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Abstract

In this paper we establish that any well-pruned ω1-tree, T , admits

an ω1-compact Type I manifold if T does not contain an uncountable

antichain. If T does contain an uncountable antichain, it has been shown

that whether or not T admits an ω1-compact manifold is undecidable in

ZFC.
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1 Introduction

In [G] the question of whether or not an arbitrary tree admits a Type I manifold
was examined. First, an arbitrary tree admits a Type I manifold if and only
if it is an ω1-tree and well-pruned. It was found that under the axiom ♦, any
well-pruned ω1-tree admits an ω1-compact manifold, whereas under the axiom
(∗), if a well-pruned tree T admits an ω1-compact manifold, then T does not
contain an uncountable antichain. It was also shown, in ZFC, that any well-
pruned ω1-tree which did not contain an uncountable antichain or a Souslin
subtree admits an ω1-compact manifold. We now show that it does not matter
whether T contains a Souslin subtree.

A tree, 〈T,≤〉, which we will denote simply as T , is a partially ordered set
such that for each t ∈ T the set of predecessors of t, {s ∈ T : s < t}, is well-
ordered. We will assume throughout that T has a single least element called
the root of T .

Definition 1.1. Let T be a tree.

(a) If t ∈ T , t̂ = {s ∈ T : s < t}.

(b) For each ordinal α, the α-th level of T , or T (α), is the set {t ∈ T (α) :
t̂ has order type α}.
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(c) Tα is the subtree
⋃

β<α T (β).

(d) If t ∈ T (α) for some ordinal α, t+ = {s ∈ T (α+ 1) : s > t}.

(e) The height of T is the least ordinal α such that T (α) = ∅.

An ω1-tree T has height ω1 and each level T (α) is countable.
A space X is of Type I if it is the union of an ω1-sequence Σ = {Uα : α < ω1}

of open subspaces such that Uα ⊂ Uβ whenever α < β, and such that Uα is
Lindelöf for all α. If in addition Uα =

⋃

β<α Uβ for any limit ordinal α, then Σ
is a canonical sequence for X.

We will assume from now on thatM is a nonmetrisable manifold. Given any
canonical sequence Σ for a manifold M , it is possible to relate Σ to an ω1-tree.
Nyikos [N] defines such a tree, Υ(Σ), as follows:

Definition 1.2. Let M be a Type I manifold, and let Σ = 〈Uα : α < ω1〉 be
canonical for M . The tree of non-metrisable-component boundaries associated

with Σ, denoted Υ(Σ), is the collection of all sets of the form ∂C such that C is
a nonmetrisable component of M r Uα for some α, with the following order: if
τ, σ ∈ Υ(Σ), then τ < σ iff σ is a subset of a component whose boundary is τ .

We usually denote this tree by just Υ if Σ is clear, and refer to it as an
Υ-tree. We say that a tree admits a manifold with property P , if there exists a
Type I manifold with property P , and with an Υ-tree isomorphic to T .

2 ω1-compactness

Definition 2.1. A space is ω1-compact if it does not contain an uncountable
closed discrete subset.

Theorem 2.2. If T is a well-pruned ω1-tree which does not contain an uncount-

able antichain, then there exists an ω1-compact Type I manifold whose Υ-tree is

T .

Proof. We will use induction to construct a manifold M by defining an open
Lindelöf subset Uα for each α ∈ ω1, so that

⋃

α∈ω1
Uα is the underlying set for

M , and Σ = 〈Uα : α ∈ ω1〉 is a canonical sequence.
Let U0 = (−1, 1)× (−1, 0) with the usual topology.
We will use the following notation:
• For each t ∈ T let It be a copy of (−1, 1)× [0, 1) with the usual topology,

and denote the point in It corresponding to 〈x, y〉 by It〈x, y〉. (For each α the
underlying set for Uα is ∪{Is : s < t, t ∈ T (α)} ∪ U0, and (−1, 1) × {0} will be
the boundary component in Υ(Σ) corresponding to t.)
• For each α ∈ ω1 and t ∈ T (α), if α is a successor ordinal define it : It →

(−1, 1) × [α, α + 1) by it(It〈x, y〉) = 〈x, α + y〉. If α is a limit ordinal define
jt : It → (−1, 1)× [1, 2) by jt(It〈x, y〉) = 〈x, 1 + y〉.
• For each t ∈ T let Bt = (

⋃

{Is : s ≤ t} ∪ U0). In each case Bt will be
associated with an embedding ht : Bt → (−1, 1)× (−1, α+ 1), where t ∈ T (α),
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and will therefore have a coordinate system determined by this embedding. We
will denote h−1

t (〈x, y〉) by 〈x, y〉t.
• For each t ∈ T let {tn : n < |t+|} denote the successors of t.
• For each successor ordinal α, pick a homeomorphism

fα : (−1, 1)× (−1, α+ 1)→ (−1, 1)× (−1, α),

satisfying the following properties:

(i) fα((−1, 1)× (α, α+ 1)) = A, where

A =

{

〈x, α− 1 + y〉 : (−1 < x < 0) ∧

(

1

2
(x2 + 1) < y <

1

2

(

+
√

|x|+ 1
)

)}

;

(ii) fα((−1, 1)× ({α}) = ∂A, where

∂A =

{

〈x, α− 1 + y〉 : (−1 < x < 0) ∧

(

1

2
(x2 + 1) = y

)

∨

(

y =
1

2

(

+
√

|x|+ 1
)

)}

;

(iii) fα((−1, 1)× (α− 1, α) = (−1, 1)× (α− 1, α) r (A ∪ ∂A);

(iv) ∀x ≤ 0, fα({x} × (α− 1, α)) = {x} × (α− 1, α− 1 + 1
2 (x

2 + 1));

(v) ∀x > 0, fα({x} × (α− 1, α)) ⊂ (−x, x)× (α− 1, α); and

(vi) fα ¹ (−1, 1)× (0, α− 1] is the identity.

Denote the root of T by r and define hr : Br → (−1, 1) × (−1, 1) to be the
identity on U0 and let hr(Ir〈x, y〉) = 〈x, y〉 for each Ir〈x, y〉.

Suppose α is a successor ordinal, Uα has been defined and for each t ∈
T (α − 1), ht has been defined. Define ht0 : Bt0 → (0, 1) × (0, α + 1) by letting
ht0 ¹ Bt = ht and ht0 ¹ It0 = it0 . If t has more than one successor, we will now
define for each n > 0 a function

ϕtn :



Bt ∪
⋃

m≤n

Itm



→ (−1, 1)× (−1, α+ 1)

and htn is then ϕtn ¹ Btn .

Let ϕt0 = ht0 . If ϕtn has been defined, let ϕtn+1 ¹

(

Bt ∪
⋃

m≤n Itm
)

=

fα ◦ ϕtn and ϕtn+1 ¹ Itn+1 = itn+1 .
Topologise Uα+1 so that each ϕtn is a homeomorphism. Note that this is

well defined and consistent with the topology on Bt. Let Uα+1 =
⋃

n<|t+|Btn

have the direct limit topology.
If α is a limit ordinal, let Uα = ∪β<αUβ with the direct limit topology. It

remains to define Uα+1.
Consider the equivalence classes: [t] = {s ∈ T (α) : ŝ = t̂}. For each equiva-

lence class pick a member t = t0 and denote the other members t1, t2 etc. Pick
a homeomorphism

gα : (−1, 1)× (−1, α+ 1)→ (−1, 1)× (−1, 2)
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which preserves the first coordinate of each point, preserves horizontal lines, and
such that gα((−1, 1)× (−1, α]) = (−1, 1)× (−1, 1], and define e[t] :

⋃

s<tBs →
(−1, α) by

e[t](Is〈x, y〉) = hs(Is〈x, y〉).

For each equivalence class [t], define ht : Bt → (0, 1) × (0, α + 1) by letting
ht ¹

⋃

s<tBs = e[t] and ht ¹ It = it.
If |[t]| > 1 we define for each n > 0 a function

ψtn : (∪s<tBs) ∪ (∪m≤nItm)→ (−1, 1)× (−1, 2)

and htn will be (g−1
α ◦ ψtn) ¹ Btn . Let ψt = gα ◦ ht and if ψtn has been defined

let
ψtn+1 ¹ ∪s<tBs ∪ (∪m≤nItm) = f1 ◦ ψtn

and ψtn+1 |Itn+1 = jtn+1 . Topologise Uα+1 so that each ψtn is a homeomorphism.
For each α ∈ ω1, Uα is Lindelöf since T (α) is countable and for each t ∈ T (α),

BtrIt is homeomorphic to (−1, 1)×(−1, α). Uα is connected since U0 ⊂ BtrIt.
Clearly M is a manifold with Υ(Σ) = T .
We now show that M is ω1-compact. For any p ∈M , if s = min{t ∈ T ; p ∈

Bs}, let p = 〈p(x), p(y)〉s. Then for every t > s, if p = 〈x′, y′〉t, |x
′| ≤ |p(x)| by

properties (iv) and (v) of fα. Suppose X is an uncountable discrete set, then
there exist a, b ∈ (−1, 1) such that Y = {p ∈ X : a < p(x) < b} is uncountable.

In the order inherited from T , Y is a tree in which every antichain is count-
able because it is an antichain of T . Since Y is uncountable, it is an ω1-tree.
Hence there exists α < ω1 and t ∈ T (α) such that Bt ∩ Y is infinite, and since
h−1
t ((a, b)× (1, α+1)) has countably compact closure, Bt ∩Y has a limit in M .

Thus M does not contain an uncountable closed discrete set.

If T contains a Souslin subtree but is not Souslin, then T has at most count-
ably many uncountable paths which cease to branch at some level α say. The
manifold constucted in the proof above ensures that for each path P , P r Tα+1

is ω1-compact, as well as the Souslin subtree.
♦ implies that any well-puned ω1-tree, T , admits an ω1-compact manifold.

♦ is needed for the case when T contains an uncountable antichain. We will
consider one case in which ♣ is adequate to obtain an ω1-compact manifold
from a tree with an uncountable antichain.

Let ♣2 denote the following axiom: there is a family {λα : α < ω1} of
countable limit ordinals, and a family {Aα : α < ω1} such that:

1. both dom(Aα) and ran(Aα) are cofinal subsets of λα, of order type ω;
and,

2. if X is a subset of ω1 × ω1 that meets each subset of the form [α, ω1) ×
[α, ω1), then there exists α such that Aα ⊂ X.

We will call such a family {Aα : α < ω1}, a ♣2-sequence.

Theorem 2.3. ♣ implies ♣2.
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We use the following formulation of ♣: there exists a family

{Lγ : γ < ω1, γ is a limit ordinal}

such that each Lγ is a cofinal subset of γ of order type ω, and such that if X is
an uncountable subset of ω1, then there exists γ such that Lγ ⊂ X.

We will make use of the lemma below, [D, Theorem 4.3].

Lemma 2.4. If

{Lγ : γ < ω1, γ is a limit ordinal}

witnesses ♣, and X is an uncountable subset of ω1, then S = {γ : Lγ ⊂ X} is

stationary.

Proof of Theorem 2.3. Let ϕ : ω1 → ω1 × ω1 be a bijection, and let

C = {γ ∈ ω1 : ϕ([0, γ)) = [0, γ)× [0, γ)}.

A standard leapfrog argument shows C is a club. Let C ′ be the derived set of C
and for each γ ∈ C ′ let Bγ = ϕ(Lγ). Since Lγ is cofinal in γ of order type ω, at
most finitely many members of Bγ can be in [0, α)× [0, α) for any α < γ; hence
at least one projection of Bγ is unbounded in [0, γ). Let {λα : α < ω1} list in
order all members of C ′ such that both projections are unbounded ω-sequences
in λα. Let Aα = Bλα for all α.
Claim. A = {Aα : α < ω1} witnesses ♣2.

Proof of Claim. Suppose X meets every set of the form [α, ω1)× [α, ω1). Let
Y = {(βα, δα) : α ∈ ω1} be a subset of X such that

α ≤ min{βα, δα} ≤ max{βα, δα} < min{βε, δε}

whenever α < ε.
Since ϕ−1(Y ) is uncountable, there is a stationary set S such that Lσ ⊂

ϕ−1(Y ) for all σ ∈ S. Let γ ∈ C ′ ∩ S. Then Bγ ⊂ Y , and at least one
projection of Bγ is unbounded in γ. This forces both dom(Bγ) and ran(Bγ) to
be ω-sequences with supremum γ. So Bγ ∈ A and Bγ ⊂ X, as desired.

The following example demonstrates that the full strength of ♦ in Theo-
rem [G, Theorem 5.4], need not be necessary.

Example 2.5. Assume ♣. There exists an ω1-compact Type I manifold M ,
such that if Σ is any canonical sequence for M , Υ(Σ) contains an uncountable
antichain.

We will define a Type I manifold M with the underlying set:

{〈α, β〉 ∈ L
+ × L

+ : α, β 6= 0}r {〈α, β〉 : α ∈ [1, ω1), β ∈ ω1}.

Let T be the topology on M as a subspace of L
+ × L

+ with the usual
topology. For each α < ω1 let Uα = (0, α)2 ∩M . We will define a topology
on each Uα such that ∂Uα = {α} × [(0, α) ∩M ] ∪ (0, 1) × {α}, Uα ≈ R

2, and
〈Uα : α ∈ ω1〉 is canonical.
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LetMr
⋃

α<ω1
∂Uα have the topology inherited from T . Note that U0 = ∅,

and U1 has the usual topology, and hence U1 ≈ R
2.

Suppose α is a successor ordinal, the topology on Uα has been defined,
and Uα ≈ R

2. Then let Uα+1 be the connected sum of (0, α − 1
2 ]

2 ∩M , and
Uα+1 r (0, α− 1

2 )
2 with the topology inherited from T .

If α is a limit, Uβ has been defined for each β < α, and Uβ ≈ R
2 for each β,

let Uα = ∪β<αUβ with the direct limit topology. Since each Uβ ≈ R
2, Uα ≈ R

2

[B].
To complete the construction it remains to define the topology on Uα+1 when

α is a limit. We need only define a neighbourhood base for each x ∈ ∂Uα.
Let A = {Aα : α ∈ L} be a ♣2-sequence. Choose a function φα : Uα+1 →

Uα+1 such that:

(a) φα|Uα is an embedding;

(b) φα is the identity on the sets {(0, 1)×{β} : β ≤ α+1} and (0, 1
4 )×(0, α+1];

(c) for each 〈x, y〉 ∈ Uα+1, φα(〈x, y〉) = 〈x
′, y〉 for some x′ ≤ x;

(d) if β ∈ domAα, Aα ∈ A, then φα({1} × (β, β + 1)) and φα({α} × (β, β +
1)) are circular arcs in (0, 1) × (β, β + 1), such that φα

(〈

1, β + 1
2

〉)

=
〈

1
2 , β + 1

2

〉

, φα(〈α, β + 1
2 〉) = 〈

3
4 , β + 1

2 〉, φα({α + 1}, (β, β + 1)) = ({2} ×
(β, β + 1)), limx→0φα(〈α, β + x〉) = 〈1, β〉, and limx→1φα(〈α, β + x〉) =
〈1, β + 1〉.

Such a function φα exists since domAα is countable. Topologise Uα+1 so
that φα is an embedding. Clearly Uα+1 ≈ R

2.
This completes the construction.
M is a manifold, since if x ∈M then x ∈ Uα for some α, and since Uα ≈ R

2,
x has a Euclidean neighbourhood.

Clearly M is Type I and Σ = 〈Uα : α ∈ ω1〉 is a canonical sequence for M .
Υ(Σ) contains an uncountable antichain. Υ(Σ) consists of a path P , which

may be thought of as the main trunk of Υ(Σ), with a path emanating from P

at each successor level. These paths do not themselves branch. By choosing a
member of Υ(Σ) from each of the paths off P , we may obtain an uncountable
antichain.

We now establish that M is ω1-compact. Suppose Z is a closed uncountable
discrete subset of M . Then Z 6⊂ Uα for any α. We consider 3 cases.

1. Z ∩ (0, 1)× L
+ is uncountable.

For some a, b ∈ (0, 1), the set Z ′ = {〈x, y〉 ∈ Z : a < x < b} is uncountable.
If a ∈ (0, 1

4 ), then Z
′ must have a limit point on [a, 1

4 ]×{α} for some limit
ordinal α. If not, Z ′ must have a limit point on [ 14 , b]×{α} for some limit
ordinal α.

2. X ∩ ((0, ω1)× (β, β + 1)) is uncountable for some β ∈ ω1.

For some a, b ∈ (0, 1), the set Z ′ = {〈x, y〉 ∈ X : β + a < y < β + b} is
uncountable. This set has a limit point on {α} × [β + a, β + b] for some
limit ordinal α.
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3. Z∩(0, 1)×L
+ is countable, and for each β ∈ ω1, X∩((0, ω1)× (β, β + 1))

is countable. Hence B = {β : Z∩([1, ω1)×(β, β+1)) 6= ∅} is uncountable.

For each β ∈ B, pick one point 〈xβ , yβ〉 ∈ Z ∩ ((0, ω1)× (β, β + 1)). Let
Z ′ = {〈xβ , yβ〉 : β ∈ B}. Then for some a, b ∈ (0, 1), Y = {〈xβ , yβ〉 ∈
Z ′ : β + a < yβ < β + b} is uncountable. Let B′ = {β : 〈xβ , yβ〉 ∈ Y }.
Note that for each α ∈ ω1, if β ∈ domAα and x ∈ (0, 1), then the first
coordinate of φα(〈α, β+x〉) is a fixed value, call it x(φα), since each point
in φα({α}× (β, β+1)) lies on a circular arc through 〈 34 , β+

1
2 〉, 〈1, β〉 and

〈1, β + 1〉. Now let λβ = min{α : 〈xβ , yβ〉 ∈ Uα} for each β ∈ B′, and
observe that sup{λβ : β ∈ B′} = ω1. Let A = {〈β, λβ〉 : β ∈ B′}. Choose
α such that Aα ∈ A and Aα ⊂ A. Since for each β ∈ dom(Aα), 〈xβ , yβ〉 ∈
((0, ω1)× (β, β + 1))∩Uα, 1 < xβ < αβ < α and β+a < yβ < β+b, if the
first coordinate of φα(〈xβ , yβ〉) is x, then

1
2 < x < max{a(φα), b(φα)} and

hence Z has a limit point on [ 12 ,m]×{α}, where m = max{a(φα), b(φα)}.
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