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Abstract. Proximal and semi-proximal spaces are defined with the help of a game

played on uniform spaces. Proximal spaces are where the entourage-picker has a winning
strategy, and semi-proximal spaces are where the opponent, the point-picker, does not
have a winning strategy. The class of proximal spaces is closed under Σ-products and

closed subspaces. In this paper it is shown that product of two semi-proximal spaces
need not be semi-proximal; that every proximal space is strongly monolithic, (i.e., every
countable subspace has metrizable closure); and that every every semi-proximal space is

Fréchet and α2. Twenty problems are posed, all but one of them unsolved. Some of these
relate to the concept of a uniform box product.

Introduction

This article has to do with two class of uniform spaces defined with the help of a
game of length ω played on uniform spaces. One player (Player A) picks entourages,
the other (Player B) picks points. The ones where Player A has a winning strategy are
called proximal, while the ones where Player B does not have a winning strategy are
called semi-proximal.

Proximal spaces have very strong preservation, convergence, covering and separa-
tion properties. In particular, the Σ-product of proximal spaces is proximal, and every
proximal space is collectionwise normal, countably paracompact, [B3] and strongly
monolithic, (i.e., has the property that every separable subspace is metrizable) [Theo-
rem 2.5 below].

We will list several open problems on the usual (Tychonoff) product of spaces, and
also their uniform box product. This concept was introduced by Scott Williams in
2001, at the 9th Prague International Topological Symposium (Toposym). At the
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time, Prague was perhaps the best place in the world for research on uniform spaces,
but very little was done with the uniform box product until the recent (2010 and 2012)
doctoral dissertations of Jocelyn Bell and Jeffrey Hankins [B1], [H1]. Their results had
to do with two questions that Williams posed at the 2001 Toposym and then at the
2006 Toposym.

Problem 1. Is the uniform box product of denumerably many compact spaces normal?
collectionwise normal?

Problem 2. Is the uniform box product of denumerably many compact spaces para-
compact?

Jocelyn Bell introduced some new ideas on Problem 1 in [B1] that enabled her to
show that the denumerable power of the one-point compactification of a discrete space
of cardinality ℵ1 is normal, countably paracompact, and collectionwise Hausdorff in the
uniform box topology. Hankins showed it was also collectionwise normal by modifying
Bell’s proof of the collectionwise Hausdorff property, then answered Problem 2 by
showing that this same product is not paracompact in the uniform box topology.

Problem 1 remains open as do all numbered problems given below. We do not even
have consistency results for any of them, except for Problem 18.

All through this paper, “space” means “Hausdorff space,” but since the topic is
uniform spaces, this is equivalent to the spaces being Tychonoff. In particular, all
uniformities are assumed to be separated.

1. Definitions

Definition 1.1. A diagonal uniformity on a set X is a filter D of relations on X,
called entourages or surroundings or vicinities satisfying the following conditions:

(1) ∆ ⊂ D for all D ∈ D, where ∆ is the diagonal {(x, x) : x ∈ X}
(2) If D ∈ D, then D−1 ∈ D, where D−1 is the inverse of D, that is, D−1 =

{(y, x) : (x, y) ∈ D};
(3) If D ∈ D, then there exists E ∈ D such that E ◦ E ⊂ D, where

E ◦ F = {(x, z) : ∃y ∈ X such that (x, y) ∈ F, (y, z) ∈ E}

A uniform space (X,D) is separated if
⋂
D = ∆.

Alternative ways of defining uniformities in general are by way of continuous pseu-
dometrics [GJ], [W] and by uniform covers [I], [W]. Given an entourage D ∈ D, the
associated uniform cover is

PD = {D[x] : x ∈ X} where D[x] = {y : 〈x, y〉 ∈ D}.

Given any uniform space 〈X,D〉, and x ∈ X, the associated topological space has
the sets {D[x] : D ∈ D} as a base for the neighborhoods of x. Part of the elementary
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theory of uniformities, used in the proof of 2.6 below, is that the interiors of the sets
D[x] cover X for each D ∈ D.

In the case where D is an equivalence relation (D ◦D = D = D−1), PD is trivially
a partition of X into clopen sets, and the notation PD is motivated by our examples,
in which the uniformity has a base of equivalence relations.

At the Prague Toposyms and all completed papers referenced here, only the special
case where all factors are the same uniform space are considered, so the following could
be called the “uniform box power”.

Definition 1.2. Let D be a diagonal uniformity on the space X, and let κ be a cardinal
number. For each D ∈ D let

D = {〈x, y〉 ∈ Xκ ×Xκ : 〈x(α), y(α)〉 ∈ D for all α ∈ κ}.

The uniformity D on Xκ whose base is the collection of all D is called the uniform
box product.

In particular, {D[x] : D ∈ D} is a base for the neighborhoods of x ∈ Xκ, and
D[x] = Πα∈κD[x(α)] = {y : y(α) ∈ D[x(α)] for all α < κ}.

Where many questions about topological properties and their preservation are con-
cerned, this restriction to powers of a space is more general than may seem at first,
because lots of topological properties are preserved by the topological direct sum, in-
cluding, clearly, proximality. A paper in preparation [Ny4] will deal with the more
general concept of a uniform box product.

Applying Definition 1.2 to the usual uniformity U on R, we have that U is an exten-

sion of ℓ∞(κ) to all of Rκ; and ℓ∞ itself is the component of
−→
0 in R

κ with the uniform
box product.

More generally, (Xκ,D) is metrizable if the uniformity on X has a countable base
(and thus X has a metrizable topology). These uniformities and many others are
subsumed by the concept of a proximal uniform space, due to Jocelyn Bell [B3]. It
uses a game of length ω, played by Player A and Player B on a uniform space (X,D).
Player A chooses members of D and Player B chooses points in the space X.

Definition 1.3. The proximal game on a uniform space (X,D) proceeds as
follows:

(1) Player A chooses D1 ∈ D

Player B chooses x1 ∈ X

(2) Player A chooses D2 ∈ D with D2 ⊂ D1

Player B chooses x2 ∈ 4D1[x1], where in general 4D = 2D ◦ 2D and 2D = D ◦D.
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In general, if D1, . . . Dn−1 and x1, . . . xn−1 and have been chosen for n > 1, we have

(n) Player A chooses Dn ∈ D with Dn ⊂ Dn−1

Player B chooses xn ∈ 4Dn−1[xn−1].

Player A wins iff either

(I) there exists z ∈ X such that x1, x2 . . . converges to z or

(II)
⋂

∞

n=1
4Dn[xn] = ∅.

Note that if D is an equivalence relation, then 4Di can be replaced by Di for all i,
and Di[x] is the unique member of the partition PDi

that contains x.

As usual, a strategy for a Player A is a function σ whose domain is all finite sequences
of legal plays x1, . . . , xn by Player B, and which sends such a sequence to a play Dn+1

on Player A’s next move. A strategy σ for Player A is winning if every sequence of
legal moves in which σ(x1, . . . , xn) is Player A’s response to x1, . . . xn results in a win
for Player A. A winning strategy for Player B is defined similarly.

Definition 1.4. A uniform space (X,D) is proximal if Player A has a winning strat-
egy in the proximal game on (X,D). A topological space X is proximal if there is a
proximal uniformity D compatible with the topology on X.

If D has a base of equivalence relations, and Player A has a winning strategy, then
Player A has one that uses only equivalence relations, since replacing Di by a finer
member of a given base is easily seen to force a win for Player A [B3, Lemma 3.2].
Similarly, if (X,D) is proximal and E is a finer uniformity than D that gives the same
topology that D does, then (X,E) is proximal also: a winning strategy for (X,D) is
also one for (X,E).

2. Fundamental properties of proximal spaces

Easy examples of proximal spaces include metric spaces, the one-point compactifi-
cations of discrete spaces, and the space ω1 of countable ordinals. In contrast, Player
B has a winning strategy on ω1 + 1. It consists of alternating between the last point
ω1 and a countable ordinal inside Dn[xn−1] (not just inside Dn−1[xn−1]) on move n

whenever xn−1 = ω1. A generalization of this technique is used below in the proof
of Theorem 3.1, which has the corollary that every proximal space is Fréchet. [Recall
that a space is called Fréchet or Fréchet-Urysohn if for every subset A and every
point x in the closure of A, there is a sequence from A converging to x.]

Jocelyn Bell originally introduced the concept of a proximal space to help unify a
number of proofs which showed the denumerable uniform box powers of some spaces
to be collectionwise normal and countably paracompact. Ironically, this concept has
been more successful with the usual (Tychonoff) product topology so far:
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Theorem 2.1. [B3] The Σ-product of any number of copies of a proximal space is
proximal, and every proximal space is collectionwise normal and countably paracompact.

The strength of Theorem 2.1 can best be appreciated by noting that every metric
space is proximal in its metric uniformity [B3, Lemma 4.1] and that it was an open
problem for almost two decades whether the Σ-product of metric spaces is normal. It
was solved by Sergei P. Gul’ko [Gu] and Mary Ellen Rudin [R2]; a proof can be found
also in [P]. In contrast, the following problem is unsolved:

Problem 3. Is the denumerable uniform box power of every proximal uniform space
normal?

The common weakening of Problems 1 and 3 is also unsolved:

Problem 4. Is the denumerable uniform box power of every compact proximal space
normal?

There is no need to put “uniform” after “proximal” since all compact spaces have
unique uniformities, provided by the filter of all neighborhoods of the diagonal [W].
More generally:

Problem 5. Is the denumerable uniform box power of every proximal space normal
with respect to some compatible proximal uniformity?

Example 2.4 below shows how much this may depend on the uniformity.

If the answer to any of Problem 3, 4, or 5 is affirmative, then it also follows that
this power is countably paracompact and collectionwise normal. This follows from a
theorem of Ofelia Alas, whose proof also appears in [P], and a few simple observations:

Theorem 2.2. [A] A topological space X is collectionwise normal and countably para-
compact iff its product with every Fort space is normal.

“Fort space” is a convenient shorthand for the one-point compactification of a dis-
crete space. It is easy to see that every Fort space is proximal. Given a proximal space
X, let Yκ be the product of X with the Fort space Aκ of cardinality κ. By Theorem
2.1, Yκ is proximal. The countable uniform box power of Yκ has a closed subspace
homeomorphic to Xω ×Aκ, which is thus normal if the whole box power is normal.

Similar reasoning gives us the following: every proximal space is a Morita P-space,
and if the answer to 3, 4, or 5 is affirmative, then the uniform box power in question
is one also. Normal Morita P-spaces can be defined “externally” as being the spaces
whose product with every metric space is normal. Morita P-spaces in general can be
defined “internally” by a game reminiscent of the proximal game. Players 1 and 2
alternate, with Player 1 defining a closed set Fn on the nth move that is a subset of
Fn+1 while Player 2 defines an open set Un such that Fn ⊂ Un. Player 2 wins if either⋂

∞

n=1
Fn 6= ∅ or

⋂
∞

n=1
Un = ∅. A Morita P-space is a space in which Player 2 has a

winning strategy.
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Another result in [B3] relates proximal spaces to spaces defined by an even more
similar game, invented by G. Gruenhage [G1].

Theorem 2.3. [B3, Lemma 5.1] Every proximal space is a W-space.

A W-space is a space X on which Player 1 has a winning strategy in the follow-
ing game no matter how p ∈ X is chosen. On their nth moves, Player 1 plays a
neighborhood Vn of p, and Player 2 plays xn ∈ Vn. Player 1 wins iff xn → p.

As may be expected, this game is harder for the point-picker to win than the proximal
game, because in that game there is more freedom of movement as to where to pick the
points. Even the extra way the entourage picker can win the proximal game (getting
the intersection of the Dn[xn] to be empty) is not enough to offset this advantage, as
Theorem 2.3 shows.

The converse of Theorem 2.3 does not hold. For example, every first countable
space is clearly a W-space; so the Sorgenfrey plane is a W-space, but it is not proximal
because it is not normal. Gruenhage showed [G1] that a W-space is Fréchet, and has
the property that every countable subspace has a countable base. He also showed that
a Σ-product of W-spaces is a W-space [G1].

Problem 6 [7] [8]. Is the denumerable uniform box power of every compact proximal
space proximal? [a W-space?] [Fréchet]?

Without “compact” the answer to Problem 8 and hence to 6 and 7 is negative, even
in the case of metrizable spaces with finer uniformities than the metric, as the following
example shows.

Example 2.4. Take the simple metrizable space X = ω× (ω+1) with the uniformity
E consisting of all partitions into clopen sets. By the observation at the end of Section
1 and the fact that metric spaces are proximal in the metric uniformity, X is proximal.
On the other hand, (Xω,E) is not countably tight: there is a subset A of Xω and a
point −→x in its closure but not in the closure of a countable subset of A.

Let −→x be the point in the product (Xω,E) that satisfies x(n) = (n, ω) for all n. For
each function f : ω → ω, take the partition PE of X into the parts of each column of
all points above the graph of f together with the singletons that are on or below the
graph of f . This partition canonically defines a basic open neighborhood E[−→x ] of x in
(Xω,E).

Thus −→x has a base of neighborhoods that is identical with the ones in the usual box
product, and if we take the point xf which is identical with f : ω → ω in the usual
ordered pair definition of a function, then the set A of all these xf has −→x in its closure,
but no set of fewer than d of them does. So the countable box power of X is not
Fréchet-Urysohn. It is also unknown whether it is normal: it is under Martin’s Axiom
[R1] [Wm] but we run into a famous box products problem: is �(ω + 1)ω normal?
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This example also suggests that the answer to Problem 3 is negative: the denumer-
able box power of the irrationals is not normal [R1] [Wm].

An encouraging sign about compact proximal spaces is that they do not admit of
subspaces like X in the last example. This is shown by Corollary 2.7 below, which
follows from a strong structure theorem.

Theorem 2.5. Every separable proximal space is metrizable.

Proof. We first prove Theorem 2.5 in the case where the uniformity has a base of
equivalence relations so as to make the central ideas of the proof clearer. The adaptation
for general uniformities illustrates some of the tools used in such adaptations.

Let Q be a countable dense subspace of X, and let σ be a strategy for Player A.
We will develop a winning counter-strategy for Player B with the help of a countable
elementary submodel M of a large enough fragment of the universe such that Q, σ, X,
the uniformity D on X, and the function ϕ : D×X → X for which ϕ(D) = D[x] are
all members of M . Since Q is countable, every point of Q is also a member of M , by
elementarity; also, the topology induced by the uniformity is a member of M .

Let B be a base for the uniformity on X such that each member B of B induces
a partition of X into clopen sets. The partition is countable because each member
meets Q, so the individual members are all in M if B ∈ M : elementarity of M implies
|A| ≤ ℵ0 ∧A ∈ M =⇒ A ⊂ M .

Let {Bn : n ∈ ω} be a listing of B ∩M . The listing will not be in M but that will
not affect the proof.

Case I. There exists p ∈ X such that
⋂

∞

n=1
Bn[p] 6= ∅.

Case II. Otherwise.

In Case I, there exists r 6= p in the intersection. All the points in the intersection
are “invisible to M,” but they have disjoint closed neighborhoods, say Np and Nr, and
by density of Q ⊂ M , Player B can choose xn alternately from Dn[p] ∩ Np ∩ Q and
Dn[r]∩Nr ∩Q. These moves are in M and the strategy σ is in M , and so Player A is
constrained by σ to choose Dn+1 in M , so that 〈xn〉 cannot converge to p, while

∞⋂

n=1

Dn[xn] ⊃
∞⋂

n=1

Bn[xn] =
∞⋂

n=1

Bn[p] 6= ∅.

In Case II, let τ be the topology on X, and let ν be the metrizable topology whose
base is

⋃
∞

n=1

⋃
{Bn(q) : q ∈ Q}. If τ = ν we are done, otherwise Fréchet property of

the two topologies implies that that there is a sequence 〈pn : n ∈ ω〉 that converges
with respect to ν but not with respect to τ . Let its limit be p. There is a closed
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τ -neighborhood W of p and a subsequence that ν-converges to p outside W , which we
may assume to be the original sequence.

There is a sequence 〈qin : i ∈ ω〉 from Q converging to pn for each n, and with none
of the qin in W . The metrizability of ν implies that there is a sequence from Q ⊂ M

converging to p wrt ν. The sequence itself will not be in M , but Player B can freely
choose distinct points from it on each turn, similarly to the method above; only this
time, there is no need to distinguish even turns from odd turns. Player A is constrained
to choose an entourage in M as long as xn ∈ Q for all n, and so Player B wins since
〈xn : n ∈ ω〉 is not τ -convergent.

For general proximal uniformities, the argument in Case II can go through unchanged
once the proof of Case I is suitably modified. It is convenient to do this via a lemma
that has a weaker conclusion.

Lemma 2.6. Every separable proximal space has a coarser metrizable topology.

Once this is shown, we let ν be such a topology and complete the proof of Theorem
2.5 as in Case II.

Proof of lemma. Contrapositively, let X be a separable space without a coarser metriz-
able topology. Let Q, σ, M etc. be as before, and let B = D ∩ M where D is the
uniformity on X. Then B is a countable base {Bn : n ∈ ω} for a uniformity on X,
one which can be produced by a pseudometric ρ ∈ M . By the hypothesis on X, there
will be points p and r at zero distance. Let U and V be disjoint open subsets of X
containing p and r respectively.

We next show that the interiors of the Bn[m](m ∈ X ∩M) cover X. These interiors
are in M because Bn[m] ∈ M and because

⋃
{G : G is open and G ⊂ Bn[m]} is a

member of M even if it is not a subset of M . And the interiors cover X because,
as noted above, {int(Bn[x]) : x ∈ X} is an open cover; and it is a member of M .
The pseudometric ρ gives a locally finite refinement in M , and this is countable. By
elementarity, this refinement is in M and gives a countable subcover of int(Bn[x]) :
x ∈ X}, which is also in M and can be listed there as {int(Bn[xi]) : i ∈ ω}.

For some xi, and some δ > 0, the open 2δ-ball S2δ(p) = S2δ(r) in the pseudometric
ρ is in the interior of Bn[xi]. By density of Q, there will be some q ∈ Q such that p

and r are in Sδ(q).

Now, if Player A chooses Bn on the jth turn, Player B can pick qj ∈ Q ∩ Bn[xi]
as above, to be in U if n is even and in V if n is odd. Then whatever Bk is chosen
by Player A on turn j + 1, both p and q are comfortably inside 4Bn[qj ] (because they
are both in Bn[xi]), and Player B can repeat legally the same procedure that gave qj ,
mutatis mutandis. �

Spaces with coarser metrizable topologies are called submetrizable. Lemma 2.6
suggests the following question.
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Problem 9. Is every submetrizable proximal space metrizable?

Corollary 2.7. If (X,D) is a countably compact proximal space, then the trace of D
on every countable subset of X has a countable base.

Proof. Let Q be a countable subspace of X and let S be the closure of Q. Then S

is a separable proximal subspace of X, and hence is metrizable, and compact. So the
unique uniformity on S has a countable base, as does every uniformity that comes from
a metric. Hence its trace on Q also has a countable base. �

The following result shows how important Corollary 2.7 is if Problem 8 is to have
an affirmative answer:

Theorem 2.8. [Ny3] Let (X,D) be a uniform space. If (Xω,D) is Fréchet-Urysohn,
then the trace of D on every countable subset of X has a countable base.

The converse is known not to hold, not even for compact spaces, but the counterex-
ample in [Ny3] (the one-point compactification of an Aronszajn tree) is not proximal,
nor even a W-space, and so Problem 8 remains open. In fact, Player B has a winning
strategy on this space [Ny3].

It is clear from Theorem 2.1 that every Corson compact space (compact subspace
of a Σ-product of real lines) is proximal. The converse is open:

Problem 10. Is every compact proximal space Corson compact?

A Yes answer would obviously greatly shorten the proof of Corollary 2.7! It would
also show that compact proximal spaces have strong hereditary covering properties:
Corson compacta are precisely the compact spaces with hereditarily metalindelöf squares
[G3]. So if Problem 10 has a negative answer we could still ask what hereditary covering
properties proximal compacta have.

On the other hand, we cannot expect any “nice” covering properties to hold for
arbitrary proximal spaces unless they put restrictions on the cardinality of the cover to
be refined. In [Ny2] it is shown that the countable uniform box power of an uncountable
Fort space is not even weakly δθ-refinable; and in [B3] it is shown that this uniform
box power is proximal.

Nevertheless, there are some possibilities for strengthening normality and count-
able paracompactness. Normality + countable paracompactness is equivalent to every
countable open cover, or every ascending countable open cover {Uα : α < ω} having an
shrinking, i.e., an open refinement {Vα : α < ω} such that Vα ⊂ Uα for all α < ω [W,
proof of Theorem 2.13]. If the cardinality restriction on the cover is removed, these
two characterizations become distinct.
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Definition 2.9. A space is shrinking [resp. weak shrinking] if every open cover
[resp. every ascending open cover] has a shrinking.

In [R2], Mary Ellen Rudin showed that every Σ-product of metrizable spaces is
shrinking. This suggests the following problems.

Problem 11. Is every proximal space shrinking?

Problem 12. Is every proximal space weak shrinking?

Normal, countably paracompact spaces which are not weak shrinking are very rare;
in [R3] Mary Ellen Rudin gives a class of “κ-Dowker” spaces which generalize her
famous ZFC Dowker space and she remarks that these are the only examples she
knows of normal, countably paracompact spaces that are not weak shrinking.

3. Semi-proximal spaces

Let us call a uniform space semi-proximal if Player B does not have a winning
strategy in the proximal game. This is not enough to imply proximality, as the game is
indeterminate on some spaces. An example will be given after the following theorem.

Theorem 3.1. Every semi-proximal space is a w-space; that is, the point picking player
does not have a winning strategy in the Gruenhage game.

Proof. This is an easy consequence of Sharma’s characterization of w-spaces [Sh]: they
are the α2-Fréchet spaces. [A topological space is α2 if, whenever σn is a sequence
converging to a point x for each n ∈ ω, there is a “diagonal” sequence σ converging
to x whose range meets the range of every σn.] So if a space X is not a w-space, it is
either not Fréchet or it is not α2.

If X is not Fréchet, Player B in the proximal game can find a point p ∈ X and
a set A such that p ∈ A such that no sequence in A converges to p. Player B can
adopt the strategy of playing p itself on odd-numbered moves, and some point of A in
even-numbered moves, and then the sequence cannot converge to any point. On move
2n, this point x2n should be in D2n[p] ⊂ 2D2n[xn−1] and not just in 4D2n−1[xn−1], so
that Player B can hop back to p on the next turn. So X is not semi-proximal.

If X is not α2, the strategy that wins for Player B is similar. This time, Player B
singles out a point x that witnesses the failure of α2, and picks it on odd-numbered
moves, while picking a carefully chosen point in the range of σn on move 2n. The
choice is guided in the same way as the choice of x2n when X is not Fréchet. So again
X is not semi-proximal. �

While proximal spaces andW -spaces are very well behaved under products, w-spaces
are not.
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Example 3.2. In [Ny1] it is shown how an (ω1, ω1)-gap in the power set of ω can be
used to construct a pair of w-spaces, each of which has only one nonisolated point, so
that the “corner point” of the product cannot be reached with a convergent sequence
from the dense set of isolated points [Ny1]. The factor spaces are not first countable,
but they are countable, so they are not W-spaces by a theorem in [G1]; so they are not
proximal. On the other hand, they are semi-proximal, because of the following partial
converse of Theorem 3.1.

Lemma 3.3. In its fine uniformity, every w-space [resp. W-space] with a single non-
isolated point is semi-proximal [resp. proximal]

Proof. Let X have a single non-isolated point p. The “best” moves of Players A and
B essentially turn the proximal game on X into a Gruenhage game on X centered at
p. For Player A, Dn[p] is, of necessity, a clopen neighborhood of p, and it is clearly
to the advantage of Player A to make Dn induce a partition of X into Dn[p] and the
singletons of X \Dn[p]. As for Player B, it would be “suicidal” to let {xn} be one of
these singletons, because then all the later xm have to equal xn, and so converge to it.

In this way, Player A and Player B induce a bijection between these special ways of
playing the proximal game and all legal ways of playing the Gruenhage game: the legal
moves of the neighborhood picker in the latter are in bijection with the “advantageous”
ones of Player A in the former, and the legal moves of the point-picker in the latter
then coincide with the “non-suicidal” ones of Player B in the former. With the above
constraints, winning strategies of either player in either game become winning strategies
of the corresponding player in the other game. �

Corollary 3.4. The proximal game is indeterminate on the factor spaces of Example
3.2. �

Lemma 3.3 can easily be extended to scattered paracompact spaces, but we will not
need this result here.

Problem 13. Is every semi-proximal space normal?

The answer is affirmative if the space is countably compact: it is easy to show that
Player B can alternate between two closed sets that cannot be put into disjoint open
sets, and any cluster point of 〈xn〉 is in the intersection of the sets Dn[xn], and there
are at least two of them. Nevertheless, I conjecture a negative answer to Problem 13.

Problem 14. If a product of two semi-proximal spaces is Fréchet, must it be semi-
proximal?

Problem 15 [16]. If every finite subproduct in a countable family of semi-proximal
spaces is semi-proximal, must the whole product be semi-proximal? [Fréchet?]

In problems 14 and 16, “Fréchet” is equivalent to “w-space” everywhere, inasmuch
as the product of countably many α2-spaces is α2 [No] and we can apply Sharma’s
characterization of w-spaces as α2 Fréchet spaces. This also applies to:
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Problem 17. If every finite subproduct in a countable family of semi-proximal spaces
is Fréchet, must the whole product be Fréchet?

Remarkably enough, the following variant of Problems 15 and 16 is still unsolved:

Problem 18. Is there a ZFC example of a countable family of Fréchet spaces such
that every finite subproduct is Fréchet, but the whole product is not Fréchet?

Examples are known under CH [G2] and MA [T] with the latter even compact, but
finding a ZFC counterexample seems to be a formidable problem. As far as Problem
15 is concerned, however, the really relevant general problem is the following:

Problem 19. Is there a countable family of w-spaces such that every finite subproduct
is a w-space, but the whole product is not a w-space?

For this, there may be no consistency results at all. For example, the factor spaces
in [T] are not all w-spaces, because the countable product of countably compact regular
w-spaces is a w-space [No].

Finally, here is a problem inspired by Corollary 3.4 and the fact, mentioned earlier,
that every proximal space is a Morita P-space.

Problem 20. Is there a space on which the game used to define Morita P-spaces is
indeterminate?
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