
Discontinuities and smooth curves in n-space

I proved a strengthened converse to a theorem in our calculus text (Anton et
al.) and would like to find out whether it is known already. The textbook theorem
clearly extends to all n ≥ 2:

Theorem 1. If the limit of a real-valued function on R
2 exists at a point p, then

it will also be the limit along any smooth curve through p.

The text also states the contrapositive in the following form: if the limit of f
fails to exist on some smooth curve through p, or if f approaches different limits at
p along two smooth curves, then the limit at p does not exist.

Definition 1. A smooth curve is the range of a C∞ function c : R → R
n whose

derivative is never the zero vector.

By the way, our calculus textbook defines “smooth” using C1 instead of C∞, but
Theorem 1 and Theorem 2 (below) hold with either definition.

The part about c′(t) never being 0 for a smooth curve is important. The existence
of such a parametrization c is equivalent to the curve having a tangent line at each
point. Without this restriction, we would be able to remove all hint of agreement
between the limits along curves in the converse of Theorem 1. See Corollary 1
below.

Even as it is, we can confine ourselves to straight lines where disagreement is
needed:

Theorem 2. If f is a real-valued function defined in a deleted neighborhood of p
in R

m, and the limit of f at p does not exist, then either:
(1) there is a smooth curve through p on which the limit does not exist, or

(2) there are two straight lines through p on which the limits exist, but are unequal.

Moreover, if (1) fails, and r1 and r2 are distinct limits along two straight lines,
then every real number between r1 and r2 is the limit along some straight line through
p.

Example 1. In Theorem 2, alternative (1) can indeed fail: consider the unit ball
in R

3, endowed with parallels of latitude like our earth, 0 at the equator and 90 at
the poles (but no distinction between north and south, so that antipodes get the
same value). Extend this real-valued function from the unit sphere inward, except
to the origin 0, so that the resulting f is constant on each diameter (except for not
being defined at the center 0).

It is easy to see that on any smooth curve through 0, this function approaches
the value along the tangent line to the curve.
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Corollary 1. If f is a real-valued function defined in a deleted neighborhood of p
in R

n, and the limit of f at p does not exist, then there is a curve C through p
which is the range of a C∞ function, such that the limit of f does not exist on C.

Proof. Splice together two rays that start at p on which f approaches different
values, and parametrize the resulting angle so that we slow to zero velocity at p.
¤

To prove Theorem 2, we begin with a definition which extends the concept of
“tangent” from curves to sequences:

Definition 1. Let p ∈ R
m and let R be a ray starting at p. If 〈pn〉 is a sequence

converging to p, and an is the distance from pn to p while bn is the distance from
pn to R, we say 〈pn〉 is tangential to R at p if pn 6= p for all n, but

lim
n→∞

bn

an

= 0.

This definition allows pn to be on R itself.

Lemma 1. If p ∈ R
n and pn → p, then there is a ray R starting at p and a

subsequence of 〈pn〉 that is tangential to R.

Proof. By translation-invariance of the key concepts we may assume p is the origin
0. Let π : R

m \ {0} → Sm−1 be the natural projection taking each open ray
through the origin to its point of intersection with the unit sphere. Without loss of
generality, we may assume the pn are indexed so in one-to-one fashion so that no
two are on the same ray.

Let 〈pni
〉 be a subsequence whose projection converges to a point q ∈ Sm−1. Let

R be the ray from 0 to q. Then 〈pni
〉 is tangential to R. Indeed, if ci is the distance

from π(pni
) to R, then by similar triangles, bni

/ani
= ci → 0. ¤

Lemma 2. Let 0 be the origin in R
m. We may assume without loss of generality

that p is the origin 0. If 〈pn〉 is tangential to a ray R at 0, then there is a C∞

function h : R → R
m with nowhere zero derivative, whose range passes through

infinitely many of the points pn.

Once Lemma 2 is proved, we can prove Theorem 2 as follows. Suppose first that
f is unbounded in every neighborhood of 0. Then there is a sequence 〈pn → 0 such
that f(pn) is monotone and unbounded. If h is as in Lemma 2, then its range is a
smooth curve through 0 which witnesses alternative (1) of Theorem 2.

If f is bounded in some neighborhood of 0, then there are sequences 〈pn〉 and
〈qn〉 converging to p such that 〈f(pn)〉 and 〈f(qn)〉 converge to different numbers
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r1 and r2. By Lemma 1 we may assume that 〈pn〉 and 〈qn〉 are tangent to rays R1

and R2, respectively. Let Li be the line through p extending Ri. If f ↾ Li does not
have a limit at p then we have alternative (1). If it has a limit xi for both i but
ri 6= xi for some i, then connecting the range of h through p with the ray opposite
Ri gives a smooth curve witnessing (1). Otherwise L1 and L2 witness (2).

Still assuming Lemma 2, we can prove the “moreover” part as follows. If (1)
fails, then the limit of f exists along every line through p but we have lines L1 and
L2 witnessing (2); let ri be the limit along Li. Let P be the plane determined by
L1 and L2, and let Ri be either ray of Li starting at p. Let A be a closed arc of the
unit circle of P starting at R1 and ending at R2. For each ray R starting at p and
passing through A, let a(R) be the point in R ∩ A.

Claim. If ℓ(R) is the limit at p of f along R, then the function g taking a(R) to
ℓ(R) is continuous.

Once the claim is proved, connectedness of A insures that every point between
r1 = ℓ(R1) and r2 = ℓ(R2) is of the form ℓ(R) for some ray R that meets A, and
Theorem 3 is proved.

Proof of Claim, still assuming Lemma 2. Suppose not, i.e., suppose we can have
an → a but not g(an) → g(a). Let pn be chosen on the ray through an so that
pn → p. Then 〈pn〉 is tangential to the ray through a, but some subsequence either
is unbounded or approaches a number r1 other than g(a) = x1. Now argue as before
to get a contradiction to the assumed failure of (1). This completes the proof of
Theorem 2, modulo:

Proof of Lemma 2. By a symmetry argument, we may assume R is the positive x-
axis R

+ ×{0} · · ·×{0}. Also, since differentiation goes coordinatewise, it is enough
to prove Lemma 2 for m = 2. By taking a subspace if necessary, we may assume the
second coordinate of pn = (xn, yn) is monotone, and so without loss of generality
we may assume 〈yn〉 strictly decreases to 0, the case where infinitely many yn equal
0 being trivial.

There is a standard example of a C∞ function g : R → R that is identically 0 on
(−∞, 0], monotone, and identically 1 on [1,∞) [2, Example ]. Similarly, (a, b) and
(c, d), where a < c, can be joined by the graph of h(x) = kg(x − a) + b, where k
is the slope of the line joining these two points. Since 〈pn〉 is tangential to R, it is
easy to inductively choose ni so that if gi(x) = kig(x− xni+1

) + yni+1
joins pni+1

to
pni

, then ki converges to 0 and hence so does the maximum value of each derivative
of gi as i → ∞. Since all derivatives of giA are 0 at xni+1

and xni
, a smooth curve

results when we join the negative x-axis and the horizontal line y = y1 to the union
of the graphs of the gi. With f : R → R the function whose graph this curve is,
the parametrization c(t) = (t, f(t)) is C∞, and the first coordinate of the tangent
vector is 1 everywhere. ¤


