
SEMINAR NOTES

Infinite ordinal and cardinal numbers

A set X is countable if there is a 1-1 function from X into the set N+ of positive integers,
and denumerable if there is a 1-1 function from X onto N+. Another way to put it is that X
is countable iff it can be listed in an ordinary sequence, 〈x1, x2, . . .〉 with repetitions allowed,
and denumerable iff it can be listed in the same way without allowing repetitions.

One of Cantor’s discoveries is that Q is countable. It can be listed 〈qn : n ∈ N+〉, so
that each q ∈ Q is encountered after finitely many steps. [To do it, list the fractions k/n
in lowest terms, with positive denominator (convention: 0/1 is in lowest terms), and with
k/n coming after j/m whenever |j| + m < |k| + n, while if the two sums are equal then we
list them in order of their numerators. Of course, for each natural number i there are only
finitely many k/n with |k| + n = i and n positive, so this is easily done.]

A far more important result of Cantor’s is that the set of real numbers is uncountable:
it is “too big” to list in a sequence in such a way that every real number is encountered
after finitely many terms of the sequence. Modern set theory (and also much of modern
mathematics) can be said to have started with this discovery, which was revolutionary
because it showed that there is more than one infinity. In fact, there are enormously many
infinite cardinal numbers, far more than the finite cardinals (natural numbers) and indeed
far more than the number of elements in any set, no matter how large.

Cantor introduced both infinite cardinal numbers and infinite ordinal numbers. Both of
these concepts involve well-ordering.

Definition 1. A binary relation 4 on a set X is a well-ordering each nonempty A ⊂ X
has a minimum element. This means an element m ∈ A such that m 4 a for all a ∈ A, and
such that if a ∈ A and a 4 m then a = m.

The usual definitions of “well-ordering” are redundant: Definition 1 is already enough
to show that 4 is reflexive (because {x} has a minimum element), anti-symmetric (because
{x, y} has only one minimum element), transitive (compare the minumum elements of {x, y}
and {y, z} and {x, z}) and a total order, meaning for all x, y in X either x 4 y or y 4 x
(same reason as for anti-symmetry).

But such abstract algebraic treatments of well-ordering don’t really convey the flavor of
the concept. I will do something similar to what Descartes did when he took an ordinary
plane and labeled its points by ordered pairs of real numbers, and what differential geometers
do when they introduce coordinate systems on a surface, again associating ordered pairs of
real numbers with the points on portions of the surface.

Every nonempty well-ordered set has a least element; label it with a 0. Throw this away;
if what is left is nonempty, label its smallest element with a 1; throw this away, and if what
is left is still nonempty, label its smallest element with a 2. Continue the process as long as
you still have a nonempty set: if the last element you considered was labeled with k, and
you got a nonempty set when you threw this away, its least element gets the label k + 1.

You might object that this makes perfect sense if k is a finite number, but what about
infinite numbers? Well, the labels are the ordinal numbers, and the first infinite ordinal
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number is named (not just labeled, but named) ω. This is the label you give the minimum
element of what’s left after you’ve thrown away from the well-ordered set X all the elements
that you labeled with finite numbers, assuming there is still something left of X. The next
ordinal number is named ω + 1, then the next is named ω + 2, and so on. After all the
ω + n (n ∈ N+) comes ω + ω, which is traditionally called ω · 2 or simply ω2. [I never could
understand why this order was chosen rather than 2ω.]

Taking stock of what we have so far, our labels read like this:

0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . ω2

and then come

ω2 + 1, ω2 + 2, and after all the ω2 + n, n ∈ N+ comes ω2 + ω = ω3, ω3 + 1, . . .

. . . after all the ω · 3 + n, n a natural number, comes . . . well, you get the picture! After
we’ve run through all the ωk + n (k, n natural numbers) we come to ωω = ω2. The labels
go on indefinitely, but this will do for the moment.

Note that I haven’t defined ordinal numbers in general, nor will I in this note. There is
a technical precise definition of “ordinal number” that has been standard since John von
Neumann introduced it, but it is not especially conducive to intuition about the ordinals;
even less so, than what I wrote at the beginning about well-ordered sets is conducive to
intuition about them. But I hope that what I’ve said up to now helps your intuition about
the following fact:

Theorem 1. Given any two well-ordered sets (X,-) and (Y,�), either X is order-isomorphic
to Y , or X is order-isomorphic to an initial segment of Y , or Y is order-isomorphic to an
initial segment of X.

[A subset A of a totally ordered set (Z,4) is said to be an initial segment of Z if
whenever a ∈ A and z 4 a then z ∈ A also.] Since the above labeling only made use of
the well-ordering, it is easy to see how the order-isomorphism must begin. Yes, there is
no choice about it: you must match up the elements of X and Y that were labeled 0, then
the ones that were labeled 1, and so on. There are enough ordinal numbers so that we
never run out of labels, but if this fact sounds mysterious to you, just think of labeling the
elements of X with the elements of Y until you either run out of labels (in which case Y
is order-isomorphic to an initial segment of X) or you run out of elements of X (in which
case X is order-isomorphic to an initial segment of Y ) or both happen at the same time (in
which case X and Y are order-isomorphic).

The members of N+ double as both ordinal and cardinal numbers. The infinite cardinals
are given ordinal subscripts and conform to the labeling above. The cardinal number that
expresses the number of elements in N+ is named ℵ0 (“aleph-nought” or “aleph-zero”). If κ
is a cardinal number then 2κ denotes the number of elements in P(X) for some (hence all)
sets X of cardinality κ. Here P(X) denotes the collection of all subsets of X.



3

Himalayan Expedition, Phase 1

One of Cantor’s earliest discoveries was that the real line R has 2ℵ0 elements; that is,
there are just as many real numbers as there are subsets of N+. Cantor also showed, in
general, that P(X) always has more elements than X, and so we can get a never-ending list
of higher cardinals starting with ℵ0:

ℵ0, 2ℵ0 , 22
ℵ0

, 22
2
ℵ0

, . . .

But how do we know we aren’t skipping cardinals here? The short answer is, we don’t!
In fact, right at the first gap, between ℵ0 and 2ℵ0 , we confront what is sometimes called
Cantor’s Continuum Problem. Cantor tried to prove there is no cardinal number skipped
between these two; this claim is known as Cantor’s Continuum Hypothesis (CH). To
discuss this and other matters efficiently, we need to assume something Cantor took for
granted:

The Well Ordering Principle (WO) Every set can be given a well-ordering.

This principle is equivalent, in the presence of the other generally accepted axioms for
set theory (commonly known as ZFC), to the following innocent-seeming axiom:

The Axiom of Choice (AC) Given any collection A of nonempty disjoint sets [disjoint
means that if A1 and A2 are distinct members of A, then A1 ∩ A2 = ∅], then there is a set
Z that meets every member of A in exactly one element.

This axiom is generally accepted as being a self-evident fact about sets. But in the early
days of set theory it was controversial. Unlike with the other ZFC axioms, the AC asserts
the existence of a set that is not given by a formula. This is also true of WO, and in fact, no
one has come up with a formula for a well-ordering of the real line or even a well-ordering
of some uncountable subset of the real line. We do know that any such well-ordering has to
be different from the usual ordering; that is, every subset of R that is well-ordered in the
usual ordering is countable. This is because, if X is a subset of R that is well-ordered by the
usual order ≤, then each x ∈ X has an immediate successor in X (namely, the minimum
element of {x′ ∈ X : x < x′}) and there are infinitely many rational numbers q such that
x < q < x′. Distinct pairs like {x, x′} go with disjoint sets of rationals, and, as we saw,
there are only countably many rationals altogether.

Assuming WO, we can characterize the first uncountable cardinal number, which is de-
noted ℵ1, as follows: let X be an uncountable set, and let 4 be a well-ordering of X. There
are two cases:

Case 1. There is at least one x ∈ X that is preceded by uncountably many other elements
of X wrt 4. In this case, take the least such x and label it ω1. Then {y ∈ X : y ≺ ω1} is
an uncountable set that falls (with a change of notation) into:

Case 2. Every x in X has only countably many predecessors.

Take any (X,4) that falls into Case 2. The cardinal number ℵ1 is the one that denotes
the number of elements of X.

Note the analogy with N+, which is infinite, and yet each of its elements is preceded by
only finitely many other elements.
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In general, given a set Y whose cardinal number is ℵα, the next cardinal number, denoted
ℵα+1, can be characterized as follows. Start with a set X whose cardinality is strictly greater
than that of X; as indicated above, P(Y ) will do nicely. Invoking WO, let 4 be a well-
ordering on X. The two cases are similar to those above:

Case I. There is at least one x ∈ X that is preceded by more than ℵa-many other elements
of X wrt 4. In this case, take the least such x and label it ωα+1. Then {y ∈ X : y ≺ ωα+1}
is a set with more than Aa-many elements, and it falls into:

Case II. Every x in X has no more than ℵα predecessors.

Take any (X,4) that falls into Case II. The cardinal number ℵα+1 is the one that denotes
the number of elements of X. It is easy to show that there can be no cardinal number strictly
between ℵα and ℵα+1.

When we get to ordinals not of the form α + 1, we need a different definition. The first
such nonzero ordinal is ω, and to produce a set with exactly ℵω elements, we let Xn be any
set of exactly ℵn elements; then the union of all the Xn is a set of exactly ℵω elements.
Note that it is not necessary for the sets Xn to be disjoint: obviously, the union has more
elements than any of the Xn, and it is easy to show that there cannot be any set that
has more than all the Xn and less than their union. Similarly, given any set K of cardinal
numbers, we take for each κ ∈ K a set Xκ of cardinality κ, and then supK is the number of
elements in

⋃
{Xκ : κ ∈ K.

And so, the infinite cardinals are arrayed in their natural order like this:

ℵ0, ℵ1, ℵ2, . . . ,ℵω, ℵω+1, ℵω+2, . . .ℵω2 . . .ℵω3 . . . . . .ℵωω = ℵω2 . . .

but ℵω is also denoted sometimes as ℵℵ0
, because most set theorists identify the ordinal

ω with the cardinal ℵ0. They keep both notations and use one or the other depending on
what they want to emphasize. Similarly, the ordinal ω1, which played a labeling role above,
is generally identified with the cardinal number ℵ1. The list above is still very far from
reaching even ℵℵ1

: there are only countably many cardinals on that list even if one fills in
all the places where there is an ellipsis ( . . . ). But before we go higher, let me get back to
Cantor’s axiom CH.

In light of an early theorem of Cantor’s mentioned above, CH is equivalent to the axiom
2ℵ0 = ℵ1. We now know that this axiom is independent of the usual axioms of set theory.
So is the Generalized Continuum Hypothesis (GCH), which states that 2ℵα = ℵα+1

for all infinite cardinal numbers ℵα. Specifically, Gödel showed in the late 1930’s that the
GCH is consistent if ZFC is consistent, while Cohen showed in 1963 that CH cannot be
proven by the ZFC axioms if these are consistent. Not long after Cohen, others showed that
it is consistent for 2ℵ0 to be any of the alephs ℵα except for those which are the supremum
of a countable collection of smaller alephs. Thus ℵn could be 2ℵ0 for any n ∈ N+ but ℵω

cannot, because it is the supremum of the countably many numbers ℵn as n runs over N+.
In general, any infinite successor cardinal (that is, a cardinal number of the form ℵα+1)
could be assumed to equal 2ℵ0 without fear of contradiction (unless ZFC is inconsistent,
but hardly anyone seriously thinks it might be inconsistent). It is also consistent for 2ℵ0 to
equal ℵω1

, also denoted ℵℵ1
.
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The placement of 2ℵ0 is relevant to an old theme relating set theory to measure theory.
A measure over a set X is a function µ whose range is a subset of R+ ∪ {0} ∪ {+∞};
whose domain is a collection of sets A known as a σ-algebra (X ∈ A, A1 \A2 ∈ A whenever
A1 and A2 are in A, and the union of any countable subcollection of A is a member of A)
and which has the following two properties: µ(0) = 0, and if {An : n ∈ N+} is a disjoint
subcollection of A then

µ(
∞⋃

n=1

An) =
∞∑

n=1

µ(An) ( countable additivity).

The measure µ is said to be over X and on A.

A measure µ is nontrivial if µ(X) > 0, and a probability measure if µ(X) = 1.
It is nonatomic if µ({x}) = 0 for all x ∈ X. For example, Lebesgue measure over [0, 1]
is a nonatomic probability measure. Many measure theorists use a different definition of
“nonatomic” but as far as the following potent axiom is concerned, they are equivalent.

Axiom M. There is a nonatomic probability measure on P(X) for some set X.

“probability measure” can be replaced by a more modest concept:

Lemma. Axiom M is equivalent to the axiom that there exists a nonatomic measure on
P(X) such that 0 < µ(Y ) < +∞ for some Y ⊂ X.

Proof. Define ν so that

ν(A) =
µ(A ∩ Y )

µ(Y )
.

Then ν is a probability measure on P(X). �

Intuitively, if A ⊂ Y, ν is saying what fraction of Y is occupied by A. In his doctoral
dissertation, Stanislaw Ulam (who was probably better known as a nuclear physicist than
as a mathematician) proved a striking theorem that I have taken the liberty of calling:

Ulam’s Dichotomy. Assume Axiom M. Then EITHER:

(1) there is Z ⊂ X such that µ(Z) > 0 and for A ⊂ Z, µ(A) 6= 0 implies µ(A) = µ(Z)
OR

(2) X has no more than 2ℵ0 elements, and there is a measure on all of P(R) extending
Lebesgue measure.

I have capitalized EITHER and OR because (1) and (2) are mutually exclusive for the
same X, as Ulam showed.

Ulam’s paper appeared in Fundamenta Mathematicae, volume 16 (1930). By a rare stroke
of luck, it is still in our math library, whereas much more recent journals have been carted
off to the Annex. The reason is that volumes 15 and 16 were bound together and volume
15 contains the index for the first fifteen volumes. The bad news is that the paper is in
German. But for someone like me, whose reading knowledge of mathematical German is
quite good, it’s a rare treat to read the paper. It is clearly written and well motivated, and
besides Ulam’s Dichotomy it contains two other remarkable results.
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Theorem 2. If (2) of the dichotomy holds, then there exists an uncountable ℵµ ≤ 2ℵ0 such
that ℵµ is not of the form ℵα+1, nor it is the supremum of fewer than ℵµ cardinal numbers
less than ℵµ.

Theorem 3. If (1) of the dichotomy holds, then there exists an uncountable ℵτ less than
or equal to the cardinality of X, such that if ℵα < ℵτ then also 2ℵα < ℵτ , and ℵτ is not the
supremum of fewer than ℵτ cardinal numbers less than ℵτ .

Theorem 2 has the immediate corollary that Axiom M implies CH is false, but it implies
much more than that. It implies that the number of real numbers, 2ℵ0 , is enormously bigger
than any of the cardinal alephs mentioned above, including ℵℵ1

, even though there are
uncountably many cardinal numbers just between ℵℵ0

and ℵℵ1
. In fact, Theorem 2 implies

that ℵµ = ℵℵµ
—ℵµ is an aleph whose subscript is equal to itself. And even this barely

begins to scratch the surface of how enormous 2ℵ0 is if (2) of Ulam’s Dichotomy holds.
Even Theorem 2 barely begins to scratch the surface. It took over thirty years to go beyond
Theorem 2, but we now know that (2) is only the base camp, so to speak, in an enormously
long climb towards 2ℵ0 .

As for (1) of Ulam’s Dichotomy, it is compatible with CH, but even the smallest cardinal
number that fits the description of ℵτ is so enormous that we are really only at the base
camp for it even with Theorem 3. Phase 2 of our Himalayan Expedition will give us a
much better idea of how high we have to climb before even getting a good look at this high
Himalayan peak, properly referred to as “the first uncountable measurable cardinal.”


