0) < bd(V1) iff V1 ⊂ V0.

It is easy to see that bd(V0) < bd(V1) iff V1∩V0 6= ∅ iff bd(V1) ⊂ V0 iff bd(V1)∩V0 6= ∅.
We use the notation Υ(α) to denote the αth level of Υ (with the 0th level as its first
level), i.e., the set of members of Υ whose set of predecessors is of order type α. Note
that

⋃
Υ(α) is a (perhaps proper) subset of Xα \Xα.

The way Υ is defined, some members may form boundaries for more than one com-
ponent of X \ Xα, including perhaps uncountably many components with compact
closures. Also, distinct members of Υ may overlap, but not those from different levels.

A chain (that is, a totally ordered subset) of Υ that is bounded above need not
have a (unique) supremum. In particular, if Vξ is a component of X \ Xξ for all

ξ < η < γ, and Vη ⊂ Vξ whenever ξ < η < γ, and
⋂
{Vξ : ξ < γ} \Xγ has components

with non-Lindelöf closures, then the boundary of each one of these components has
{bd(Vξ) : ξ < γ} as its chain of predecessors in Υ.

If p is on the boundary of one of these components (call it Vγ), then (as noted

above) p ∈ Xγ \ Xγ . Moreover, if G is a connected open neighborhood of p, and
G ∩ X \ Vξ 6= ∅, then G meets the boundary of Vξ (otherwise G would be the union

of the disjoint nonempty open sets G ∩ Vξ and G \ Vξ). Hence, G meets the boundary
of every Vη for which ξ < η < γ. By local connectedness, p is in the closure of⋃
{bd(Vξ) : ξ < γ} if γ is a limit ordinal.

There is one important case where a chain that is bounded above in Υ has a unique
supremum; it is the first step in identifying the bead strings of the Main Theorem.

Lemma 3.2. Any bounded chain of singletons in Υ = Υ(Y ) has a singleton supremum.
Moreover, if {p} ∈ Υ(γ) is the supremum of a chain C of singletons without a greatest
element in the Υ order, then p is isolated in the relative topology of Yγ \ Yγ .

Proof. If a bounded chain C has a greatest element we are done with the first statement,
so suppose not. For each x ∈

⋃
C define ξ(x) so that x ∈ Yξ(x) \ Yξ(x). Let Vx be the

unique component of Y \ Yξ(x) such that {x} = bd(Vx) and such that if {x} < {y} ∈ C
then y ∈ Vx. Let γ = sup{ξ(x) : {x} ∈ C}.

Let p ∈ bd(V ), where V is a component of Y \ Yγ contained in
⋂
{Vx : {x} ∈ C}. By

the remarks preceding this lemma, p ∈ Yγ \ Yγ , and every neighborhood of p contains
a terminal segment (“tail”) of

⋃
C.
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Since X is Hausdorff, p is the only point of Yγ \ Yγ in the closure of
⋃
C. Hence {p}

is the unique supremum of C.

For the “moreover” part, it is enough to show that {p} is the component of p in
Yγ \ Yγ , in view of Theorem 2.4. And this follows quickly from the fact that this
component is a subset of

⋂
{Vx : {x} ∈ C}. [See also the next to last paragraph

preceding Lemma 3.2.] �

Beads are here formally defined with the above lemmas in mind, but for general X.

Definition 3.3. Let Υ be associated with a C-canonical sequence Σ on a locally
compact, locally connected, connected space X. An Υ-bead (or Σ-bead or bead if Υ or
Σ is clear) is a Lindelöf set of the form Vp \Wq, where {p} and {q} are in Υ; {p} < {q};
Vp is the component of some X \Xα such that the boundary of Vp is {p}; q is isolated

in the relative topology of Xβ \Xβ ; and Wq is the union of those components of X \Xβ

whose boundary is {q}.

In Σ(Y ), the Lindelöf property is enough to ensure that an Υ-bead as in 3.3 is a
subset of Yβ \ Yα. If p is isolated in the relative topology of Yα \ Yα, then the bead is

clopen in the relative topology of Yβ \ Yα, and in any case, removing p makes the rest

of the bead clopen in the relative topology of Yβ \ Yα.

The following corollary of Lemma 3.2 is the key to locating the “bead strings” of
the Main Theorem as applied to Y .

Corollary 3.4. If a branch of Υ(Y ) has uncountably many singletons, it has singletons
on a club set of levels of Υ(Y ).

Proof. This is immediate from the first sentence of Lemma 3.2 and the way the levels
of Υ(Y ) are indexed by ordinals. �

Let σ = {{pξ} : ξ ∈ C} be a chain of singletons of Υ(Y ), with pξ isolated in the

relative topology of Yξ \Yξ, such that C is a club in ω1. For each limit ordinal α ∈ C let
pα be associated with a ξ = ξ(α) < α as in Theorem 2.2. If α is not the least element
of C we may assume ξ(α) ∈ C. Let H(α) = Vξ(α) ∩ Yα.

By the Pressing-down Lemma there is an uncountable subset S of C and ξ ∈ C such
that ξ = ξ(α) all α ∈ S. Connectedness of the sets Hα ensures that pν ∈ Hα whenever
ξ < ν ≤ α and α ∈ S. Compactness of the sets Hα ensures compactness of all the sets
(Yβ∗ ∩Hα) \ Yβ , where ξ ≤ β < α, β ∈ C, and β∗ is the immediate successor of β in
C. With pβ playing the role of p and pβ∗ playing the role of q in 3.3, it is easy to see

that each of these sets (Yβ∗ ∩Hα) \ Yβ) is a compact Υ-bead. And so we have a bead
string exactly like in the Main Theorem for Y .

In preparation for the next section, we clip the bead strings near their bases, in the
following way. Given an uncountable branch B of Υ(Y ) in which the set C of singleton
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boundaries is cofinal, let m(B) be any pξ for which ξ is as in the preceding paragraph.
Let

T = Y \
⋃

{Vp : p = m(B) for some B as described}.

where Vp is the unique component of Y \ Yξ whose boundary is {p}.

This trims a collection of open subspaces off Y , so that T is a locally compact sub-
space of Y , and normal because it is closed. It is also connected and locally connected,
because of the following elementary theorem.

Theorem 3.5. Let P be a subspace of a connected and locally connected topological
space X, and let V = {Vp : p ∈ P} be a collection of disjoint open sets such that

Vp \Vp = {p} = Vp∩P for all p ∈ P . Then X \
⋃

V is connected and locally connected.

Proof. If X \
⋃

V is disconnected, let K0 and K1 be disjoint subsets of X \
⋃

V that
are closed there, hence in X, such that K0 ∪ K1 = X \

⋃
V. For each point x of Ki

let Ux be a connected open neighborhood such that Ux ∩K1−i = ∅. Then Ux \Ki is a
subset of

⋃
V. Since Ux is connected, it cannot meet any Vp without also containing p.

Indeed, the absence of p from Ux = (Ux ∩ Vp) ∪ (Ux \ Vp) would make Ux the disjoint
union of nonempty open sets. Let

Ui =
⋃

{Ux : x ∈ Ki} and let Wi =
⋃

{Vp : p ∈ P ∩Ki}.

If x ∈ Ki, then Ux ⊂ Ki ∪ Wi, so that Ui ∪ Wi = Ki ∪ Wi. Clearly, W0 ∩ W1 = ∅,
and Ki ∩ Wj = ∅ for all i, j. Hence, if we let Gi = Ki ∪ Wi, then G0 and G1 are
disjoint nonempty open subsets of X. Every point of P is in either K0 or K1, so that⋃
V = W0 ∪ W1, whence G0 ∪ G1 = X, and X is disconnected. This contradiction

shows X \
⋃
V is connected.

Local connectedness of X \
⋃

V follows easily. Let x ∈ X \
⋃

V. It is enough to show
that if Z is a connected open neighborhoood of x in X, then Z \

⋃
V is connected. If

we substitute Z for X, P ∩ Z for P , and {Vp ∩ Z : p ∈ P ∩ Z} for V in the argument
for connectedness of X \

⋃
V, we obtain connectedness of Z \

⋃
{Vp ∩Z : p ∈ P ∩Z} =

Z \
⋃

V. This last equality follows from the fact that Z cannot meet Vp without also
containing p. �

Let Tξ = Yξ ∩ T for all ξ ∈ ω1, let Σ(T ) = 〈Tξ : ξ ∈ ω1〉 and let Υ(T ) = Υ(Σ(T )).
We will refer informally to T as the “core” of Y .

There might still be chains of singletons in Υ(T ) of any countable order type, but
eventually each one must terminate in some {p} ∈ Υ(T ) above which all members of
Υ(T ) are infinite. We can go further, giving the extension of Theorem 2.5 that allows
us to generalize the proof of Statement M in [Ny5], and subsequently prove the Main
Theorem in the case of Lindelöf degree ω1.
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Theorem 3.6. There is a club set CT of limit ordinals in ω1 such that, for each
α ∈ CT , every component of Bα = Tα \ Tα is infinite.

Proof. Suppose not, then there is a stationary set S of limit ordinals in ω1 for which
there exists a singleton (quasi)component {pα} of Bα for all α ∈ S. By Theorem 2.2
and the following comments, there is for each α ∈ S an ordinal ξ < α such that, if Vξ

is the component of X \ Yξ to which pα belongs (so that Vξ ∩ Yα is a neighborhood of

pα in the relative topology of Yα), then Vξ ∩ Yα \ Yξ is clopen in the relative topology

of Yα \ Yξ.

By the Pressing Down Lemma, there is a fixed ξ which works for a stationary E ⊂ S,
and so there is an uncountable A ⊂ E such that all pα, α ∈ A share the same component
Vξ of Y \Yξ. But this means any two sets of the form Vξ∩Yα (α ∈ A) are ⊂-comparable,

because of the final clause in Theorem 2.2 (d). Therefore, Vξ ∩ Yα1
\ Yα2

is a compact
bead whenever α1 < α2 in A. But this contradicts the assumption that all these pα
are in T . �

4. The core of Y collapses under the main axioms

The stage is set for two applications of either of our main axioms (PFA and PFA(S)[S])
and one ZFC theorem, and of “normal” and “hereditarily ω1-cwH.” The argument is
essentially like that beginning with Lemma A in [Ny5], but instead of M standing for
a manifold of dimension > 1, we will let M = {Bα : α ∈ CT } (where Bα = Tα \ Tα).

Our strategy is to assume that the core T of Y is not Lindelöf and to get a proof by
contradiction. One outcome is that the only reason Y itself is not Lindelöf is that there
is at least one long bead string in Y . On the other hand, this also implies that there
are only countably many long bead strings in Y . This, together with a few routine
details, will finish the Lindelöf degree ω1 case of the Main Theorem.

Remark. To those familiar with the argument following Lemma A in [Ny5], the only
real difference beyond the choice of M is to let the set CW defined thereby be a subset
of CT as in Theorem 3.6.

We begin by recalling a concept introduced in [Ny3].

Definition 4.1. A subset S of a poset P is downward closed if ŝ ⊂ S for all s ∈ S,
where ŝ = {p ∈ P : p ≤ s}. A collection of subsets of a set X is an ideal if it is
downward closed with respect to ⊂, and closed under finite union. An ideal J of
countable subsets of X is countable-covering if J ↾ Q is countably generated for each
countable Q ⊂ X. That is, for each countable subset Q of X, there is a countable
subcollection {JQ

n : n ∈ ω} of J such that every member J of J that is a subset of Q
satisfies J ⊂ JQ

n for some n.

Lemma 4.2. [EN, Lemma 2.1] Let X be a locally compact Hausdorff space and let J
be the ideal of all countable subsets of X with compact closure. Then J is countable-
covering if, and only if, every countable subset of X has Lindelöf closure. �
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Definition 4.3. Axiom CC22 is the axiom that for each countable-covering ideal J
on a stationary subset S of ω1, either:

(i) there is a stationary subset A of S such that [A]ω ⊂ J ; or

(ii) there is a stationary subset B of S such that [B]ω ∩ J = ∅.

In other words, either every countable subset of A is in J or B ∩ J is finite for all
J ∈ J . As part of the proof of Theorem T [DT], it was shown that Axiom CC22 follows
from PFA(S)[S]. It was shown to be a consequence of the PFA in [EN].

The following Lemma from [Ny5] is implicit in the proof of Theorem 2.7 in [Ny3],
but we will isolate its proof here.

Lemma 4.4. If CC22 holds and X is a locally compact space in which every countable
subset has Lindelöf closure, and S is a stationary subset of ω1 and {xα : α ∈ S} is a
subset of X, then there is a stationary subset E of S such that either:

(1) {xα : α ∈ E} is a closed discrete subspace of X, or
(2) every countable subset of {xα : α ∈ E} has compact closure in X.

Proof. Let J be as in Lemma 4.2. If B is any subset of ω1 such that B ∩ J is finite
for all J ∈ J , then any compact neighborhood of any point can only contain finitely
members of {xα : α ∈ B}; consequently, if alternative (ii) of CC22 holds, then (1) will
hold. Otherwise, (2) obviously holds. �

We will apply Lemma 4.4 to M = {Bα : α ∈ CT }. The projection map π : M → ω1

that takes Bα to α is clearly continuous, and surjective if T is not Lindelöf, which is
what we are assuming here.

Lemma 4.5. Assuming CC22, M contains a perfect preimage, wrt π, of a copy of ω1.

Proof. Choose xα ∈ Bα for all α ∈ CT , and apply Lemma 4.4. If (1) were to hold,
there would be a closed discrete subspace of {xα : α ∈ CT } meeting the Bα’s indexed
by a stationary set. Then the ω1-cwH property of M would give a family of ω1 disjoint
neighborhoods, with the neighborhood of xα reaching back to some Bξ, ξ < α. Now
the Pressing Down Lemma gives one ξ that works for uncountably many α, but Bξ is
hereditarily Lindelöf, a contradiction.

So there is an uncountable subspace H = {xα : α ∈ E} such that each countable
subset has compact closure. Therefore, H is countably compact and meets each Bα for
which α ∈ E in a closed, hence compact set. The restriction of π to H is closed, because
if C is a closed subset of H, it is countably compact and hence has countably compact
image; but ω1 is first countable and so every countably compact subset is closed.
Finally, we use the elementary fact that every club subset of ω1 is homeomorphic to
ω1. �

Now we use the following axiom, which Balogh showed to follow from the PFA (see
[D] for a proof) and which Dow showed [DT] to hold under PFA(S)[S]:
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Axiom B. Every first countable closed preimage of ω1 contains a copy of ω1.

LetW be such a copy in
⋃
{Bα : α ∈ CT }, with π→W = CW ⊂ CT . Let pα ∈ W∩Bα

for all α ∈ CW . Using Theorem 3.6, let qα be in the same component of Bα as pα.
Apply Lemma 4.4 to the open, hence locally compact space M \ W to produce a
stationary subset E of CW such that the closure F of qα : α ∈ E is countably compact,
hence has projection E ⊂ CW . Since F is disjoint from W we can apply Urysohn’s
Lemma to obtain a continuous function f : M → [0, 1] taking W to 0 and F to 1.
Because pα and qα are in a connected set Kα and qα ∈ F whenever α in E, each fiber
f←{r} meets π←α for each α ∈ E. The time is ripe to invoke:

Theorem 4.6. [Ny4, Theorem 2.3, in effect] Let Z be a space which is either T5 or
hereditarily ω1-scwH, for which there are a continuous π : Z → ω1 and a stationary
subset S of ω1 such that the fiber π←{η} is countably compact for all η ∈ S. Then Z
cannot contain an infinite family of disjoint closed countably compact subspaces with
uncountable π-images. �

Although Theorem 2.3 of [Ny4] had “scwH” rather than “ω1-scwH,” the proof goes
through without change. We apply this theorem using the sets Kα, α ∈ E. Let
xα ∈ Kα be chosen by induction so that f(xα) 6= f(xβ) for all β < α. As in the proof
of Lemma 4.5, use the ω1-cwH property and the Pressing-Down Lemma to eliminate
alternative (1) of Lemma 4.4. Alternative (2) then gives us a stationary subset S of E
such that every countable subset of {xη : η ∈ S} has compact closure in M .

Let Z be the closure of {xη : η ∈ S} in M . Clearly Z is countably compact, and

so Z ∩Bα is compact for each α ∈ S, again because Bα is hereditarily Lindelöf for all
α ∈ ω1. Now the image under f of {xη : η ∈ S} is an uncountable subset of [0, 1] and
so has c-many condensation points. For each condensation point p and each countable
ordinal α0, there is a strictly ascending sequence of ordinals 〈αn : n ∈ ω〉 and points
xηn

∈ Kηn
for n > 0 such that |p− f(xηn

)| < 1/n.

Let α = sup{αn : n ∈ ω}. Since Z is countably compact, there is a point of Z ∩Bα

which is sent to p by f . Thus the sets Z ∩f←{p} are a family of c-many disjoint closed
countably compact sets with uncountable π-range.

This contradiction to Theorem 4.6 finishes the overall proof by contradiction by
showing Bβ = ∅ for all but countably many β, giving:

Theorem 4.7. The subspace T of Y is Lindelöf. �

And so, Y as a whole is the union of T with a set of unbounded strings of compact
beads, and since these strings all emanate from T , there are only countably many
of them. The proof of the Main Theorem will now be complete if we go a bit up
each unbounded bead string B. This string is associated with a branch B of Υ with
uncountably many singletons. Now m(B) remains in T , but all of B “above” this point
is in Y \ T . Let B0 ⊂ B be a bead which conforms to Definition 3.3, with p = m(B).
Let q = qB then be as in Definition 3.3, with {q} on a limit level in Υ, above that of p.
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Now let L = T ∪
⋃
{B0 \ {qB} : B ∈ B} where B is the set of countably many bead

strings that were clipped to produce T . Each B0 \ {qB} is Lindelöf, because qB is on
a limit level, and so L is also Lindelöf, and it is clearly open.

What remains of each B ∈ B is countably compact and noncompact, and together
they constitute a discrete collection of closed sets in Y . This completes the proof of
the Main Theorem for the case of Lindelöf degree ω1.

In preparation for the general case, we let Xα = Yα for all α < ω1, and Xω1
= Y , and

let Bω1
= Xω1

\Xω1
. Each singleton {p} ⊂ Bω1

is the boundary of some component
of X \Xω1

: otherwise, by local compactness, p and most of the bead string leading up
to it would have been in some Yα (α < ω1). This argument can be extended to show
that {p} must be the boundary of at least one component of X \Xω1

with non-Lindelöf
closure, but no more than finitely many. Indeed, by local compactness, all but finitely
many components of X \Xω1

with {p} as boundary are subsets of each neighborhood of
p, and are thus have compact closure. For the same reason, if there are no components
with non-Lindelöf closure, then the union of all these components with {p}, along with
the bead string leading up to p is Lindelöf. So here, too, this union is part of some
Yα (α < ω1).

5. Maneuver at stage ω1 when Lindelöf degree > ω1

The subspace Xω1
defined just now is not closed in X if the Lindelöf degree of X

is greater than ω1. This is not a problem if we assume our space is T5, and we can
proceed with Section 6.

However, if we assume (2) in the Main Theorem, this puts a hurdle in the way of
further progress: the argument in Section 4 will not go through without more careful
preparation if Xω1

is not normal. This preparation consists mostly of showing that
Xω1

has a canonical ω1-sequence in which all uncountable bead strings are closed in
X. We begin by recalling the following concept:

Definition 5.1. A space X satisfies Property wD if every infinite closed discrete sub-
space D of X has an infinite subspace D′ that expands [as explained in the introduction
following the Main Theorem] to a discrete collection of open sets.

Of course, every ω1-scwH space satisfies Property wD. So does every normal space,
because normal spaces are “ℵ0-collectionwise normal,” meaning that every countable
discrete family of closed sets has an expansion to open sets. The following is a special
case of Lemma 1.6 of [Ny4]:

Lemma 5.2. Let X be a locally compact space satisfying Property wD hereditarily, and
let X =

⋃
{Xα : α < θ}, with Xα ⊂ Xβ whenever α < β, and with Xα =

⋃
{Xξ : ξ < α}

whenever α is a limit ordinal. For each limit ordinal γ of uncountable cofinality, the
boundary of Xγ in X is a closed discrete subspace.
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Corollary 5.3. Xω1
\Xω1

is a (closed) discrete subspace of X.

Corollary 5.4. |Xω1
\Xω1

| ≤ ω1.

Proof. Otherwise, by a proof like that for Theorem 2.2, there is for each point p of
Xω1

\Xω1
an α < ω1 such that one of the components of X \Xα meets Xω1

\Xω1
in

{p}. But there cannot be more than ω1 such components altogether. �

Now we look at Xω1
as though it were all of X, and go through the procedure of

building 〈Yα : α < ω1〉 exactly as was done before Lemma 1.7, except that we label it
Σ∗ = 〈Y ∗α : α < ω1〉 and make sure Yα ⊂ Y ∗α for all α. However, now that each point
of Xω1

\ Xω1
has associated with it a component of some X \ Y ∗α whose closure is a

compact neighborhood of the point, the associated component now becomes a subset
of Y ∗α+1. And thus, Xω1

=
⋃
{Y ∗α : α < ω1}. Since Xω1

is closed in X, it is normal, etc.
and now we can collapse its core as in the preceding section.

Once the core is collapsed, it turns out thatXω1
\Xω1

is actually countable. This was
obvious in the T5 case since the points had to be at the end of uncountably long bead
strings, of which there were countably many. Here, with those points pulled back into
the various Y ∗α , it is because the points of Xω1

\Xω1
were in non-Lindelöf components of

X \Yα for some α, and there can be only countably many such components emanating
from each Yα, hence only countably many from each Y ∗α . And so there exists α ∈ ω1

such that Xω1
\Y ∗α consists of countably many bead strings, none of which have points

of Xω1
\Xω1

in their closure.

Now that Σ∗ has served its purpose, we revert to Σ = 〈Yα : α < ω1〉 as in the earlier
sections, so that now the points of Xω1

\Xω1
are at the end of long strings of compact

beads.

6. The dash to the finish

The analysis of X of Lindelöf degree > ω1 can now be completed in accelerated
fashion. With Xω1

as our foundation, we can jump ω1 +1 levels up in Υ(X) = Υ with
a construction like that in Sections 1 through 5. We repeat this as often as necessary (at
least up to ω2), with each jump beginning with some Xγ with closed discrete boundary

and ending in Xγ+ω1
.

It is helpful to go along one branch B of Υ(X) at a time, pausing at each level
Υ(γ) for which γ is either an ordinal of uncountable cofinality or the supremum of a
sequence of such ordinals. On such a level, there is exactly one isolated {p} in Υ(γ)∩B.
By a slight abuse of language, we call both p and {p} “jump points,” treating them
as prescribed in the preceding paragraph. After each sequence of jumps indexed by a
limit ordinal in its natural order, we have a single jump point on the branch B (as in
Lemma 3.2) unless the sequence is cofinal in B.
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Call a jump point {p} ∈ Υ(γ) “trivial” if the analogue of Xω1
immediately above it

and below level γ + ω1 is just a long string of compact beads, whose endpoints have a
supremum in

⋃
Υ(γ+ω1). The following lemma makes it easy to identify these points.

Lemma 6.1. Let p be a jump point in Bγ and let W be the union of all components

of X \Xγ with p in their closure. Then p is trivial if, and only if,

(1) A =: W ∩Xγ+ω1
is compact and

(2) W ∩Bγ+ω1
(= W ∩Xγ+ω1

\Xγ+ω1
) is a singleton.

Proof. Necessity is clear, so we show sufficiency. Compactness of A implies that all
long bead strings in A meet Bγ+ω1

. Condition (2) ensures that exactly one component
V of X \Xγ , [and indeed of X \Xγ+α for all countable α], has non-Lindelöf closure.
Finally, compactness of A implies that the Lindelöf space Lγ that corresponds to L has

compact closure. There is a countable limit α such that Lγ ⊂ Xγ+α and W ∩ Xγ+α

has discrete boundary. Exactly one point on this boundary is in the closure of the one
component of X \Xγ+α that has non-Lindelöf closure. The closure of this component

meets Xγ+ω1
in a compact bead string, and W ∩Xγ+α meets all the qualifications of

a compact bead. �

Lemma 6.2. Any ω-sequence of nontrivial jump points on a branch B of Υ is cofinal
in B.

Proof. Otherwise, by Lemma 3.2, the sequence 〈pn : n ∈ ω〉 converges on a point p for
which {p} is on a limit level α of countable cofinality. For each n ∈ ω let νn satisfy
pn ∈ Bνn

. By an easy exension of Theorem 2.2 to Σ(X) and ordinals of countable
cofinality, all but finitely many pn are in a compact clopen neighborhood of p, of the
form V ∩Xα in the relative topology of Xα, where V is a non-Lindelöf component of
X \Xξ for some ξ < α, such that Υ has no branches containing bd(V ) that branch off
above ξ but before α.

If pn ∈ V then V ∩Xνn+1
\Xνn

is easily seen to satisfy the properties of a compact
bead with endpoints pn and pn+1. And now, by Lemma 6.1, the part of B between
pn and pn+1 represents a string of compact beads, no matter how many trivial jumps
there are between pn and pn+1. This contradicts nontriviality of pn. �

Theorem 6.3. Υ has at most countably many nontrivial jump points and at most
countably many branches with no side branches and with terminal segments that are
copies of uncountable limit ordinals.

Proof. Let Ψ be the subtree {{p} : p is a nontrivial jump point} ∪ Υ(0) of Υ. Then
by Lemma 6.2, Ψ is of height ≤ ω; that is, every member of Ψ has at most finitely
many predecessors. Also, Υ(0) is countable, and each element {p} of Ψ has at most
countably many immediate successors in Ψ, and so Ψ is countable.

The terminal segments described in the statement of this theorem go with the sets
C in the “Moreover” part of the Main Theorem. Each one emanates either within
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Xω1
itself, or within an analogue of Xω1

immediately above a nontrivial jump point,
or from a trivial jump point such that all jump points above it (if any) are trivial, and
is minimal among the trivial jump points in this category. Let J be the set of these
minimal points. If x ∈ J , then {x} ∈ Υ(γ+ω1)∩V where V is a component of X \Xγ

with a member {p} of Ψ as its boundary. There can only be countably many such x
associated with a given {p} ∈ Ψ, so J is countable, and it quickly follows that the set
of all branches described in the theorem is countable. �

Finally, we clip the bead strings represented by the branches described in 6.3. In
Y = Xω1

we do it as we did when defining T , and follow a similar process for the
countably many analogues of Xω1

with nontrivial jump points on their boundaries.
Finally, for each x ∈ J , we remove B(x) \ {x} where B(x) is the unbounded string
of compact beads that has {x} as its boundary, except for x itself. Let L0 be what
remains.

Lemma 6.4. L0 is Lindelöf.

Proof. Let Q be the set of points on the boundaries of the excised bead strings. Each
{q} ⊂ Q is above at most finitely many members of Ψ, including a unique member of
Υ(0). Between successive members of Ψ below {q}, and between the last member of Ψ
below q and q itself, there is one analogue of Xω1

and at most one compact set, a bead
string. What remains of these analogues in L0 is Lindelöf. Now an easy induction,
jumping ω1 levels at a time all across Υ, shows that we have accounted for every point
of L0 \X0, which is thus Lindelöf, as is L0 itself. �

The proof of the Main Theorem will be completed once L0 is embedded in an open
Lindelöf subspace L which fits the description there. The only points of L0 that are not
in its interior are the points of Q. For each q ∈ Q let Bq be a compact bead for which
q plays the role of p in Definition 3.3, and for which the point q′ that plays the role of q
there is in Xα\Xα for some limit ordinal α. Since the union of an increasing ω-sequence
of such beads, together with the one point on the boundary of the union, also fits
Definitiion 3.3, there is no problem with doing this. Now L = L0∪

⋃
{Bq \{q

′} : q ∈ Q}
is as desired. In particular, its boundary is {q′ : q ∈ Q}, which is closed discrete; and
each q′ is in a unique bead string that was clipped to produce L0.

7. Corollaries of the Main Theorem, and a preview with some major open
problems

A very quick corollary of the main theorem is that every component of every space
X as described σ-countably compact: the subspace L is σ-compact, and “σ-[countably]
compact” means “the union of countably many [countably] compact subspaces.” This
in turn trivially implies X is “ω1-compact.” That is, every closed discrete subspace is
countable. [Another expression for this concept is “countable extent.”]
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A far more significant corollary of the Main Theorem has the same conclusion as a
corollary, for locally compact spaces, of a celebrated theorem of Balogh and Rudin on
monotonically normal spaces [BR]. Monotone normality is a very specialized property,
and replacing it with hereditary normality (T5) is a huge generalization, even at the
cost of adding “locally connected” to the hypothesis:

Corollary 7.1. Assume PFA(S)[S] and let X be a T5, locally compact, locally con-
nected space. If U is an open cover of X, then X = V ∪

⋃
W, where W is a discrete

family of copies of regular uncountable cardinals, and V is the union of countably many
collections Vn of disjoint open sets, each of which (partially) refines U .

Proof. It is enough to show 7.1 for the individual components since they are (cl)open by
local connectedness: the discrete families and partial refinements can be done on each
component separately and the union taken over all components. So we work directly
with an arbitrary component X.

As remarked at the end of Section 6, the complement of the open Lindelöf subspace
Xω is a discrete collection of countably many strings Bn of compact beads. The
endpoints of the beads in each Bn, taken together, form a closed copy θn of an ordinal
of uncountable cofinality.

For each bead B ∈ Bn, let B
′ = B\θn. Then B′ is open, and finitely many members

of U cover it because its closure is compact. Let V(B) be the set of intersections of B′

with these finitely many members of U . It is an elementary exercise to divide
∞⋃

n=0

⋃
{V(B) : B ∈ Bn}

into a countable family of disjoint open sets. Then a countable subcover of L as in the
Main Theorem can be trivially added. �

For easy reference, the conclusion of Corollary 7.1 will be referred to as “U has
a strong Balogh-Rudin refinement”. The reason for the word “strong” is that the
property they showed for monotonically normal spaces in general has copies of station-
ary subsets of regular uncountable cardinals, whereas Corollary 7.1 has copies of the
cardinals themselves.

The property that every open cover has a strong Balogh-Rudin refinement is so
powerful that, when it is added to the topological properties of X in the Main Theorem,
the relatively modest Axiom Sz is enough to give the conclusion for X. The argument
for this also gives the conclusion of the Main Theorem for monotonically normal, locally
compact, locally connected spaces without recourse to anything beyond the usual (ZFC)
axioms. See Corollaries 7.12 and 7.13 of Theorem 7.11 at the end.

In Corollary 7.1, we can substitute “normal and hereditarily ω1-scwH” for “T5” by
using (2) in the Main Theorem. With this substitution, PFA can be substituted for
PFA(S)[S], again by (2). The same substitution works for the following corollary [recall
T5 = hereditarily normal].
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Corollary 7.2. Assuming PFA(S)[S], every locally compact, locally connected, [hered-
itarily] normal space is [hereditarily] collectionwise normal (CWN) and [hereditarily]
countably paracompact.

Proof. This too can be proven just by using the components. By the Main Theorem,
each component is the union of countably many closed countably compact subsets;
for example, the subspace L is the union of countably many compact ones. So every
discrete collection of closed subsets is countable, and CWN follows from the elementary
exercise that every normal space is “ℵ0-collectionwise normal.”

Countable paracompactness follows quickly from the facts that regular Lindelöf
spaces are paracompact; that the Xω described at the end of Section 6 is Lindelöf;
and that each of the bead strings in the discrete family that covers X \Xω is countably
compact.

Hereditary normality in the hypothesis is enough to produce the “hereditarily” in
the conclusions: because every open subspace of every locally compact [resp. locally
connected] space is locally compact [resp. locally connected], so the first two para-
graphs apply to make every open subspace CWN and countably paracompact. And
now, use the well-known fact that a space is hereditarily {normal, CWN, [countably]
paracompact} iff every open subspace has the listed property. �

Corollary 7.3. [PFA] There are no locally compact, locally connected, hereditarily
ω1-scwH Dowker spaces.

Proof. A Dowker space is a normal space that is not countably paracompact, so this
is immediate from 7.2. �

Of course, PFA(S)[S] could have been substituted for PFA, and this newer axiom
also implies there are no locally compact, locally connected T5 Dowker spaces.

A different sort of corollary of the Main Theorem is a strengthening of the theorem
itself for the case of countably tight spaces. [Recall that a space X is countably tight if
for each A ⊂ X and each p ∈ A, there is a countable subset B ⊂ A such that p ∈ B.]

Corollary 7.4. Under the assumptions of either (1) or (2) of the Main Theorem, each
component of every locally compact, locally connected, T5, countably tight space is of
Lindelöf degree ≤ ω1 and is the union of a discrete collection of at most countably many
closed copies of ω1 and a disjoint union of open Lindelöf subspaces.

In particular, if the space has a countably tight compactification, then it is hereditarily
paracompact.

Proof. Let X be a component of a space as described. If X is Lindelöf, we are done;
otherwise, Xω1

\Xω1
must be empty: any point of it would be in the closure of a copy

W of ω1, yet not in the closure of any countable subset of W . Hence, Xω1
= X, and X

is therefore of Lindelöf degree ω1. The countably many closed subspaces are the copies
of ω1, each of which answers to the description of C in the Main Theorem.
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The beads are compact and so they cannot contain copies of ω1 either, since a point
in the closure of such a copy cannot be in the closure of a countable subset of it. When
the endpoints of any bead are removed, the components of the resulting open subspace
are Lindelöf under Case (1) because they satisfy all the other conditions of the Main
Theorem. As for Case (2), normality was never invoked until Section 4, and by the time
it was invoked, a copy of ω1 had already been produced. But this is a contradiction, so
the process of analyzing a component of the interior of a bead has to terminate with
Y = Yα, which is Lindelöf.

The foregoing argument can be readily adapted to show the “in particular” state-
ment, by showing that the compactification of the whole space cannot contain a copy
of ω1 and hence that every open subset of is the topological direct sum of open Lindelöf
subspaces, and hence is paracompact; and now we use the well-known fact in the proof
of Corollary 7.2. �

A forthcoming paper [Ny7] will begin the analysis of what happens if countable
tightness is dropped. In it, the additional assumption of hereditary normality seems
unavoidable because we do not have the control over open Lindelöf subspaces that we
had over Xω1

. At one stage in the process we arrive at something like Corollary 7.4,
but with a somewhat more complicated subspace replacing the union of copies of ω1.

Theorem 7.5. Under PFA(S)[S], every locally compact, locally connected, T5 space is
the disjoint union of a closed, rim-finite, monotonically normal subspace and a family
of disjoint open Lindelöf subspaces.

If a component is not Lindelöf, the rim-finite subspace incorporates the union of the
sets C described in the Main Theorem, but that is just the beginning. The interiors of
the beads described there not only do not have to have Lindelöf components; each can
be any locally compact, locally connected T5 space with any number of components.
In fact, the process that results in Theorem 7.5 is reminiscent of doing repeated mag-
nifications of the Mandelbrot set. However, this process does not stop after ω steps,
but could continue for an arbitrarily long time.

Further ongoing research leads naturally to a pair of conjectures involving the fol-
lowing concepts:

Definition 7.6. A point p of a space X is a local cut point if p has a connected
neighborhoood N of which it is a cut point. That is, N \ {p} is not connected. A point
p is a rim-finite-based point if it has a base of neighborhoods with finite boundaries.

Conjecture 7.7 [resp. 7.8]. Under PFA(S)[S], if X is a locally compact, locally con-
nected, T5 space, then X = R ∪ S where R and S are disjoint, R is monotonically
normal and consists of local cut points and rim-finite-based points, and S is first count-
able [resp. perfectly normal ] and locally compact, and is the union of a family of disjoint,
relatively open, Lindelöf subspaces.
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Recall that a space is perfectly normal if it is a normal (including Hausdorff) space
in which every closed set is a Gδ. Perfect normality and monotone normality are well
known to be hereditary properties, so such spaces are T5.

A much more speculative possibility is putting “metrizable” in place of “perfectly
normal,” although this is far from having been ruled out. The following problem is
even more ambitious.

Problem 3. Is it consistent (perhaps modulo large cardinals) that every locally com-
pact, locally connected, T5 space is monotonically normal?

An answer of Yes would have such far-reaching consequences that I have nicknamed
it “The Holy Grail”. For one thing, it would immediately imply that every compact,
locally connected, T5 space is the continuous image of a “generalized arc,” i.e., a
compact connected linearly orderable space. This is due to the exceptionally deep
theorem that every compact, locally connected, monotonically normal space is the
continuous image of such a space.

This theorem is a beautiful generalization of the Hahn-Mazurkiewicz theorem, which
had “metrizable” instead of “monotonically normal” and the closed unit interval in
place of “generalized arc.” The generalization was the culmination of well over four
decades of intensive research by many topologists, most relevantly Mardešic, Treybig,
Nikiel, and Mary Ellen Rudin, recounted in [Ma] in detail. The contribution of these
four is briefly outlined in [Ny6] [Treybig’s name was omitted due to an oversight]. A
large part of that research consisted of some exceptionally deep probing of the struc-
ture of continuous images of generalized arcs by several topologists. It uncovered a
wealth of information about these images and played a pivotal role in the proof of the
generalization.

Much of the structure theory of Treybig and Nikiel finds its echo in the work leading
up to Theorems 7.4 and 7.5, and towards Conjectures 7.7 and 7.8. So, even if Problem
3 has a negative answer, the two kinds of spaces have a lot in common under PFA(S)[S].

A Yes answer to Problem 3 would also provide one to the following question posed,
in effect, by Mary Ellen Rudin. [She specifically asked whether MA+¬CH would give
a Yes answer.] It is also Problem 4 in [GM], where a fascinating trichotomy problem
due to Gruenhage, and a mapping problem due to Fremlin, give two possible avenues
towards answering it.

Problem 4. Is it consistent that every perfectly normal, locally compact, locally con-
nected space is metrizable?

A Yes answer to Problem 4 would in turn solve a 1935 problem of Alexandroff:

Problem 5. Is every generalized manifold in the sense of Čech metrizable?

The one-point compactification of a Souslin line is a consistent counterexample (also
to Problem 4, of course). At one time it was generally believed that Mary Ellen Rudin
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had shown the consistency of a Yes answer to Problem 5, but that was due to a
mistaken idea of what a generalized manifold in the sense of Čech was. Similarly,
a 1949 problem of Wilder, asking whether a perfectly normal “generalized manifold”
was metrizable, remains open. [See [Ny2] for a discussion.] Both kinds of generalized
manifolds are perfectly normal, locally compact and locally connected, and so a Yes
answer to Problem 4 would imply ZFC-independence for both of these old problems.

To show why a Yes answer to Problem 4 is implied by one to Problem 3, we will
show that the following formal weakening of Problem 4, for which this same implication
is obvious, is actually equivalent to Problem 3.

Problem 4−. Is it consistent that every perfectly normal, locally compact, locally con-
nected space is monotonically normal?

That this is a weakening of Problem 4 is clear from the easy fact that every metrizable
space is monotonically normal. The following theorem takes us a good part of the way
to showing that this is only a formal weakening:

Theorem 7.10. The following are equivalent:

(1) There is a Souslin line.
(2) There is a monotonically normal, locally compact, locally connected, perfectly

normal space that is not metrizable.

Proof. A Souslin line is monotonically normal, as is every linearly orderable space, and
it is locally compact and locally connected. But it is not metrizable.

To show (2) =⇒ (1), we begin with the fact [BR] that every perfectly normal, mono-
tonically normal space is paracompact. Every locally compact, paracompact space is
the topological direct sum of Lindelöf (clopen) subspaces [E, 5.1.27], which in a locally
connected space can be taken to be the components. It is easy to see that the one-
point compactification of a Lindelöf, locally compact, locally connected, perfectly nor-
mal space has all these properties. So by the generalization of the Hahn-Mazurkiewicz
theorem, each component is the continuous image of a “generalized arc.”

Now, every perfectly normal Lindelöf space is hereditarily Lindelöf, hence it has
countable cellularity. This is referred to in [MP] as “the Suslin property,” and Corollary
6 in that paper is that the nonexistence of a Souslin line is equivalent to every countable
cellularity continuous image of a generalized arc being metrizable. �

The proof of equivalence of Problems 4 and 4− is completed by showing that, if
there is a Souslin line, and X is its one-point compactification, (which is also perfectly
normal, and locally connected) then X × [0, 1] is not monotonically normal, but is
locally compact, locally connected, and perfectly normal. Local compactness and local
connectedness are obvious. Perfect normality of the product follows from the general
theorem of Morita [Mo] that the product of a perfectly normal space and a metrizable
space is perfectly normal. Finally, Treybig showed [Tr] that if the product of two
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infinite compact spaces is monotonically normal, then both are metrizable. [Treybig
had “the continuous image of an ordered compact space” rather than “[compact and]
monotonically normal,” but Mary Ellen Rudin showed that the two are equivalent in
an extraordinarily deep paper.]

Incidentally, these two old results of Treybig and Morita give us an easy example of
a perfectly normal, compact space that is not monotonically normal: take the product
of the “double arrow” space (i.e., the lexicographically ordered product [0, 1] × {0, 1}
with the closed unit interval (or indeed any infinite compact metric space). This shows
how essential local connectedness is to Problems 3, 4 and 4−. It is also essential to a
ZFC theorem which will be shown in [Ny7]: the one-point compactification of every lo-
cally compact, locally connected, monotonically normal space is monotonically normal.
In contrast, Mary Ellen Rudin gave an example of a locally compact, monotonically
normal space whose one-point compactification is not monotonically normal [M]. To
complete the contrast, it is an easy exercise to show that the one-point compactification
of a locally compact T5 space is likewise T5.

There is no analogue of Morita’s theorem for T5 spaces, so that, e.g., the attempt to
use the lexicogaphically ordered unit square as above fails to produce a counterexample
to Problem 3. In fact, Katětov showed (see [E, hint to Problem 2.7.16]) that if X × Y
is T5, then either X is perfectly normal or all countable subsets of Y are closed. So if
both are locally compact and locally connected, then we are back to the situation of
Theorem 7.10, and have made no progress on Problem 3.

An exciting possibility is that Problem 3 may reduce to Problem 4 if Conjecture
7.8 is correct. If PFA(S)[S] (or PFA with the added hypothesis of ω1-scwh) were
to validate 7.8, then the problem would boil down to how the monotonically normal
subspace and the locally compact, perfectly normal subspaces relate to each other.
Given a structure like that given in the proof of Theorem 7.5, this is easily handled,
but work on Conjecture 7.7 and especially on 7.8 has not progressed that far yet. As for
Problem 4 itself, both PFA and PFA(S)[S] remain plausible candidates for showing that
Gruenhage’s conjectured trichotomy and Fremlin’s mapping statement are consistent.
As outlined in [GM], either result would give a Yes answer to Problem 4, with “The
Holy Grail” no longer a remote possibility.

One easy reduction of Problem 3 is its restriction to compact, connected spaces: if
X is locally compact, locally connected and T5, then each component is connected and
has the same properties, and the one-point compactification of a connected, locally
connected T5 space X likewise has these properties. [For local connectedness, take an
arbitrary compact subset K of X and show that (X \K)∪ {∞} has the property that
every neighborhood of K in X will contain of all but finitely many components of X \K
that have compact closure in X. This can be shown by an argument like that for the
Thorn Lemma 2.1.]

We now give a theorem and two corollaries illustrating the power of the strong
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Balogh-Rudin refinement property. Note the lack of any set-theoretic hypotheses (ex-
cept, as usual, ZFC).

Theorem 7.11. If X is a locally compact, locally connected, hereditarily ω1-scwH
space in which every open cover has a strong Balogh-Rudin refinement, and if

(†) every locally compact subspace S of X that has countable spread is heredi-
tarily Lindelöf,

then the conclusion of the Main Theorem holds for X.

Proof. As remarked after Theorem 1.3, the only place where MA(ω1) came into its proof
is with Axiom Sz, which states that (†) holds for all spaces. Now the conclusion of
Theorem 1.3 holds: every open Lindelöf subset ofX has hereditarily Lindelöf boundary,
and therefore Lindelöf closure.

Armed with this, we can establish everything about X in Sections 1, 2, 3, and 5,
with only Section 4 to be compensated for by the strong Balogh-Rudin property, after
which Section 6 goes through without any trouble. But it is not necessary to go through
all the details of Sections 1, 2, and 3. The necessary ones will be given below.

Begin with the special case where the Lindelöf degree ℓ(X) of X is ω1. Let Σ be a
canonical ω1-sequence 〈Xα : α ∈ ω1〉 as in 1.4. Let U be a cover of X =

⋃
Σ by open

sets with compact closures, so that each is a subset of some Xα. Let X = V ∪
⋃

W as in
7.1, so that V =

⋃
V, where V =

⋃
∞

n=0 Vn, and each Vn is a disjoint collection of open
sets. By taking components we may assume each member of each Vn is connected.

Each member of W is a copy of ω1—there is no other possibility since each W in W
is countably compact and noncompact and so its intersection with each Xα must be
countable. Hence, each W in W meets each X \Xα, and also each Xα beyond some
αW < ω1.

For ease of comparison with Sections 2 and 3, we make the change of notation
Y = X, Yα = Xα for all α ∈ ω1. Let

C = {α : for allV ∈ V, (V ∩ Yα 6= ∅ =⇒ V ⊂ Yα)}

Then C is a club. Closedness is trivial, and we use a standard leapfrog argument to
show that it is unbounded. Let α0 be any countable ordinal. The members of each Vn

are connected, and Yα0+1 \ Yα0+1 is hereditarily Lindelöf and disconnects Y , and Vn is
a disjoint collection for each n. Therefore, at most countably many members of each
Vn (and hence of V) that meet Yα0

will also meet Y \Yα0+1. Since these members of V
have compact closure, they are all contained in some Yβ , (β < ω1). Let the least such
β > α0 be α1. Now by induction we get a strictly increasing sequence 〈αn : n ∈ ω〉 with
αn+1 defined from αn in the same way that α1 was defined from α0. Let α = supnαn.
Then α ∈ C, because Yα =

⋃
{Yαn

: n ∈ ω}.

Simply because they are open, the members of V miss all the boundaries Bα = Yα\Yα

such that α ∈ C. The only sets in the cover of Y given by the Balogh-Rudin property
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that meet these boundaries are the members of W, and they are the only things in
Y that are holding it together. Since they are a discrete family, each point of Bα is
isolated in the relative topology of Bα whenever α ∈ C.

Now we can skip over the rest of Section 1 and go to the Thorn Lemma 2.1. For
each limit ordinal α ∈ C and each p ∈ Bα there is ξ < α and a compact, connected
neighborhood Dp of p such that Dp ∩ Yα \ Yξ is clopen in the relative topology of

Yα \Yξ. In each W ∈ W, the Pressing-down Lemma gives a uniform ξW that works for
an unbounded collection of points of W . We may assume, since W is discrete, that Dp

misses all members of W besides the member in which p is located. And this means
that if q is the unique member of Bα∩W , Dq must meet every Bν , ξW ≤ ν ≤ α, ν ∈ C,
in the singleton Bν ∩W . It is now easy to see that

SW =
⋃

{Dq : q ∈ W ∩Bα (α ≥ ξW )}

is a bead string as in the Main Theorem. Moreover, since SW is connected, it must
meet every Bα such that α ≥ ξW .

By connectedness of the V ∈ V, every member that meets some SW must be a
subset of SW . What is left of V after these members are accounted for is a collection of
open sets whose union misses M =

⋃
{Bα : α ∈ C}. And now the connectedness of Y

implies that these remaining members of V are all in Yα0
where α0 = min(C). Letting

L = Yα0
makes L a witness of the Main Theorem for Y , along with the discrete set

{SW \ Yα0
: W ∈ W} of closed countably compact subspaces.

When Y is a proper subspace of X, where ℓ(X) > ω1, we go through the maneuvers
of Section 5, where Σ∗ = {Y ∗α : α < ω1 is constructed. Then we apply the strong
Balogh-Rudin refining property to cℓX(Y ); this refining property is clearly inherited
by closed subspaces, and Σ∗ makes all unbounded copies of ω1 in Y with compact
closure in cℓX(Y ) \ Y into subsets of some Y ∗α . So now cℓX(Y ) is as in the conclusion
of the Main Theorem, and we can go through Section 6 after taking due note of the
last paragraph of Section 4. �

Corollary 7.12. Every monotonically normal, locally compact, locally connected space
is as in the conclusion of the Main Theorem.

Proof. Every monotonically normal space X satisfies (†) [O] and is hereditarily CWN,
and if X is locally compact, every open cover has a strong Balogh-Rudin refinement.
�

Corollary 7.13. If Axiom Sz holds, and X is a space satisfying the hypotheses of the
Main Theorem, and every open cover has a strong Balogh-Rudin refinement, then the
conclusion of the Main Theore holds for X.

Proof. Axiom Sz simply says that (†) holds for all locally compact spaces X. Now use
Theorem 7.11. �
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Finally, it may be worth remarking that neither Theorem 1.3 or any other result
in this paper used the full force of “hereditarily ω1-scwH.” Its weakening “hereditarily
wD” was enough for Section 5; and elsewhere, weakening to “hereditarily cwH” and/or
“hereditarily weakly ω1-scwH” was adequate:

Definition 7.14. A space X is weakly ω1-scwH if every closed discrete subspace D
of cardinality ω1 has an uncountable subset A ⊂ D with an expansion to a discrete
collection of open sets.

With considerable extra work, it is even possible to eliminate the reliance on “hered-
itarily wD” in Section 5, by using ideas in the proof of Theorem 2.4, and applying
Urysohn’s Lemma to the components of Xω1

\ Xω1
to show that they are singletons.

Details are left to the interested reader.
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