
NON-STRATIFIABILITY OF Ck(X) FOR A

CLASS OF SEPARABLE METRIZABLE X

Peter J. Nyikos

Abstract. If X is a separable 0-dimensional metrizable space in which every com-

pact subset is countable, then C(X) with the compact-open topology is stratifiable

iff X is scattered. This answers a question of Gruenhage and lends credence to a

conjecture of Gartside and Reznichenko.

A significant advance in our understanding of the compact-open topology was
made by Gartside and Reznichenko when they showed:

Theorem A. [1] Ck(X) is stratifiable whenever X is a Polish (= separable and
completely metrizable) space; in particular, Ck(P) is stratifiable.

Here P stands for the space of irrational numbers. As usual, Q and R will stand,
respectively, for the rational and real numbers with the usual topology. Theorem A
makes Ck(P) a prime candidate for a negative solution to the 43-year-old problem
of whether every stratifiable space is M1. The converse of Theorem A is also of
interest:

Problem 1. Let X be separable metrizable. If Ck(X) is stratifiable, must X be
completely metrizable?

Gartside and Reznichenko conjectured a positive solution to Problem 1, which
easily reduces to the 0-dimensional case [1, Proposition 27 (3)]. Since every scattered
metrizable space is completely metrizable, the only restriction on the following
partial solution to Problem 1 is in the last clause in the hypothesis.

Theorem 1. Let X be a 0-dimensional separable metrizable space which is not
scattered, and has the property that every compact subset is countable. Then Ck(X)
is not stratifiable.

Theorem 1 negatively answers the following question of Gary Gruenhage, which
he posed at the 2004 Spring Topology Conference in Lubbock, Texas; see also [2]:
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Problem 2. Is Ck(Q) stratifiable?

The proof of Theorem 1 rests on the following theorem of Gartside and Reznichenko,
[1] which dispenses with the need to define either the compact-open topology or
stratifiability.

Theorem B. Let X be a 0-dimensional separable metrizable space. Then Ck(X)
is stratifiable if, and only if, it is possible to assign to each clopen subset W of X a
compact F (W ) ⊂ W , and to each compact K ⊂ X a compact φ(K) ⊃ K in such a
way that, whenever W ∩ K 6= ∅, it follows that F (W ) ∩ φ(K) 6= ∅ also.

For convenience, we say X has the Gartside-Reznichenko property if it has as-
signments φ(·) and F (·) as above. It is by no means obvious that the Gartside-
Reznichenko property is inherited by closed subspaces, but that follows from an-
other theorem in [1]:

Theorem C. [1, Proposition 27 (1)] Let X be separable metrizable. If Ck(X) is
stratifiable, and Y is a closed subspace of X, then Ck(Y ) is also stratifiable.

An immediate corollary of Theorems 1 and C is that if a separable metrizable
space X has a closed subspace satisfying the hypothesis of Theorem 1, then Ck(X)
is not stratifiable. I am indebted to Gary Gruenhage for pointing out the following
corollary.

Theorem 2. If X is a coanalytic subspace of R, then Ck(X) is stratifiable if, and
only if, X is not a Gδ.

Proof. A subspace of a separable metric space is coanalytic if its complement is
analytic (that is, the continuous image of a Polish space). A coanalytic subspace of
R is not a Gδ iff it contains a closed copy of Q [3], [4, Theorem 21.18] and this in
turn implies Ck(X) is not stratifiable. Conversely, a subspace of a complete metric
space is completely metrizable iff it is a Gδ, and we have Theorem A. ¤
Corollary. A σ-compact metric space has a stratifiable Ck iff it can be given a
complete metric.

Proof. A σ-compact space is an Fσ in every Hausdorff space containing it, hence is
coanalytic. Now use the equivalence at the end of the preceding proof. ¤

To prove Theorem 1, we will show that if X satisfies its hypotheses, then no
pair of assignments {φ(·), F (·)} can witness the Gartside-Reznichenko property.
Our strategy will be to find a sequence of clopen sets Wn in X and a descending
sequence of collections of compact sets Kn such that

⋃∞
n=0 Wn is clopen, and such

that Wn ∩ φ(K) = ∅ for all K ∈ Kn but Wn ∩ K 6= ∅ for some K ∈ Ki when i < n.
Once this is done, we need only set W =

⋃∞
n=0 Wn: since F (W ) is compact,

F (W ) ⊂ ⋃n
i=0 Wi for some n; then Wn+1∩K 6= ∅ for some K ∈ Kn, but Wi∩φ(K) =
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∅ for i ≤ n, so W∩K 6= ∅ but F (W )∩φ(K) = ∅, and so X fails to have the Gartside-
Reznichenko property.

In the special case of Q, the sequences we seek can be found directly, but for the
general case we construct a whole tree of sets Wσ and Kσ and then show that this
tree must have some infinite branch which behaves as desired.

To carry out our strategy, we introduce the following concept. Call a collection
of countable (hence scattered) compact subsets of a metrizable space M large if
it has members of arbitrarily high countable scattered height. Clearly every large
collection is uncountable. Also, if every compact subset of M is countable, then
the union of every large collection of compact sets has noncompact closure, since
every countable compact space is scattered, and height does not increase in going
to subspaces. The following is also obvious:

Lemma 1. If a large collection is expressed as a union of countably many subcol-
lections, at least one of the subcollections must also be large. ¤

Similarly, we have:

Lemma 2. If K is large and {Vn : n ∈ ω} is a descending sequence of clopen sets
whose intersection is finite, then there exists n such that {K \Vn : K ∈ K} is large.

Proof. If Vn is as above and K is compact and αn ∈ ω1 is an upper bound for the
heights of the points in K \ Vn then supnαn + 1 is an upper bound for the heights
of the points in K. A proof by contrapositive is now immediate. ¤
Lemma 3. If M is a nowhere locally compact, 0-dimensional metric space, K is a
large collection of countable compact subsets of M , φ(K) is a compact set for each
K ∈ K, and C is a nonempty clopen subset of M , then there is a nonempty clopen
subset B of C such that {K ∈ K : B ∩ φ(K) = ∅} is large.

Proof. Let {Cn : n ∈ ω} be a descending sequence of nonempty clopen subsets of
C whose intersection is empty. By Lemma 1, all but finitely many Cn will do for
B. ¤
Proof of Theorem 1. By a well-known classical result, we may assume X ⊂ C where
C stands for ω2, a.k.a. the Cantor set. For each finite sequence σ of 0’s and 1’s,
let B[σ] be the basic clopen subset of C consisting of all points that extend σ. Let
B = {B[σ] : σ ∈ <ω2}. As is well known, B is a base for C, each member of which
is homeomorphic to C itself, with B[∅] = C.

Lemma 4. If K is large, and
⋃K ⊂ B[σ], then there are at least two sequences

σ0, σ1 of the same length extending σ such that K ¹ B[σi] = {K ∩B[σi] : K ∈ K} is
large for i = 0, 1.

` Proof of Lemma 4: Let σ ∈ n2 and let m > n. For each K ∈ K, some point of
maximal height in K is in one of the B[τ ](τ ∈ m2), so there is at least one τ ∈ m2 for



4 PETER J. NYIKOS

which K ¹ B[τ ] is large. Suppose there is only one for each m. Then the associated
clopen sets close down on a single point of C, and this contradicts Lemma 2. a

To continue the proof of Theorem 1, assume we are given a compact subset φ(K)
of X for each compact subset K of X. Define finite sequences σ and associated
points yσ ∈ B[σ], and sets Bσ ∈ B such that Bσ ⊂ B[σ], and large collections Kσ

of compact sets by repeated application of Lemmas 1 through 4, in the following
way. Begin with σ = ∅ and let y∅ be any point of C \ X in the closure of X. The
argument for Lemma 3 shows that there is some B∅ in the neighborhood base of y∅
such that {K ∈ K : φ(K) ∩ B∅ = ∅} (= K∅) is large.

Suppose yσ, etc. have been defined, in such a way that Kσ ¹ B[σ] is large, and
Bσ ∩φ(K) = ∅ for each K ∈ Kσ, and Bσ is a neighborhood of yσ in B[σ]. Applying
Lemma 4 to B[σ], let σ1 and σ2 be distinct sequences of the same length, extending
σ, for which Kσ ¹ B[σi] is large. Let yσi be a point of

⋃Kσ ∩ B[σi] \ X [overhead
bars denote closure in C] and let Bσi be a neighborhood of yσi in B[σi] for which
K = {K ∈ Kσ : φ(K) ∩ Bσi = ∅} is large. Let Kσi = K.

Once this induction is complete, the set of all σ for which yσ, etc. have been
defined is a copy of the full binary tree of height ω, and each branch defines a
unique point of C. Moreover, each such point is in X, but not all of these points
are in X, because the branches together define a copy of C.

Let y be one of these points in C \ X. The branch that runs to y defines a
sequence of clopen subsets Bσ ∩X of X. The union W of these sets is clopen since
they converge on y. Re-index the Bσ and the Kσ by the natural numbers in order
of the length of σ, and let Wn = Bn ∩X. These sets are exactly as required by the
strategy explained above. ¤

In the case of a countable space such as Q, a direct construction of the sets Wn

and Kn can be done as follows. List Q as {qn : n ∈ ω}. Let B be a countable base
for Q consisting of proper clopen subsets. Let B0 be a member of B for which there
is a large subcollection K0 of K such that B0 ∩ φ(K) = ∅ for all K ∈ K0. Using
Lemma 2, let V0 ∈ B be a neighborhood of q0 such that {K \ V0 : K ∈ K0} is large.

Suppose Ki, Bi and Vi have been defined for all i ≤ n in such a way that
{K \ (V0 ∪ . . . ∪ Vi) : K ∈ Ki} is large and φ(K)∩Bi = ∅. Let B be a member of
B that meets the perfect core (that is, the union of the dense-in-itself subspaces) of⋃Kn and misses V0 ∪ · · · ∪ Vn, and for which the following is a large subcollection
of K:

{K \ (V0 ∪ · · · ∪ Vn) : K ∈ Kn and B ∩ φ(K) = ∅}
Let Bn+1 = B and let

Kn+1 = {K ∈ Kn : Bn+1 ∩ φ(K) = ∅}.
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Let Vn+1 ∈ B be a neighborhood of qn+1 such that {K\(V0∪· · ·∪Vn+1) : K ∈ Kn+1}
is large. It is easy to show that the union of the sets Wn = Bn is as desired.

In any 0-dimensional separable metric space not covered by Theorem 1, we may
assume without loss of generality that φ(K) is always uncountable. So we need
some other concept of “large” collections of compact sets. However, every concept
of “large” I have considered to date runs into difficulties, even for special kinds of
spaces. For example, if X is Baire, a natural concept for “large” is “having a union
which is of second category in X.” This makes Lemmas 1 through 4 easy to verify
(with “countable” omitted from Lemma 3 and X used in place of M), but I have
not been able to ensure that the binary tree of Bσ’s does not give a compact space
that is completely in X.

In the opposite case where X is a countable union of nowhere dense subsets, one
can hope for a modification of the direct proof for Q which circumvents this last
hurldle. The idea is to find a concept of “large” which allows us to replace qn with
a closed nowhere dense set Cn and to have Lemma 2 also handle the case when the
clopen sets close down on some Cn.

A natural idea here is to take “K is large” to mean “K cannot be dominated
by countably many sets which are the union of finitely many Cn and of compact
sets” [meaning: there is no countable collection of sets Fn, each a union of finitely
many Ci and of compacta, such that every member of K is contained in some Fn].
However, there are difficulties even with the unmodified Lemma 2. On the other
hand, either form of Lemma 2 can be taken care of if we modify this choice of “large”
to say that if A is the set of points p such that every neighborhood of p meets a
subfamily of K which cannot be dominated by countably many Fn as above, then
A has nonempty interior; but then Lemma 1 breaks down.
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