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Abstract. A quasi-perfect map is a continuous, closed function such that the preimage
of every point is countably compact. An ambitious old problem due to van Douwen [1] is
whether every first countable regular space of cardinality ≤ c is a quasi-perfect image of a
locally compact space. Here we construct locally compact, normal, quasi-perfect preimages
for all stationary, co-stationary subsets of ω1. These subsets are ω1-compact but not σ-
countably compact. Quasi-perfect preimages preserve these properties, and the preimages
constructed here are all of cardinality b. This provides a new lower bound for the following
problem:

What is the least cardinality of a ZFC example of a locally compact, ω1-compact space

that is not σ-countably compact?

1. Introduction

This paper continues the exploration of the theme, begun in [4], of the structure of locally
compact spaces satisfying additional properties. In [5] this focused on the question of when
normal, locally compact, ω1-compact spaces are σ-countably compact.

Definition 1.1. A space is ω1-compact if it is of countable extent, by which is meant that
every closed discrete subspace is countable. A space is σ-countably compact if it is the union
of countably many countably compact spaces.

The following was one of the main results of [5]:

Theorem 1.2. It is consistent, modulo large cardinals, that every locally compact, heredi-
tarily normal, ω1-compact space is σ-countably compact.

[All through this paper, “space” means “Hausdorff topological space.”]

In this theorem, “hereditarily” cannot be eliminated. In [2], Eric van Douwen provided
ZFC examples of locally compact, locally countable refinements of the usual topology on the
real line. No such refinement can be σ-countably compact, as explained in [5]; but some of
the ones in [2] are (collectionwise) normal, and ω1-compact.

The reason for the parenthetical “collectionwise” is that every normal, ω1-compact space
is collectionwise normal; that is, every discrete collection of closed sets can be expanded in
bijective fashion to a disjoint collection of open sets. (In an ω1-compact space, every discrete
collection of closed sets is countable, and every countable discrete collection of closed sets
in a normal space can be thus expanded by a simple inductive argument.) However, to
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extend this to subspaces, one needs not only hereditary normality but also “hereditarily
ω1-compact,” which is the very strong property of countable spread. The examples in this
paper are neither hereditarily normal nor of countable spread, and ZFC is not enough to
make any of van Douwen’s examples satisfy either property.

It is also shown in [5] how an affirmative answer to an old problem of van Douwen [1] would
provide examples of locally compact, ω1-compact spaces that are not σ-countably compact:

Problem 1. Is every first countable space of cardinality ≤ c the quasi-perfect image of a
locally compact space?

Definition 1.3. A map f : X → Y of topological spaces is quasi-perfect if it is continuous
and closed, and each fiber f←{y} is countably compact.

Using the axiom b = c, which will be explained below, van Douwen gets every first
countable space of cardinality ≤ c to be the quasi-perfect image of a locally compact, locally
countable (hence first countable) space [1]. However, the space thus constructed can fail to
be normal, as shown in [5].

The constructions in this paper are done without any axioms beyond the usual (ZFC)
axioms. They provide normal, locally compact, quasi-perfect preimages for every stationary,
co-stationary subset of ω1 with the relative topology from the usual order topology on ω1.

Definition 1.4. A stationary subset of a cardinal κ is a subset E of κ that meets every club
(closed unbounded subset of κ). A co-stationary subset of κ is a subset whose complement
is stationary in κ.

Example 1.5. Let E be any stationary, co-stationary subset of ω1. Then E is locally count-
able and first countable, and normal (indeed, hereditarily normal). But no co-stationary,
uncountable subset of ω1 can be σ-countably compact because every uncountable, countably
compact subset of ω1 is a club. On the other hand, E is ω1-compact for almost the same
reason.

Of course, E not locally compact: if x is a point of E that is a limit of points of ω1 \ E
which are, themselves, limits of points in E, then x fails to have a compact neighborhood.
But our examples are locally compact, and in [5] it is shown how both the property of
ω1-compactness and failure of σ-countable compactness are inversely preserved by quasi-
perfect preimages. They are also normal, and of cardinality b, where b is one of the “small
uncountable cardinals” whose notation was stanardized by van Douwen and Vaughan [1], [8]
. Since they are locally compact and normal, our main examples are thus relevant to both
parts of the following problem:

Problem 2. (a) What is the least cardinality of a locally compact, ω1-compact space that is
not σ-countably compact? (b) one that is also normal?

Specifically:

Problem 3. (a) Is there a ZFC example of a locally compact, ω1-compact space of cardinality
ℵ1 that is not σ-countably compact? (b) one that is also normal?

Our examples provide the lowest known cardinality, b, for Problem 2 (both parts). Each
point-inverse is either a singleton or naturally homeomorphic to b with the order topology.
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The best earlier lower bounds were c in the case of van Douwen’s examples and others con-
structed along the same lines, and b under the extra condition b = ℵ1. The latter examples [7]
are even perfectly normal and of countable spread, hence hereditarily collectionwise normal.

These long-familiar spaces involve an inductive process of defining a basic compact open
neighborhood of each point p, beginning with isolated points and choosing a denumerable
closed discrete subspace D(p) in the space X(p) defined up to the point where p is added.
Then D(p) gets expanded in bijective fashion to a discrete-in-X(p) collection {Un : n ∈ ω}
of compact open sets. Then, if Gn =

⋃

{Ui : i ≥ n}, a base of neighborhoods of p is given
by {Gn ∪ {p} : n ∈ ω}.

The construction of our spaces can be looked upon as an elaboration of this process, but
the means of choosing the analogues of the Un involves a technique of self-similarity that may
be new here. Instead of a phenomenon like copies of the Mandelbrot set appearing infinitely
many times under repeated magnifications, we have the reverse phenomenon of the same
general pattern appearing infinitely many times as we step further and further back. Also,
the techniques described above gave neighborhood bases to at most countably many points
at a time. There is a rough and ready technique that quickly winds up handling only one
point-inverse {α}×b at a time, given in Section 7. However, it seemed worthwhile to treat a
special class of stationary sets in Sections 2 through 6 which enable a much more structured
construction, taking advantage of our geometric intuitions, in which point-inverses are given
bases for uncountably many α ∈ ω1 at a time.

Our spaces are also the first ZFC examples of locally compact, ω1-compact spaces that
are not σ-countably compact, but in which every separable subset is σ-countably compact.

Notation 1.6. In this paper, we use E. K. van Douwen’s almost self-explanatory notations
f→A and f←B to designate the image of A under f and the preimage of B under f respec-
tively. We also use the suggestive notation αn ↑ α to designate a strictly ascending sequence
of ordinals αn whose supremum is α. Overhead bars denote closure in all of ω1, not just in
E, except above natural numbers, where n denotes the (constant) function from ω to ω with
range {n}.

2. Setting the stage

In Section 7, it will be explained how every stationary, co-stationary subset of ω1 is the
quasi-perfect image of a normal, locally compact space. However, to improve readability, we
make our first example E satisfy some simplifying assumptions. Recall that the space ω1 is
scattered. This is equivalent to one of its Cantor-Bendixson derivatives being empty:

Definition 2.1. Let X be a space. The α-th Cantor-Bendixson (C-B) derivative X(α) of X
is defined by induction as follows. X(0) = X; if X(α) has been defined, X(α+1) is the derived
set (X(α))′ of X(α); if λ is a limit ordinal and X(α) has been defined for all α < λ, then
X(λ) =

⋂

{X(α) : α < λ}.

The αth C-B level of X is X(α) \X(α+1).
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For instance, the 0-th C-B level of any space is its set of isolated points, and for any
countable ordinal α, the α + 1st C-B level of ω1 is the set of points of the form ξ · ω, where
ξ is on the αth C-B level of X.

Notation. All through this paper, Wα will denote the αth C-B level of ω1 with the usual
(interval) topology, and, until Section 7, E will be the set described in the following example.

Example 2.2. Let S be a stationary, co-stationary set of limit ordinals in ω1, such that
ω ∈ S, and let E = EN ∪ ES, where

EN =
⋃

{W2n : n ∈ ω} ∪
⋃

{Wδ+2n+1 : δ /∈ S and n ∈ ω}.

and
ES =

⋃

{Wδ+2n : δ ∈ S and n ∈ ω}.

As the notation suggests, EN is nonstationary while ES is stationary. In fact, even if ES

had only consisted of the first elements of the various Wδ, δ ∈ S, it would still be stationary.
This is clear from a well known fact involving the following concept.

Definition 2.3. A continuous rapidly descending ω1-sequence of clubs is an ω1-indexed fam-
ily of club subsets Kα of ω1 such that Kα+1 ⊂ K ′α (= the derived set of Kα) for all α ∈ ω1,
and Kλ =

⋂

{Kα : α < λ} for all limit ordinals λ.

An obvious example of such a sequence is given by Kα = (ω1)
(α), and the following lemma

clearly implies that ES is stationary and that EN is nonstationary.

Lemma 2.4. Let K = {Kξ : ξ ∈ ω1} be a continuous rapidly descending ω1-sequence of
clubs. Let αξ be the least element of Kξ. Then I(K) = {αξ : ξ ∈ ω1} is a club subset of ω1.

Proof. “Unbounded” is immediate from the fact that αξ is isolated in the relative topology
of Kξ, and hence αξ+1 > αξ for all ξ ∈ ω1.

To show “closed,” suppose ξ(n) ↑ ξ. Let νn ↑ αξ. Then νn ∈ Kξ(kn) \Kξ for some kn, with
kn → ∞. But then αξ(kn) ≤ νn and so αξ(n) → αξ. �

The underlying set of our space X is W0 ∪ [(E \W0) × b], where b is one of the “small
uncountable cardinals” whose notation was stanardized by van Douwen [1].

Definition 2.5. Given functions f and g from ω to ω, the notation f <∗ g means g is
eventually above f , meaning that there exists n ∈ ω such that f(m) < g(m) whenever
n ≤ m. The least cardinality of a <∗-unbounded family of functions from ω to ω is denoted
b.

A well-known fact, established by a simple transfinite induction, is that there is a <∗-
unbounded family {fα : α < b} of increasing functions that is well-ordered by fη <

∗ fξ iff
η < ξ.

Notation. For the rest of this paper, F denotes a fixed family of functions fξ : ω → ω
such that fn is the constant function with range {n} if n ∈ ω, while {fα : ω ≤ α < b}
is a <∗-unbounded family of increasing functions that is well-ordered as above. Note that
fn <

∗ fω for all n ∈ ω.
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The projection map π : X → E is the identity on W0, the set of isolated points of ω1

and also of E. The topology is defined so that π is a homeomorphism when restricted to
W0, which is open and dense in X just as it is in ω1. The restriction of π to the subset
of nonisolated points, (E \W0) × b, is the usual projection map, and the topology on the
nonisolated points will be defined by induction, in such a way that π is quasi-perfect, and
each fiber π←{α}, where α ∈ E \W0, is homeomorphic to b with its usual topology. Also, X
will be locally countable (and hence first countable) ⇐⇒ b = ω1. [If b > ω1 then the point
that is the copy of ω1 in any fiber is in the closure of the copy of the countable ordinals, but
not of any countable set in this copy.]

The foregoing description of X, together with the continuity of π, is enough to show that
every separable subspace of X is σ-countably compact: let A ∈ [X]ω, and let α = π(supA).
Then by continuity, A ⊂ π←[0, α], which is the union of countably many fibers, each of which
is countably compact.

The next three sections are devoted to defining the topology on X by induction. Then in
Section 6, the key properties of X will be shown, and Section 7 explains how to modify the
construction and proofs for arbitrary stationary, co-stationary subsets E ∈ ω1.

3. The neighborhood bases of points in W2 × b

Recall that E ∩W1 = ∅ while W2 ⊂ E, and that W2 (which thus = E(1)) is the collection
of all countable ordinals of the form α = β + ω2. Given α ∈ W2, there is a least such β,
either 0 or a limit ordinal in (ω1)

(2). Let αn = β + ω · n if n ∈ ω \ {0}. These are all the
ordinals of W1 in (β, α], and together with α0 = β, they are a set of order type ω. Think
of the set of (isolated) points of E in (αn, αn+1) as a vertical copy of ω, and of the union of
these vertical copies — which is (β, α) — as a copy of ω×ω. Below, we define a topology on
(β, α)∪ ({α}× b) that is homeomorphic to the following well-known (largely folklore) space
in the obvious way:

Example 3.1. Let F be any <∗-unbounded family {fξ : ξ < b} of increasing functions
fξ : ω → ω that is faithfully <∗-well-ordered. In the space Y = (ω × ω) ∪ b, points of ω are
isolated. For each ξ ∈ b and each η < ξ let

Vξ = [0, α] ∪ f ↓α, let Vξ(n) = (Vξ) \ (n× ω) and let Vξ,η(n) = Vξ(n) \ Vη.

where, in general, f ↓ means the part of ω × ω on or below the graph of f . Explicitly:
f ↓ = {(n, i) ∈ ω × ω : i ≤ f(n)}. Let {Vξ,η(n) : n ∈ ω, η < ξ} be a base of neighborhoods of
each ξ ∈ Y .

If Y is as in Example 3.1, then Y is a locally compact space in which the relative topology
on b is the usual topology, and every sequence that meets infinitely many columns has a
cluster point in b. This is essentially shown in the proof of Theorem 3.3 below.

Use the family F in a way analogous to the use of F in 3.1, letting ναni = β + ω · n+ i+ 1
be the ith entry in column n of an array like the above. For each α ∈ W2 and each ξ ∈ b, let

(fα
ξ )
↓ = {ναni : i ≤ fξ(n), n ∈ ω}.

Next, for each η < ξ < b, and each n ∈ ω, let

V α
ξ = {〈α, ν〉 : ν ≤ ξ} ∪ (fα

ξ )
↓, let V α

ξ (n) = V α
ξ ∩ π←(αn, α] and let V α

ξ,η(n) = V α
ξ (n) \ V α

η .
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Of course, V α
ξ (n) \ V α

η = V α
ξ (n) \ V α

η (n).

For each ξ < b, let Vα
ξ = {V α

ξ,η(n) : η < ξ, n ∈ ω} be a base of neighborhoods of 〈α, ξ〉 in
π←(β, α]. Also let Vα = {Vα

ξ : ξ < b}. If x ∈ W0, let Vx = {{x}}.

Lemma 3.2. The system of neighborhood bases of the form Vα and Vx is well-defined; in
particular, if x ∈ V α

ξ,η(n), then there is a subset of V α
ξ,η(n) that is a basic neighborhood of x.

Proof. If x ∈ W0, this is obvious. The nonisolated points of V α
ξ,η(n) are of the form 〈α, ν〉

where η < ν ≤ ξ [and we may assume ν < ξ]. Let m = min{i : fν(j) < fξ(j) for all j ≥ i}
and let k = max{m,n}. Then V α

ν,η(k) ⊂ V α
ξ,η(n). �

A simple modification of this proof shows that these basic neighborhoods form an actual
base for a topology on π←(β, α]. This amounts to showing that if 〈α, ν〉 is in the intersection
of basic neighborhoods of 〈α, ξ〉 and 〈α, η〉 in {α}× b, then there is a basic neighborhood of
〈α, ν〉 in the intersection. These basic (open) neighborhoods are closed, and in fact, compact,
as the proof of the following theorem shows.

Theorem 3.3. With the topology defined in Lemma 3.2, the subspace π←(β, α] is a locally
compact space in which the relative topology on {α} × b is the usual topology.

Proof. Local compactness is obvious for x ∈ W0, and this transfers to π←(β, α]. The other
points in π←(β, α] are of the form 〈α, ν〉, and we will show that each cover U of a basic
clopen neighborhood V α

γ,η(n) of 〈α, ν〉 by basic open sets has a finite subcover.

Let U0 be a member of U containing 〈α, ξ〉. Then U0 = Vγ0,η0(n0) where γ0 ≥ ξ and
η0 < ξ. Then 〈α, ν〉 ∈ U0 whenever η0 < ν ≤ ξ. If η < η0, let 〈α, η0〉 ∈ U1 ∈ U , so that
U1 = Vγ1,η1(n1) and η1 < η0.

In this way, we get a descending sequence η0 > η1 > . . . which terminates after finitely
many steps with ηk ≤ η. Now fηk <

∗ · · · <∗ fη0 , so there exists N ∈ ω such that N ≥ ni for
all i ≤ k, and such that fηi+1

(m) < fηi(m) for all i < k and all m ≥ N .

So U0 ∪ . . . Uk covers V α
γ,η(N). If N ≤ n we are done; otherwise, V α

γ,η(n) \ V
α
γ,η(N) meets

finitely many columns in finitely many compact sets, and so finitely many members of U are
enough to cover it.

The basic open sets V α
γi,ηi

(N) trace compact intervals on {α} × b, so its relative topology
is the interval topology when {α} × b is given its natural order. �

Theorem 3.4. Every sequence in W0 ∪W2 whose projection converges to α has a cluster
point in {α} × b.

Proof. Let π(xn) ↑ α, with xn = ναmi. Let i = i(n) and m = m(n). Because F is <∗-
unbounded, there exists ξ such that fξ(m(n)) > i(n) for infinitely many n. Then xn ∈ (fα

ξ )
↓

for these same n. And (fα
ξ )
↓ is compact. �

Theorem 3.5. Let B = [(β, α) ∩ E] ∪ ({α} × b). The projection π : B → (β, α] ∩ E is
quasi-perfect.

Proof. Continuity is obvious, and the only non-singleton fiber is is π←{α}. This is countably
compact because the topology on b is the order topology as is clear from the proof of Theorem
3.3, and because of the fact that b is a regular uncountable cardinal, its uncountability being
established by a simple diagonal argument.
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Finally, the map is closed because of Theorem 3.4: every closed subset of B is either
bounded above in (β, α) or it meets {α}× b. In the first case we use the fact that π ↾ (β, α)
is a homeomorphism; in the second, the fact that α is the only nonisolated point of (β, α]∩E
in E. �

Definition 3.6. Let α ∈ W2. The block at α is B(α) = π←(β, α] = [(β, α)∩W0]∪ ({α}×b),
also termed a rank 1 hyperblock of the first kind, and also denoted H(α). Sets of the form
π←(γ, α], where β < γ < α, are termed rank 1 hyperblocks of the second kind and denoted
H(α, γ).

For example, H(α, αn) is a hyperblock of the second kind if n > 0. Note that π→H(α) =
(β, α] ∩E, but that π→V α

ξ is a proper subset of (β, α] ∩E for all ξ, while
⋃

{V α
n : n ∈ ω} =

(β, α]∩E. In the next two sections, hyperblocks of all ranks and neighborhoods of all α ∈ E
will be defined, and the same equations will hold.

In this section, W0∪W2 has been partitioned into sets of the form π←(β, α], each of which
is a block. In the next section, W0 ∪W2 ∪W4 will be partitioned into rank 2 hyperblocks of
the first kind, setting up a pattern for later Wξ where ξ is not a limit ordinal.

4. The neighborhood bases of points in W4 × b

Much of what was done for W2 in the preceding section will be done for W4 = E(2) in this
section, but there are a few key differences.

Given α ∈ W4, there is a greatest β < α in (ω1)
(4)∪{0}. In the interval (β, α), the ordinals

in W3 (⊂ ω1 \E) form a set of order type ω. Let αn be the nth ordinal in this sequence, and
let α0 = β. In each interval (αn, αn+1), let αni be the i+ 1st ordinal in W2; then αn+1 is the
supremum of the αni.

In defining the basic neighborhoods of 〈α, ξ〉 when α ∈ W4, the role of the individual
points ναni in W0 is taken by blocks B(αni), with {B(αni) : i ∈ ω} like the n+ 1st column in
a square array. This time, the functions fξ in F have three roles. First, they pick out which
members of the array meet V α

ξ : in order for V α
ξ to be compact, it can only be allowed to

meet finitely many blocks in each column in the array. These are the B(αni) where i ≤ fξ(n).
Second, the intersection of each block B(αni) with V α

ξ ∩W2 is either {〈αni, ν〉 : ν ≤ ξ} or
the empty set. And third, we add an extra piece of each B(αni) consisting of finitely many
of its rows, the ones indexed by i ≤ fξ(n). That is , V

α
ξ ∩B(αni) = V αni

ξ ∪V αni

fξ(n)
where fξ(n)

stands for the constant function ω × {fξ(n)}.

This third role is there to ensure that all sequences with ascending projections have limit
points as in Theorem 4.2 below. For all ξ ≥ ω, this actually entails adding only finitely
many elements to each row of V α

ξ ∩W0, because fξ is strictly increasing.

And thus,

V α
ξ = {〈α, ν〉 : ν ≤ ξ} ∪

⋃

V αni

ξ ∪ V αni

fξ(n)
: i ≤ fξ(n), n ∈ ω}.

As before, V α
ξ (n) = V α

ξ ∩ π←(αn, α] and V
α
ξ,η = V α

ξ (n) \ V α
η = V α

ξ (n) \ V α
η (n).

In the special case where ξ = k ∈ ω, we have fξ(n) = k for all n, so that

V α
k = {〈α, j〉 : j ≤ k} ∪ {〈αni, j〉 : i, j ≤ k} ∪ {ναni : i ≤ k}.

7



The proofs of Lemma 3.2 and Theorem 3.3 have routine modifications for W4; these will
be subsumed in the general proofs for all x ∈ X.

The topology on the set of points in (W2 ∪ W4) × b is very different from the product
topology.

Lemma 4.1. Let α ∈ W4 and let ν ≤ ξ < b. For each n ∈ ω let in = fξ(n). Then
〈αnin , ν〉 → 〈α, ξ〉.

Proof. Obviously, 〈αnin , ν〉 ∈ V α
ξ for all n. So there is a limit point by compactness of V α

ξ ,
and clearly all limit points are of the form 〈α, µ〉 for some µ ≤ ξ. But also, Vη ∩H(αnin) = ∅
for η < ξ, so µ = ξ. �

Of course, the product topology would make the sequence converge to 〈α, ν〉.

The following theorem plays the same role for W4 that Theorem 3.4 did for W2.

Theorem 4.2. Let α ∈ W2 ∪W4. Every sequence whose projection converges to α has a
cluster point in {α} × b.

Proof. The case of α ∈ W2 is covered by Lemma 3.3. If π(xk) → α and α = W4, we may
assume either that xk = 〈γk, νk〉 ∈ W2 for all k or that xk ∈ W0 for all k, and assume that
there is at most one xk in each interval (αn−1, αn]. In either case, xk ∈ B(αnkjk) for unique
nk and jk.

Let µ be the least ordinal such that fµ(nk) ≥ jn for infinitely many k for which jk is
defined. If xk = 〈γk, νk〉 for all k let ν = supkνk and let ξ = max{µ, ν}. Then xk ∈ V α

ξ for
infinitely many k, and we use compactness of V α

ξ .

If xk ∈ W0 for all k, let mk be the greater of jk and the ink
defined in the proof of Lemma

4.2, and then the rest of that proof goes through with mn replacing in. �

Definition 4.3. Let α ∈ W4. The hyperblock at α is H(α) = π←(β, α], where β is defined
in the second parpagraph of this section. H(α) also termed a rank 2 hyperblock of the first
kind. Sets of the form π←(γ, α], where β < γ < α, are termed rank 2 hyperblocks of the
second kind.

In general, rank θ hyperblocks will be associated with α on the θth C-B level of E. The
rank 2 hyperblocks are easily seen to partition W0 ∪W2 ∪W4.

5. Neighborhoods of all points and hyperblocks of all ranks

The inductive steps in defining rank n hyperblocks, where 1 < n < ω, are routine gener-
alizations of the steps for rank 1 and rank 2 hyperblocks. In particular, they are the disjoint
union of rank n− 1 hyperblocks, and are associated with points of W2n. To define the basic
neighborhoods of these points, we introduce the following notation;

Definition 5.1. Let ε ∈ W2h, where 2 ≤ h ∈ ω. Given ξ ∈ b, we define:

V ε
ξ = {〈ε, ν〉 : ν ≤ ξ} ∪

⋃

{V εni

ξ∨fξ(n)
: i ≤ fξ(n), n ∈ ω}.

and, if k > 0, we also define:

V ε
ξ∨k = {〈ε, ν〉 : ν ≤ max{k, ξ}} ∪

⋃

{V εni

ξ∨k : i ≤ max{k, fξ(n)}, n ∈ ω}.
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If ε ∈ W2, we define

V ε
ξ∨k = V ε

ξ ∪ V ε
k = {〈ε, ν〉 : ν ≤ max{k, ξ}} ∪ {νεni : i ≤ max{k, fξ(n)}, n ∈ ω} .

The first equality shows that this formula agrees with our earlier formula for V α
ξ when

α ∈ W4, with k = fξ(n) for ε = αni.

This equality, V ε
ξ∨k = V ε

ξ ∪V
ε
k for ε ∈ W2, does not hold in general. For instance, if β = αni

and if k < fξ(n), then 〈βnfξ(n), ξ〉 ∈ V α
ξ \ V α

ξ∨k; on the other hand, if fξ(0) < k < ξ, then
〈α0k, ξ〉 ∈ V α0k

ξ ⊂ V α
ξ∨k, but 〈α0k, η〉 ∈ V α

k iff η ≤ k, and V α
ξ ∩ V α0k

ξ = ∅.

The importance of having 〈α0k, ξ〉 in V α
ξ∨k comes into play in the proof of Theorem 6.3

below, of which the following example is a special case.

Example 5.2. Let β ∈ W6 and ξ ≥ ω. For all n ∈ ω, let fξ(n) = kn and let αn = βnkn .

Then αn ∈ W4, 〈α
n, ξ〉 ∈ V β

ξ and

〈αn
0kn , ξ〉 ∈ V αn

ξ∨fξ(n)
= V

βnkn

ξ∨fξ(n)

for all n, and it is routine to show that 〈αn
0kn
, ξ〉 → 〈β, ξ〉.

On the other hand, 〈αn
0kn
, ξ〉 /∈ V αn

ξ for n > 0 because kn > fξ(0), and 〈αn
0kn
, η〉 ∈ V αn

fξ(n)
iff

η ≤ kn for any n.

For α ∈ W2n, 2 < n ∈ ω, the formula for V α
ξ propagates downwards in the following

fashion. For each choice of n0 and i0,

V
αn0i0

ξ∨fξ(n0)
= {〈αn0i0 , ν〉 : ν ≤ max{n0, ξ} ∪

⋃

{V βni

ξ∨fξ(n0)
: i ≤ fξ(max{n0, n}), n ∈ ω},

where β = αn0i0 ; and V
βn1i1

ξ∨fξ(n0)
has the same formula, but with βn1i1 in place of αn0i0 and

γni in place of βni, where γ = βn1i1 . Of course, the last displayed formula uses the fact that
max{fξ(n0), fξ(n)} = fξ(max{n0, n}) because fξ is nowhere decreasing.

One effect of this downwards propagation is to expand the first role of fξ, by adding finitely
many sub-hyperblocks to be met by V α

ξ over and above the ones associated with V αni

ξ (and
so on down the line) when ξ ≥ ω. [When ξ = n ∈ ω it sometimes replaces n with a larger
integer.] The second role remains unchanged within each of the sub-hyperblocks met by V α

ξ .
The third role comes into play at the end of the propagation, when new rows {νεni : n ∈ ω}
may be added at the bottom of the rank 1 hyperblock. Role 2 already comes into play in
Theorem 5.3 while Roles 1 and 3 play a decisive role in making π closed.

Hyperblocks where δ is a limit ordinal need to be handled differently. This is already
evident in the case of ωω, the first ordinal in Wω. The part of X that precedes it is the
union of an ascending sequence of hyperblocks, each of which reaches all the way back to 0,
instead of being a union of a disjoint sequence of hyperblocks headed by ordinals in order
type ω. Moreover, although there is a canonical ω-sequence of ordinals in ω1 \E leading up
to ωω, there is no such thing for ordinals in Wδ for limit δ beyond a certain point. Yet it is
ω-sequences that are needed for delimiting hyperblocks at each stage of the induction.

This need is taken care of by defining an ω-sequence 〈αn : n ∈ ω〉 of ordinals converging
to each point α of Wδ (δ ∈ S), in the following way. First, let 〈δn : n ∈ ω〉 be an increasing
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sequence in E of ordinals > 0 converging to δ. Next, let β be the least ordinal such that
(β, α)∩E contains no ordinals of Wγ for γ ≥ δ. [In particular, if α = min(Wδ) then β = 0.]
Let α0 = β, and let αn be the least ordinal in Wδn+1 ∩ (β, α) when n > 0. Then αn = βn · ω
where βn is the least ordinal in Wδn ∩ (β, α).

Let αni = βn · (i+1) for all i. The associated hyperblocks are all of the first kind, H(αni),
except perhaps for π←(αn−1, αn0). Then, for each n, these hyperblocks will be treated as the
(n+ 1)st column in a ω × ω array, as in the case of Wγ where γ is a successor.

Special treatment is also required for ordinals in Wδ+1 where δ is a limit ordinal which
is not in S. Each point α ∈ Wδ+1 has a canonical increasing ω-sequence {αn : n ∈ ω} in
Wδ ∪ {0} converging to it, where αi is the ith ordinal in (β, α) ∩Wδ if i > 0, and α0 = β =
the least ordinal such that (β, α)∩E contains no ordinals of Wγ for γ > δ. [In particular, if
α = min(Wδ+1) then β = 0.]

This time, it is the αni that generally do not have a simple formula. Let {δni : i ∈ ω} be
an increasing sequence of ordinals with supremum δ such that Wδni

⊂ E for all i, and let αni

be the least ordinal in (αn−1, αn) ∩Wδni
.

Our basic formula now becomes:

(∗) V α
ξ = {〈α, ν〉 : ν ≤ ξ} ∪

⋃

{(V αni

ξ∨fξ(n)
∩ π←(ζni, αni] : i ≤ fξ(n), n ∈ ω}.

where ζni = αn−1 if i = 0, while if i > 0 then ζni = αnj , where j = i− 1.

Formula (∗) is valid for all α ∈ E \ (W0 ∪W2), but much of it is redundant if α /∈ Wδ+1

where δ is a limit ordinal outside E. In fact, the only other case where the extra ∩π←(ζni, αni]
is not redundant is for various limit δ ∈ E. Even there, it is redundant when i > 0, when
(ζni, αni] = (βn · i, βn · (i + 1)]. These intervals are order-isomorphic for all i 6= 0, and the
earlier stages of the induction had H (βn · (i+ 1)) = π←(βn · i, βn · (i+ 1)].

The other formulas remain as before, except for modifying Vξ∨k with ∩π←(ζni, αni]; oth-
erwise we have V α

ξ (n) = V α
ξ ∩ (αn, α] and V

α
ξ,η = V α

ξ (n) \ V α
η = V α

ξ (n) \ V α
η (n).

Theorem 5.3. The sets of the form V α
ξ,η(n)(α ∈ E \W0, ξ, η ∈ b, n ∈ ω), together with

singletons of W0, form a base for the topology on X, and the ones with a superscript α and
first subscript ι form a base for the neighborhoods of 〈α, ι〉.

Proof. Obviously, the union of these sets is X, and it is enough to show that if α ∈ E \W0,
and

〈α, ι〉 ∈ V γ
ξ,η(n) ∩ V

ε
µ,ν(m)

then there exist k and ζ such that

V α
ι,ζ(k) ⊂ V γ

ξ,η(n) ∩ V
ε
µ,ν(m).

The way the formulas propagate downwards, the second role entails that, for the intersection
on the right to be nonempty, it is necessary and sufficient that min{ξ, µ} > max{η, ν}. If
〈α, ι〉 is in the intersection, then ι ≤ min{ξ, µ}. Then if ζ = max{η, ν} then we also have
ζ < ι, and then

(V γ
ξ,η ∩ V

ε
µ,ν) \W0 = {〈ψ, ρ〉 : ψ ≤ min {γ, ε}, ζ < ρ ≤ min{ξ, µ}} .
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If χ = max
{

min
(

π→V γ
ξ,η(n)

)

,min
(

π→V ε
µ,ν(m)

)}

, then α > χ, and there exists k such that

min
(

π→V α
ι,υ(k)

)

> χ since these minima converge to α. So k and ζ are as desired. �

6. The main properties of X

The proof of local compactness works more smoothly if we use the sets V α
ξ∨k rather than

the basic V α
ξ in the inductive proof.

Lemma 6.1. Let α ∈ E \W0, ξ ∈ b, and k ∈ ω. The open set V α
ξ∨k is compact.

Proof. For α ∈ W2 this follows easily from the proof of Theorem 3.3, where it is shown that
both V α

ξ and V α
k are compact, and from the fact that V α

ξ∨k = V α
ξ ∪ V α

k when α ∈ W2.

So suppose that V β
η∨j is compact for all β < α and all η ∈ b, j ∈ ω. If ξ ∈ ω, then V α

ξ∨k

is simply V α
m where m = max{ξ, k}. And we can refine any open cover of V α

m to sets of the

form V β
i+1,i(n) (β ≤ α, i < m, n ∈ ω). For each i < m, one set V α

i+1,i(ni) can be chosen to

cover 〈α, i+1〉, where i ≤ m. The rest of V α
m is covered by finitely many compact sets, V

aji
m ,

where j ≤ ni, i ≤ m.

The case where ξ ≥ ω requires only minor modifications. Let U be an open cover of V α
ξ∨k

by basic neighborhoods V ε
µ,η(n), where ε ≤ α and µ ≤ ξ. Then α×{b} is covered by the sets

of the form V α
µ,η(n), and these can be handled as in the proof of Theorem 3.3, resulting in

a finite cover of a set V α
ξ (N). What is left over of V α

ξ∨k is covered by finitely many compact
sets of the form V αni

ξ∨k where n ≤ N and i ≤ max{k, fξ(n)}. �

The following corollary completes the proof that X is locally compact.

Corollary 6.2. Each basic open set V α
ξ,η(n) is compact.

Proof. These basic open sets are clopen in the relative topology of V α
ξ , which is compact by

Lemma 6.1. �

Theorem 6.3. Let α ∈ E \ W0. Every sequence whose projection converges to α has a
cluster point in {α} × b.

Proof. Let π(xk) ↑ α and assume, without loss of generality, that xk < α for all k and that
either xk ∈ W0 for all k or xk /∈ W0 for all k.

For each k ∈ ω, there are unique n(k) and i(k) such that xk ∈ H(αn(k)i(k)); we may assume
n(k) < n(k + 1) for all k. Let α1 = αn(k)i(k); if α

j has been defined so that xk ∈ H(αj) but

π(xk) 6= αj, and αj /∈ W2, let α
j+1 = αj

ni for the unique n and i such that xk ∈ H(αj
ni). But

if αj ∈ W2 and xk ∈ W0 or π(xk) = αj, let αj = αJ(k). We must arrive at J(k) after finitely
many steps because αi > αi+1 and every descending sequence of ordinals is finite.

Fix k and refine the notation as follows: αj+1 = αj

m(j)o(j). If xk = νni ∈ W0 let O(k) =

max {i,max{o(j) : 0 < j < J(k)}} . Using <∗-unboundedness of {fξ : ξ < b}, choose ξ ∈ b

so that fξ(n(k)) ≥ O(k) for infinitely many k. Then the first role of fξ, and the downward
propagation of ξ, ensures that V α

ξ ∩ H(αj) 6= ∅ for all j, and the third ensures that xk =
νni ∈ V α

ξ .
11



If xk = 〈β, η〉, then β = αJ(k). Let O(k) = max{o(j) : 0 < j < J(k)} and let ξ be as
before. But this time, let µ = max{ξ, η} to ensure that 〈β, η〉 ∈ V α

µ according to the second
role of fµ. �

Theorem 6.4. The map π : X → E is quasi-perfect.

Proof. Continuity is due to the fact, easily shown by induction, that the preimage of each
interval (β, α] is open. The proof of the countable compactness of each fiber is essentially
as for Theorem 3.5. The closedness of the map also follows as in that proof, this time from
Theorem 6.3 rather than Theorem 3.4, except that the last clause in that proof needs to
be replaced by “in the second, the fact that α is the only point (β, α] ∩ E that is on the
boundary of π→B.” �

Lemma 6.5. If A ⊂ X and π→A is uncountable, the following subset C(A) of ω1 is a club.

{γ ∈ E ∩ π→A : cℓX(A) ∩ ({γ} × b) is cofinal in {γ} × b}.

Proof. Since π→A is a club, there exist, for each γ ∈ ω1, an ordinal α ∈ E \ [0, γ) and a
sequence {δn : n ∈ ω} ⊂ π→A \E such that δn ↑ α. The proof that C(A) is unbounded will
be complete once we show α ∈ C(A).

For each n, π→A ∩ E ∩ [δn, δn+1] is infinite, and there exists a sequence 〈βni : i ∈ ω〉 ↑ δn
such that βni ∈ π→A ∩ E for all n, i. Let xni satisfy π(xni) = βni. Then {xni : i ∈ ω} is
closed discrete, so that it meets each basic (compact) neighborhood V α

ξ (ξ ∈ b) in a finite
set.

So then, for each n ∈ ω, and each ξ ∈ b, there exists i(n) such that xni(n) /∈ V α
ξ . However,

by Theorem 6.3, 〈xni(n) : n ∈ ω〉 has a limit point 〈α, ν〉, and clearly ν > ξ.

To show that C(A) is closed, note that if π(γn, νn) = γn ↑ γ, and 〈γ, ν〉 is a limit point as
in Theorem 6.3, then ν ≥ min{νn : n ∈ ω}. �

Corollary 6.6. At least one of every pair of disjoint closed subsets of X has countable image
under π.

Proof. Let F0 and F1 be closed subsets of X, with uncountable images. Then π→Fi is a club
by Theorem 6.4 and contains C(Fi) for i ∈ 2. If α ∈ C(F0) ∩ C(F1), then F0 and F1 both
meet {α}× b in a club subset, and since b is a regular uncountable cardinal, they meet in a
club subset of {α} × b. �

Theorem 6.7. X is normal.

Proof. Let F0 and F1 be disjoint closed subsets of X. By this last corollary, there exists
α < ω1 such that at least one of these sets (say, F1) is in the clopen set π←[0, α], and so it
suffices to separate F0 ∩ π

←[0, α] from F1.

The following induction is on α. Suppose that the sets Fi ∩ [0, ζ] can be put into disjoint
open sets for all ζ < α. If Fi ∩ ({a} × b) = ∅ for some i, then by Theorem 6.3 there exists
γ < α such that Fi∩π

←(γ, α] = ∅, and there exists n ∈ ω such that V α
ξ (n)∩π←[0, g] = ∅ for

all ξ. What is left uncovered of F1−i can be separated from Fi by the induction hypothesis.

So suppose Fi ∩ ({α} × b) 6= ∅ for both i ∈ 2. As an ordinal in the order topology, b is
almost compact and normal. This implies that of any two disjoint closed subsets, at least
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one is compact. Thus ∃δ < b such that {α} × [0, δ] contains (without loss of generality)
F1∩ ({α}×b). There is a partition P of {α}× [0, δ] into finitely many clopen intervals, each
of which meets exactly one Fi. For each (η, ξ] ∈ P (with the convention that [0, ξ] = (−1, ξ])
there exists nξ ∈ ω such that V α

ξ,η(nξ) also meets only Fi. Let n = max{nξ : (η, ξ] ∈ P}. The
whole of V α

δ (n) is partitioned into sets of the form V α
ξ,η(n) ⊂ V α

ξ,η(nξ), each of which meets
exactly one Fi.

Then if F0 ∩ (δ, b) 6= ∅, there exists γ < α such that π←(γ, α] ∩ F1 ⊂ V α
ξ (n), by Theorem

6.3. The induction hypothesis then says we can separate F0 and F1 on [0,max{αn, γ}]. �

7. Arbitrary stationary, co-stationary subsets of ω1

In extending the construction to arbitrary E, it simplifies matters considerably to assume
that every successor ordinal is in E, as is 0. There is no loss of generality since the closure
of any uncountable subset Z of ω1 is order-isomorphic to ω1 itself by the unique order-
preserving bijection, which is also a homeomorphism. The isolated points of Z are also the
isolated points of Z, and they map onto the isolated ordinals in ω1 (in other words, onto the
successor ordinals together with 0). The image of Z then behaves in exactly the way in ω1

as Z itself did in Z.

The most essential difference arises almost immediately: if β1 and β2 are successive (limit)
ordinals of ω1 \E, then we could have β2 = β1+ δ for any countable limit ordinal δ, whereas
before we always had δ = ω. Equivalently, (β1, β1 + δ) ⊂ E. Points in such intervals play
the role that W0 played in the spaces of the earlier sections. That is, let

S0 = {ξ ∈ E : ξ /∈ ω1 \ E} and let X = S0 ∪ [(E \ S0)× b].

The points of S0 then form an open set whose topology is its order topology as a subset of
ω1. If β1 and β2 = β1 + δ are as above, then there is a sequence δn ↑ δ with δ0 = 0, and the
intervals (β1 + δi, β1 + δi+1] form a partition of (β1, β2) into compact open sets.

To play the role of W1 and W2, we let S1 [resp. S2] be the set of points of ω1 \ E [resp.
E \ S0] which have neighborhoods meeting E [resp. ω1 \ E] only in points of S0 [resp. S1].

As with S1, successive members of S2 might be spread far apart: the points of S1 between
successive points of S2 can be of any countable order type. But we can define neighborhoods
of points of S2 by a procedure that substitutes clopen intervals for the points ναni used in
defining the neighborhoods of points of W2.

The technique is as follows. If α is the least element of S2, let β = 0, otherwise let β
be the greatest element of E \ S0 that is < α. Let αn ↑ α be strictly increasing, with
α0 = β and αn /∈ E otherwise. Then (ω1 \ E) ∩ (β, α) is relatively closed in (β, α), and
each subinterval (αn, αn+1) is the union of a denumerable discrete family Cn of compact open
intervals, obtained through use of successive members β1, B2 of S1 ∩ (αn, αn+1) as above. [In
some or all subintervals, these may be singletons, as they always are in the earlier sections.]
List the members of each Cn in an ω-sequence in no particular order. Make this sequence
column n in an ω × ω array.
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Use the family F in a way analogous to its use in Section 3, treating each member of Cn
like a single point when defining the generalization of (fα

ξ )
↓. In other words, let Cα

ni be the
ith entry in the nth column of the above array. Let

(fα
ξ )
↓ =

⋃

{Cα
ni : i ≤ fξ(n)}.

The formulas for neighborhoods of points in S2 are the same as for W2 in Section 5, with
Cε

ni in place of νεni where appropriate. Thus, V ε
ξ = {〈ε, ν〉 : ν ≤ ξ} ∪ (f ε

ξ )
↓ and

V ε
ξ∨k = V ε

ξ ∪ V ε
k = {〈ε, ν〉 : ν ≤ max{k, ξ}} ∪

⋃

{Cε
ni : i ≤ max{k, fξ(n)}, n ∈ ω}.

For nonisolated x ∈ S0, a base of neighborhoods is given by

Vx = {(ν, x] : ν < x and (ν, x] ⊂ E}.

As before, if x is isolated, then Vx = {{x}}.

The various proofs of Section 3 only require routine modifications, through the substitu-
tions of countable, compact open intervals for single points. For instance, in the proof of the
generalization of Theorem 3.5, the last clause can be replaced as in that of Theorem 6.4: “in
the second, the fact that α is the only point (β, α] ∩ E that is on the boundary of π→B.”

It is possible to go on to define generalizations of Wγ for all γ ∈ ω1, but there is a less
explicit method that is adequate for obtaining a quasi-perfect preimage, and requires less
detail at the price of losing some geometric intuition. The technique makes the use of two
facts: (1) every point of ω1 \ E has a sequence of points of E converging to it [if nothing
else, there are points of W0 that can do the job]; and (2) every point α of E outside S0 has
a sequence from ω1 \ E converging to it.

Notation 7.1. The sequel will use some double subscripts in which one subscript involves
addition or subtraction. Such a subscript is enclosed in parentheses: αn(i+1), etc.

The construction is by induction on E2 = E \ (S0∪S2). The induction hypothesis at every
ordinal α ∈ E2 is that a base of neighborhoods of the form V ε

ξ,η(n) has been defined for all
ε ∈ E ∩ [0, α); and also, if ε ∈ E2, then π

→V ε
ξ starts with α0 + 1 = 1, as in the case with all

minimum points of each Wγ in the constructions of Sections 3 through 5.

The base case, α = min(E2), has two subcases.

Subcase 1: α is a limit point of ω1 \ (E ∪ S1).

This is similar to the case where α ∈ S2. Let α0 = 0, and let αn ∈ ω1 \ (E ∪ S1), for each
n > 0, such that αn ↑ α. When n > 0, each interval (αn−1, αn) breaks up into a discrete
collection Cn of projections of basic blocks, defined as in Definition 3.6 . List their maxima
as {αni : i ∈ ω} in no particular order, and let

V α
ξ = {〈α, ν〉 : ν ≤ ξ} ∪

⋃

{V αni

ξ∨fξ(n)
: i ≤ fξ(n), n ∈ ω}.

In other words, this is as in Definition 5.1 with α in place of ε; Vξ∨k is defined in the same
way, and V α

ξ (n) and V α
ξ,η(n) are as in Definition 3.1.

Subcase 2: Otherwise. Equivalently, α has a neigborhood which only meets ω1 \ E in S1.
The following involves a bit of scrambling of S0 in comparison to the earlier placement of its

14



points, but it is done in order to make the proof of normality of X generalize with minimal
changes.

By minimality of α in E2, S2 ∩ [0, α) is of order type ω with α as supremum; list it in
natural order as {βn : n ∈ ω \ {0}} and let β0 = 0. Let α0 = 0 and let αn = (βn)1 and
αn0 = βn for n > 0. Let αni = (βn+1)1(i−1) for i > 0 and all n ∈ ω. Informally, the first entry
in column 0 for α is the basic block π←(0, βn], while the rest of the entries are the C1i of the
first column associated with β1; the same holds for column n > 0, except that the first entry
is the rank 1 hyperblock π←(βn−1, βn].

Since each basic neighborhood V βn

ξ begins where the preceding one left off, the formula for
Subcase 1 still applies, with the abuse of notation V αni

ξ∨fξ(n)
= C1(i−1), where C1(i−1) is defined

with respect to βn+1.

Now suppose the induction hypothesis has been satisfied for {ε ∈ E2 : ε < α}, where α >
min(E2). There are three subcases for showing it also holds for α.

Subcase A: α is isolated in E2.

This is treated in a way almost identical to the base case. The only real change needed is
to let α0 = α00 be the greatest ordinal in E2 that is less than α, and to let α0i as prescribed
in either subcase be re-labeled as α0(i+1) for all i; then the induction hypothesis continues to
hold.

Subcase B: α is in the closure of E2 ∩ (ω1 \ (E ∪ S1)).

This subcase is similar to the case in Section 5 where δ ∈ S is a limit ordinal. Here, too,
there may be no canonical sequence of ordinals to serve as 〈αn : n ∈ ω〉 ↑ α.

Let α0 be any point of E2 ∩ (0, α). Let 〈αn : n ∈ ω \ {0}〉 ↑ α be a sequence of ordinals in
E2 ∩ (ω1 \ (E ∪ S1)) such that α1 > α0. Except for letting α00 = α0, let 〈αni : i ∈ ω〉 be an
increasing sequence from (αn, αn+1) ∩ E2 converging to αn+1. The basic formula (∗) carries
over:

(∗) V α
ξ = {〈α, ν〉 : ν ≤ ξ} ∪

⋃

{(V αni

ξ∨fξ(n)
∩ π←(ζni, αni] : i ≤ fξ(n), n ∈ ω}.

As before, ζni = αn−1 if i = 0, while if i > 0 then ζni = αn(i−1). The formulas that followed
the earlier display of (∗) continue to hold here.

This time, the extra ∩ π←(ζni, αni] gets a lot of use, since we need to have the summands
disjoint, and the basic neighborhoods V ε

ξ overlap for any two ε ∈ E2.

Remark 7.2. Except for the way α0 = α00 is shoehorned into the beginning of V α
ξ , this

can still serve as a generalization of the construction of Sections 3 through 5. But our final
subcase, like Subcase 2, is not found at all in this earlier construction.

Subcase C: Otherwise. In other words, α is a limit point of E2 but has a neigborhood
which meets ω1 \ E only in S1.

This is similar to Subcase 2, but there may not be a canonical 〈βn : n ∈ ω〉. Instead,
we let this be an arbitrary ascending sequence in E2 converging to α, with β0 a point in
E2 ∩ (0, α). Now, because each hyperblock H(βn) reaches all the way back to 0, all but the
first hyperblock needs to be replaced with H(βn, βn−1), a hyperblock of the second kind.
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For each n > 0, there is a least ordinal above βn in {(βn+1)m : m ∈ ω}; let this ordinal be
αn = (βn+1)mn

. Then there is a least j ∈ ω such that (βn+1)mnj > αn. Let αn0 = βn and
let αn(i+1) = (βn+1)mn(i+j) for all n, i ∈ ω. The basic formula still holds, but with a different
definition of ζni.

(∗) V α
ξ = {〈α, ν〉 : ν ≤ ξ} ∪

⋃

{(V αni

ξ∨fξ(n)
∩ π←(ζni, αni] : i ≤ fξ(n), n ∈ ω}.

This time, ζ00 = 0, ζn0 = sup{(βn)mnk : k ∈ ω} for all n > 0, while if i > 0 then ζni = αn(i−1)

for all i.

The proofs of Section 6 go through with routine changes. In particular, the proof of
Lemma 6.5 is “coordinate-free,” and the construction of Subcase 2 and Subcase C was
specially designed to make any point of ω1 \ E able to play the role of some δn. The only
new restriction is that γ should not be isolated in E2, but that does not significantly affect
the proof.

References

[1] E. K. van Douwen, “The integers and topology,”
[2] E. K. van Douwen, “A technique for constructing honest locally compact submetrizable examples,”

Topology Appl. 47 (1992), no. 3, 179–201.
[3] I. Juhász and W. Weiss, “On the tightness of chain-net spaces,” Comment. Math. Univ. Carolin. 27

(1986), no. 4, 677–681.
[4] P. Nyikos, “The structure theory of T5 and related locally compact, locally connected

spaces under the PFA and PFA(S)[S],” submitted to Top. Appl. Available online at
http://people.math.sc.edu/nyikos/preprints.html

[5] P. Nyikos, “Locally compact, ω1-compact spaces,” submitted to Proceedings AMS.
[6] T. Eisworth and P. Nyikos, “Antidiamond principles and topological applications,” Transactions AMS

361 (2009), no. 11, 5695–5719. Available online at
http://people.math.sc.edu/nyikos/publ.html
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