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Abstract

In this paper we establish that any well-pruned wi-tree, T, admits
an wi-compact Type I manifold if T' does not contain an uncountable
antichain. If T" does contain an uncountable antichain, it has been shown
that whether or not T" admits an wi-compact manifold is undecidable in
ZFC.
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1 Introduction

In [G] the question of whether or not an arbitrary tree admits a Type I manifold
was examined. First, an arbitrary tree admits a Type I manifold if and only
if it is an wi-tree and well-pruned. It was found that under the axiom <), any
well-pruned wi-tree admits an wi-compact manifold, whereas under the axiom
(x), if a well-pruned tree T' admits an wj-compact manifold, then T does not
contain an uncountable antichain. It was also shown, in ZFC, that any well-
pruned wi-tree which did not contain an uncountable antichain or a Souslin
subtree admits an wi-compact manifold. We now show that it does not matter
whether T contains a Souslin subtree.

A tree, (T, <), which we will denote simply as T, is a partially ordered set
such that for each ¢ € T the set of predecessors of ¢, {s € T : s < t}, is well-
ordered. We will assume throughout that T has a single least element called
the root of T

Definition 1.1. Let T be a tree.
(a) fteT,t={seT:s<t}.

(b) For each ordinal a, the a-th level of T, or T(«), is the set {t € T(«) :
t has order type a}.
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(c) T, is the subtree s, T'(8).
(d) If t € T(«) for some ordinal i, tT = {s € T(a+1) : s > t}.
(e) The height of T is the least ordinal « such that T'(«) = @.

An wy-tree T has height w; and each level T'(«) is countable.

A space X is of Type I if it is the union of an wy-sequence X = {U, : a < w1 }
of open subspaces such that U, C Us whenever a@ < 3, and such that U, is
Lindelof for all «. If in addition U, = Uﬁ<a U for any limit ordinal a, then ¥
is a canonical sequence for X.

We will assume from now on that M is a nonmetrisable manifold. Given any
canonical sequence X for a manifold M, it is possible to relate ¥ to an wq-tree.
Nyikos [N] defines such a tree, T(X), as follows:

Definition 1.2. Let M be a Type I manifold, and let ¥ = (U, : a < wy) be
canonical for M. The tree of non-metrisable-component boundaries associated
with ¥, denoted Y(X), is the collection of all sets of the form OC' such that C is
a nonmetrisable component of M ~\ U, for some a, with the following order: if
7,0 € T(X), then 7 < o iff o is a subset of a component whose boundary is 7.

We usually denote this tree by just Y if ¥ is clear, and refer to it as an
T-tree. We say that a tree admits a manifold with property P, if there exists a
Type I manifold with property P, and with an Y-tree isomorphic to T'.

2 wi-compactness

Definition 2.1. A space is wy-compact if it does not contain an uncountable
closed discrete subset.

Theorem 2.2. If T is a well-pruned w1 -tree which does not contain an uncount-
able antichain, then there exists an wy-compact Type I manifold whose Y -tree is

T.

Proof. We will use induction to construct a manifold M by defining an open
Lindelof subset U, for each a € wy, so that (J, ¢, Ua is the underlying set for
M, and ¥ = (U, : @ € wy) is a canonical sequence.

Let Uy = (—1,1) x (—1,0) with the usual topology.

We will use the following notation:

e For each t € T let I; be a copy of (—1,1) x [0,1) with the usual topology,
and denote the point in I; corresponding to (z,y) by I;{x,y). (For each « the
underlying set for U, is U{l; : s < t,t € T'(a)} UUp, and (—1,1) x {0} will be
the boundary component in T (X) corresponding to t.)

e For each o € wy and t € T(«), if « is a successor ordinal define i; : I; —
(-1,1) x [, + 1) by is(It{x,y)) = (z,a+y). If a is a limit ordinal define
gi Iy — (—=1,1) x [1,2) by 5:(Li(z,y)) = (z, 1+ y).

o For each t € T let By = (J{Is : s <t} UUy). In each case B, will be
associated with an embedding h; : By — (—1,1) x (=1, + 1), where ¢t € T'(«),



and will therefore have a coordinate system determined by this embedding. We
will denote h; *((z,y)) by (z,);.

e For each t € T let {t" : n < |[tT|} denote the successors of .

e For each successor ordinal «, pick a homeomorphism

foz : (_1,1) X (—1,0Z+ 1) - (_17 1) X (—1,&),
satisfying the following properties:

(i) fal(=1,1) X (@, @ +1)) = A, where
A:{<x,a—1+y>:(—1<m<0)A(%(x%l y<y< = (WH))}

(i) fa((~=1,1) x ({a}) = DA, where
8A={(x,a—1+y):(—1<x<0)/\(%(wQ—i—l):y) (

N)I»—l

()}

(iii) fa((-1,1) x (e —1,a) =(-1,1) x (a = 1,a) ~ (AU DA);
Va0, fulfe) % (a— La)) = {2} x (0~ Lia— 1+ 3(a? + 1))

Vo >0, fo({z} x (= 1,0)) C (—x,2) X (. — 1,); and

(iv
(v

) /.
)
)
(vi) f

I (=1,1) x (0, — 1] is the identity.

Denote the root of T by r and define h, : B, — (—1,1) x (=1,1) to be the
identity on Uy and let h,.(I.{(x,y)) = (x,y) for each I.(x,y).

Suppose « is a successor ordinal, U, has been defined and for each t €
T(a — 1), hy has been defined. Define hyo : Byo — (0,1) x (0, + 1) by letting

hio [ By = hy and hgo | I;o = 4z0. If ¢ has more than one successor, we will now
define for each n > 0 a function

Pin : Bt @] U Itm — (71, 1) X (71,044’ 1)

m<n

and htn is then Pin { Bt”'
Let @0 = ho. If ¢pn has been defined, let pint1 | (Bt UUmgn Itm,) =

faom and @it [ Lintr = Ggntr.

Topologise U,1 so that each ¢y is a homeomorphism. Note that this is
well defined and consistent with the topology on B;. Let Uy = J | Bin
have the direct limit topology.

If o is a limit ordinal, let U, = Ug<oUp with the direct limit topology. It
remains to define Uy 1.

Consider the equivalence classes: [t] = {s € T(a) : § = t}. For each equiva-
lence class pick a member ¢t = t° and denote the other members ¢!, t? etc. Pick
a homeomorphism

go i (=1,1) x (=1, a+1) = (=1,1) x (=1,2)

n<|tt



which preserves the first coordinate of each point, preserves horizontal lines, and
such that g,((—1,1) x (=1,a]) = (=1,1) x (=1,1], and define ey : U,, Bs —
(_]—7 a) by

e[t](ls<x,y>) = hs(Is(z,y)).

For each equivalence class [t], define h; : By — (0,1) x (0, + 1) by letting
ht r Us<t BS = B[t] and ht T It = it.
If |[t]] > 1 we define for each n > 0 a function

wt" : (Us<tBs) U (UmgnItm) - (_17 1) X (_172)

and hgn will be (gt 0 pyn) | Byn. Let ¢y = gqo 0 hy and if 94» has been defined
let

Ypnt1 [ Uscy Bs U (Umgnltm) = fl 0 Pyn

and Yyn+1|Ign+1 = Jgn+1. Topologise U,y 1 so that each ¢4n is a homeomorphism.

For each o € w1, Uy, is Lindel6f since T'() is countable and for each ¢t € T'(«),
B\ I is homeomorphic to (—1,1) x (—1, ). U, is connected since Uy C By~ 1I;.

Clearly M is a manifold with T(3) =1T.

We now show that M is wi-compact. For any p € M, if s = min{t € T;p €
By}, let p = (p(z),p(y))s. Then for every t > s, if p = (2’,y')¢, |2'| < [p(2)| by
properties (iv) and (v) of f,. Suppose X is an uncountable discrete set, then
there exist a,b € (—1,1) such that Y = {p € X : a < p(x) < b} is uncountable.

In the order inherited from T', Y is a tree in which every antichain is count-
able because it is an antichain of T. Since Y is uncountable, it is an w;-tree.
Hence there exists a < wy and ¢t € T'(«) such that B, NY is infinite, and since
h;*((a,b) x (1, + 1)) has countably compact closure, By NY has a limit in M.
Thus M does not contain an uncountable closed discrete set. O

If T contains a Souslin subtree but is not Souslin, then T has at most count-
ably many uncountable paths which cease to branch at some level a say. The
manifold constucted in the proof above ensures that for each path P, P\ Ty41
is wi-compact, as well as the Souslin subtree.

¢ implies that any well-puned wi-tree, T', admits an w;-compact manifold.
{ is needed for the case when T contains an uncountable antichain. We will
consider one case in which & is adequate to obtain an wi-compact manifold
from a tree with an uncountable antichain.

Let &2 denote the following axiom: there is a family {A, : @ < wi} of
countable limit ordinals, and a family {A, : & < w;} such that:

1. both dom(A,) and ran(A,) are cofinal subsets of A, of order type w;
and,

2. if X is a subset of w; X w; that meets each subset of the form [, w;) X
[cv,w1), then there exists « such that A, C X.

We will call such a family {4, : @ < wi}, a de-sequence.

Theorem 2.3. & implies &.



We use the following formulation of &: there exists a family
{L, : v < w1, 7 is a limit ordinal}

such that each L. is a cofinal subset of y of order type w, and such that if X is
an uncountable subset of w;, then there exists v such that L, C X.
We will make use of the lemma below, [D, Theorem 4.3].

Lemma 2.4. If
{Ly vy <wi, 7 is a limit ordinal}

witnesses d, and X 1is an uncountable subset of wy, then S = {vy: L, C X} is
stationary.

Proof of Theorem 2.3. Let ¢ : w; — w1 X wy be a bijection, and let

C={y€w:p([0,7) =[0,7) x [0,7)}

A standard leapfrog argument shows C is a club. Let C' be the derived set of C'
and for each v € C’" let B, = ¢(L,). Since L, is cofinal in v of order type w, at
most finitely many members of B, can be in [0, o) x [0, ) for any a < +y; hence
at least one projection of By is unbounded in [0,7). Let {Aq : @ < wi} list in
order all members of C’ such that both projections are unbounded w-sequences
in A\y. Let A, = B, for all a.
Claim. A= {A, : a < wi} witnesses &s.

Proof of Claim. Suppose X meets every set of the form [, w1) X [o,wq). Let
Y = {(Ba,da) : @ € w1} be a subset of X such that

a < min{ﬁav 604} < max{ﬁm 6(1} < min{ﬁs, 65}

whenever a < ¢.

Since p~1(Y) is uncountable, there is a stationary set S such that L, C
@ 1Y) for all 0 € S. Let v € C'"'NS. Then B, C Y, and at least one
projection of B, is unbounded in +. This forces both dom(B.) and ran(B) to
be w-sequences with supremum v. So B, € A and B, C X, as desired. O

The following example demonstrates that the full strength of ¢ in Theo-
rem |G, Theorem 5.4], need not be necessary.

Example 2.5. Assume &. There exists an wi-compact Type I manifold M,
such that if ¥ is any canonical sequence for M, T(X) contains an uncountable
antichain.

We will define a Type I manifold M with the underlying set:

{a,B) eLT x LT :0,8#0}~ {(a,3) : a € [1,w1),8 € w1 }.

Let 7 be the topology on M as a subspace of L™ x LT with the usual
topology. For each a < wy let U, = (0,a)?> N M. We will define a topology
on each U, such that 9U, = {a} x [(0,a) N M] U (0,1) x {a}, U, ~ R?, and
(Uy : @ € wy) is canonical.



Let M ~ U(Kw1 OU,, have the topology inherited from 7. Note that Uy = &
and U; has the usual topology, and hence U; ~ R2.

Suppose « is a successor ordinal, the topology on U, has been defined,
and U, ~ R2. Then let U,,; be the connected sum of (0, — —] N M, and
Ua+1 ™ (0,0 — )% with the topology inherited from 7.

If o is a limit, Ug has been defined for each 8 < a, and Ug ~ R? for each 3,
let U, = Ug<oUpg with the direct limit topology. Since each Ug ~ R?, U, ~ R?
[B].

To complete the construction it remains to define the topology on U, 41 when
« is a limit. We need only define a neighbourhood base for each = € 9U,,.

Let A ={A, : a € L} be a &a-sequence. Choose a function ¢, : Uyt1 —
Uy+1 such that:

(a) ¢a|Us is an embedding;

(b) @q is the identity on the sets {(0,1)x {3} : B < a+1} and (0, 1) x (0, a+1];
(c) for each (x,y) € Upy1, ¢u((z,y)) = (z',y) for some 2’ < x;
)

(d) if 8 € domA,, Ay € A, then ¢,({1} x (8,8 + 1)) and ¢, ({a} x (5,
1)) are circular arcs in (0,1) x (8,5 + B

3)

(1,

I+

&
1), such that ¢q ((1,8+ %))
¢a(fa+1}, (6,0 + )) = ({2}
B), and limg 190 ((o, B + )

(3:8+3) ¢alla, B+ 3)) = (3,
(8,8 + 1)), limz—o¢a({a, B + z)) =
(1,5+1).
Such a function ¢, exists since domA, is countable. Topologise U,41 s0
that ¢, is an embedding. Clearly U, ~ R2.
This completes the construction.
M is a manifold, since if z € M then z € U, for some «, and since U, ~ R?,
2 has a Euclidean neighbourhood.
Clearly M is Type I and ¥ = (U, : @ € wq) is a canonical sequence for M.
T(X) contains an uncountable antichain. YT(X) consists of a path P, which
may be thought of as the main trunk of T(X), with a path emanating from P
at each successor level. These paths do not themselves branch. By choosing a
member of T(X) from each of the paths off P, we may obtain an uncountable
antichain.
We now establish that M is wi-compact. Suppose Z is a closed uncountable
discrete subset of M. Then Z ¢ U, for any . We consider 3 cases.

1. Zn(0,1) x L* is uncountable.
For some a,b € (0,1), theset Z' = {{z,y) € Z : a < x < b} is uncountable.
Ifa € (0, 1), then Z’' must have a limit point on [a, 1] x {a} for some limit
ordinal . If not, Z’ must have a limit point on [%,] x {a} for some limit
ordinal «.

I x

2. XN ((0,w1) x (8,84 1)) is uncountable for some § € w;.

For some a,b € (0,1), the set Z/ = {{z,y) e X : f+a <y < [B+b}is
uncountable. This set has a limit point on {a} x [ + a, 3 + b] for some
limit ordinal o.



3. ZN(0,1) x LT is countable, and for each 8 € wy, X N((0,w1) x (3,8 +1))
is countable. Hence B = {3 : ZN([1,w1) X (8, 3+1)) # &} is uncountable.

For each 3 € B, pick one point (z3,y3) € Z N ((0,w1) x (8,8+1)). Let
Z" = {{zs,y3) : B € B}. Then for some a,b € (0,1), Y = {(z3,y3) €
Z': B+a <yg < [+ b} is uncountable. Let B’ = {§ : (xz3,ys) € Y}.
Note that for each a € wy, if § € domA, and = € (0,1), then the first
coordinate of ¢q ({a, 5+ )) is a fixed value, call it (¢, ), since each point
in ¢o({a} x (B,3+1)) lies on a circular arc through (2, 3+ 1), (1,3) and
(1,8 +1). Now let \? = min{a : (v5,ys) € U,} for each B € B’, and
observe that sup{\° : B € B’} = w;. Let A = {(B,\?) : B € B'}. Choose
a such that A, € A and A, C A. Since for each § € dom(A4,), (zs,y3) €
((0,u1) X (B,8+1))NUqs, 1 <2 < ap < aand f+a < yg < B+D, if the
first coordinate of o ((xg,ys)) is z, then § < z < max{a(¢a),b(¢a)} and
hence Z has a limit point on [3,m] x {a}, where m = max{a(¢a), b(¢a)}-
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